
Total Ordering on Subgroups and Cosets

Alexander Hulpke
∗

Department of Mathematics
Colorado State University

1874 Campus Delivery
Fort Collins, CO 80523-1874

hulpke@math.colostate.edu

Steve Linton
Centre for Interdisciplinary Research in

Computational Algebra
University of St Andrews

The North Haugh
St Andrews, Fife KY16 9SS, U.K.

sal@dcs.st-and.ac.uk

ABSTRACT
We show how to compute efficiently a lexicographic order-
ing for subgroups and cosets of permutation groups and,
more generally, of finite groups with a faithful permutation
representation.

Categories and Subject Descriptors
F [2]: 2; G [2]: 1; I [1]: 2

General Terms
Algorithms

Keywords
permutation group, matrix group, algorithm, total order

1. INTRODUCTION
Searching for objects in a list becomes easier if the list is

sorted. This motivates the desire to define a total ordering
that can be computed easily. An ordering can also be useful
to designate a particular representative within a class that
can be identified repeatedly without the need to store it. In
classifications, such as [3], this is a useful tool for the elim-
ination of isomorphic representatives: Define a “canonical”
representative under conjugation action of some supergroup
to be the smallest element in the orbit. If a group is con-
structed that is not minimal in its orbit, it cannot be this
“canonical” representative and can be discarded immedi-
ately without the need to do an explicit isomorphism test.

Many common representations of groups offer a natural
definition of a total order on their elements. Permutations
are naturally sorted by lexicographic comparison of the im-
ages of [1, . . . , n] under the permutations. (The smallest

∗Supported in part by EPSRC Grant GL/L21013

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’03,August 3–6, 2003, Philadelphia, Pennsylvania, USA.
Copyright 2003 ACM 1-58113-641-2/03/0008 ...$5.00.

permutation is thus the identity element ( ).) In the sym-
metric group Sn this comparison of elements takes at most
n point comparisons.

In a similar way a total order on a field F induces a to-
tal lexicographic order on the n-dimensional row space F n

which in turn induces a total (again lexicographic) order on
the set F n×n of n×n matrices with entries in F . A compar-
ison of two matrices takes at most n2 comparisons of field
elements.

As a third case we consider the automorphism group G of
a (finite) group A. A total order on the elements of A again
induces a total order on the elements of G by lexicographic
comparison of the images of a generating list L of A. (It
can be convenient to take L to be sorted as well. The most
“generic” choice is probably L = A.) Comparison of two
automorphisms will take at most |L| comparisons of images.

The aim of this paper is to show how such an ordering
can be extended to subgroups of the group. In the case of
permutation groups, the techniques we describe seem to be
known in the folklore, although we could find no reference
for them. The extensions to more general settings are the
main novelty of this paper.

2. ORDERING ON SUBGROUPS
We now assume that G is a finite group on whose elements

a total ordering � has been established. We write min� to
denote the minimal element of a set under this ordering.

We now define an order on subsets of G in the following
way:

Definition 1. Let X, Y ⊆ G. We say that X ≺ Y if and
only if the �-sorted list of elements of X is lexicographically
smaller than the sorted list of elements of Y .

For example, for permutations (1, 2) � (1, 2, 3, 4) and thus
[(1, 2), (3, 4)] ≺ [(1, 2, 3, 4), (1, 2, 4, 3)].

It is easily seen that ≺ defines a total order on subsets
of G. We want to compute this ordering ≺ efficiently for
subgroups and cosets without having to enumerate all ele-
ments. For cosets of the same subgroup, this means simply
comparison of their minimal elements:

Lemma 2. Let U ≤ G be a finite subgroup and g1, g2 ∈ G.
Then Ug1 ≺ Ug2 if and only if min�(Ug1) � min�(Ug2).

Proof. The sorted list of elements of a coset Ug will start
with its minimum min(Ug). If min(Ug1) = min(Ug2) both



cosets contain a common element and thus Ug1 = Ug2. Oth-
erwise the minima must differ and the comparison between
the cosets is already decided on the minimal element.

A method to compute such minimal coset elements in per-
mutation groups will be given by algorithm 7.

Definition 3. For a subgroup U ≤ G we define the small-
est generating list S(U) = (u1, . . . , um) of U as follows:

u1 = min
�

(U), ui = min�(U − 〈u1, . . . , ui−1〉)(i > 1)

until 〈u1, . . . , um〉 = U for a suitable m.

In particular, u1 is the smallest nontrivial element of U .
We note that a comparison S(U) ≺ S(V ) defines a total

ordering on subgroups, but this ordering is not necessarily
compatible with the ordering as sets:

Example 4. Let
G = 〈(1, 2, 9)(3, 4, 5)(6, 7, 8), (1, 4, 7)(2, 5, 8)(3, 6, 9)〉 ∼= 3× 3
and H = 〈(1, 2, 9)(3, 4, 5)(6, 7, 8)〉. Then
S(G) = [(1, 2, 9)(3, 4, 5)(6, 7, 8), (1, 3, 8)(2, 4, 6)(5, 7, 9)] and
S(H) = [(1, 2, 9)(3, 4, 5)(6, 7, 8)] ≺ S(G). But the sorted
element lists start with

G = {(), (1, 2, 9)(3, 4, 5)(6, 7, 8), (1, 3, 8)(2, 4, 6)(5, 7, 9), . . .

H = {(), (1, 2, 9)(3, 4, 5)(6, 7, 8), (1, 9, 2)(3, 5, 4)(6, 8, 7)}

and therefore G ≺ H.

By a slight modification it is possible, however, to get an
ordering which is compatible:

Definition 5. Let U, V ≤ G and let u = max�(U), v =
max�(V ), s = S(U), t = S(V ), x = |s| and y = |t|. We

define Ŝ by padding the shorter list with the largest element
of the respective group:

Ŝ(U) =


S(U) t ( u, . . . , u︸ ︷︷ ︸

y−x times

) if x < y

S(U) if x ≥ y

and

Ŝ(V ) =


S(V ) t ( v, . . . , v︸ ︷︷ ︸

x−y times

) if x > y

S(V ) if x ≤ y

where t denotes the concatenation of sequences. (The defi-
nition thus depends on the pair U, V ).

Comparison of the extended generating systems Ŝ now is
compatible with the set-wise ordering:

Lemma 6. Let U, V ≤ G, then U ≺ V if and only if

Ŝ(U) ≺ Ŝ(V ).

Proof. Let Ŝ(U) = (a1, . . . , ak), Ŝ(V ) = (b1, . . . , bk),
and enumerate the elements of U and V in ascending order:
u1 � u2 � · · · � u|U| and v1 � v2 � · · · � v|V |.

Now suppose that U ≺ V , which means (by the definition
of lexicographic ordering) there is an i such that uj = vj for
j < i and either i > |U | or ui � vi. Let l be the largest
index such that al is among the uj for j < i. Thus, by the
definition of S, we have aj = bj for j ≤ l. As U 6= V , S(U)

must differ from S(V ), so l < k. We note that all the uj

and vj for j < i must be in 〈a1, . . . , al〉 (otherwise l would
not have been maximal).

Assume first, that i > |U |. Then U = 〈a1, . . . , al〉 con-
tains no further elements. Thus al+1 is a padding element
and bl+1 must be non-padding. Furthermore bl+1 must be
larger than the largest element of U = 〈a1, . . . , al〉, other-
wise it would have occurred as a vj at an index j before |U |.
Thereby Ŝ(U) ≺ Ŝ(V ).

Now assume that ui � vi. Then, by the choice of i, ui

can not be contained in the subgroup 〈a1, . . . , al〉 ≤ U ∩ V .
By the maximality of l, ui is the smallest element not in
〈a1, . . . , al〉. Therefore we have ui = al+1. If bl+1 is not a
padding element, it must equal one of the vj for j ≥ i, so

al+1 = ui � vi �= vj = bl+1 and Ŝ(U) ≺ Ŝ(V ).
If bl+1 is padding, bl+1 is the largest element of V and

every vi ∈ V is smaller or equal. Thus al+1 = ui � vi �= bl+1

which proves again Ŝ(U) ≺ Ŝ(V ).

Conversely, suppose that Ŝ(U) ≺ Ŝ(V ). Then there is an
index l such that aj = bj for j ≤ l and al+1 � bl+1. Then
〈a1, . . . , al〉 = 〈b1, . . . , bl〉 ≤ U ∩ V .

Assume first, that al+1 is not padding. Then it is the
smallest element of U not in 〈a1, . . . , al〉. Let i be the index
of this element in U , al+1 = ui. Then the aj = bj for j ≤ l
are among the uj (j < i) and by the definition of S, we have
that uj = vj for j < i.

If bl+1 is not padding it is the smallest element of V not in
〈a1, . . . , al〉 = 〈b1, . . . , bl〉, therefore vi = bl+1. Furthermore,
by assumption ui = al+1 � bl+1 = vi. Thus U ≺ V .

If bl+1 is padding, vi ∈ V = 〈b1, . . . , bl〉 = 〈a1, . . . , al〉 <
U . As al+1 6∈ 〈a1, . . . , al〉, we have that ui 6= vi. Further-
more as uj = vj for j < i we must have that vi = uk for a
k > i and thus ui � uk = vi. Therefore U ≺ V .

If on the other hand al+1 is padding, U = 〈a1, . . . , al〉
and bl+1 (which cannot be padding as well) must be the
smallest element of V that is not in U . But it is larger than
the largest element al+1 of U , thus the sorted element list
of V starts with the full list of elements of U and thus again
U ≺ V .

We now show how to compute S(U) and max�(U) with-
out listing all the elements of U , thus enabling comparison
of subgroups according to lemma 6.

3. PERMUTATION GROUPS
We first consider the case of permutation groups. The ele-

ment order is inherited from an ordering of the permutation
domain, two permutations are compared, by comparing the
lists of images of the ordered permutation domain lexico-
graphically.

The basic ideas for comparing subgroups already are found
in [6, 2]:

For a finite permutation group G acting on the points
1 . . . , d, we compute a series of iterated stabilizers

G ≥ G[1] = StabG(1) ≥ G[1,2] = StabG[1](2) ≥ · · ·
≥ G[1,2,...,n] = 〈1〉.

We now eliminate from [1, 2, . . . , n] those points i such that
G[1,...,i] = G[1,...,i−1]. The resulting set Bk(G) = (β1, . . . , βk)
is still a base of G (see [6] for the definition), it is, in fact, the



lexicographically smallest irredundant base of G. We call the
corresponding stabilizer chain G = G1 > G2 > · · · > Gk >
Gk+1 = 〈1〉 the lexicographically smallest reduced stabilizer
chain.

Using for � the lexicographic comparison of images, we
note that every element in G[β1,...,βi] is smaller than any
element in G[β1,...,βi−1] −G[β1,...,βi]. Therefore the smallest
generating set S(G[β1,...,βi−1]) is obtained from S(G[β1,...,βi])
by appending further elements. (This automatically makes
S(G) a strong generating set.)

Using this stabilizer chain we first show how to determine
minimal coset representatives.

Algorithm 7. (Smallest Coset Element, [6]) Let g ∈ Sn.
The following procedure computes the minimal element in
the right coset Gg.

1. [Initialization] Let i := 1 and rep := g.

2. [Images of βi] Let orb := βGi
i and let img := {ωrep |

ω ∈ orb}. (These are all potential images of βi under
Girep.)

3. [Minimum image] Let µ = min(img) and ω = µrep−1
.

Take t ∈ Gi such that βt
i = ω. (t can be obtained from

the transversal of Gi+1 in Gi in the stabilizer chain.)

Let rep := t · rep. (Thus β
rep
i is minimal possible.)

4. [Step] Let i := i + 1. If Gi 6= 〈1〉 then go to step 2.
Otherwise return rep.

Proof. As g is left-multiplied by elements of G, rep lies
in the same coset as g. Furthermore in step 3 rep is changed
only by elements of Gi−1, thus (after i has been increased

in step 4) the image β
rep
i remains unchanged, and so is

minimal possible as it has been chosen in step 2.

Remark 8. If we replace µ in step 3 by the maximum,
we obtain the largest coset element. Applying this to the
group G itself thus yields the largest element of G needed for
padding in lemma 6.

Since |orb| < n , the runtime is dominated by the multi-
plication of permutations in step 3 and thus essentially the
same as for a membership test in G; for base length k and n
points, O (n · k) multiplications are necessary, giving a time
complexity O

(
n2k

)
. (If the transversal is stored in factored

form, further multiplications are required.)

Remark 9. We can use smallest coset elements also to
obtain an element test for double cosets (and to test equality
of double cosets): If UgV is a double coset, we compute the
smallest elements for all the U-cosets in UgV . We can do
this by computing the smallest element g′ in Ug, and then
computing the orbit of g′ under right multiplication by V ,
always converting a product in the smallest element in its
U-coset.

Then x is in U if the smallest element of the coset Ux is
among these U-coset representatives.

Note, however, that the computation of the orbit of g′ is
not necessarily polynomial time. Indeed equality of double
cosets is a known hard problem [4]

Use of algorithm 7 enables us to compute S(G). (This
method surely has been known in folklore for a long time,
however the authors have been unable to find an explicit
literature reference for it.)

Algorithm 10. (Smallest Generating Set for smallest ba-
sis) Assume that {Gi}k

i=1 forms the lexicographically small-
est reduced stabilizer chain of G. The following procedure
computes S(G):

1. [Initialization] Let i := k and L := [].

2. [Orbit Reached?] Let orb := βGi
i − β

〈L〉
i . If orb = ∅

then go to step 4.

3. [Minimal Element] Let ω := min(orb) and take t ∈
Gi (from the transversal) such that βt

i = ω. Using
algorithm 7 compute the minimal element x of Gi+1t.
(This uses Gi+1 > · · · > Gk as a stabilizer chain for
Gi+1.) Add x to L. Go to step 2.

4. [Step] Let i := i − 1. If i > 0 then go to step 2.
Otherwise return S(G) := L.

Proof. As S(G) is obtained from the S(Gi) it is suf-
ficient to show that steps 2 and 3 compute S(Gi) from
S(Gi+1). The condition in step 2 ensures that the elements
in l generate the full orbit of βi, thus together with Gi+1

they generate Gi. The element x chosen in step 3 is not
contained in 〈L〉, among all remaining elements it has the
minimal possible image of βi (which is a necessary condi-
tion for the lexicographically smallest element) and among
all such elements x is the smallest by the use of algorithm
7. Thus the computed x is the smallest element not in 〈L〉
as required.

The orbit βGi
i in step 2 either contains the orbit of β

Gi+1
i+1 ,

in which case we need at most as many generators as new
points are reached, or is disjoint, in which case there are at

most
∣∣∣βGi

i

∣∣∣− 1 new generators.

Furthermore, with each new generator the partially gen-
erated subgroup grows. As G has a base of length k, G has
size at most nk, and thus such an extension step can be done
at most log2(n

k) = k log2 n times.
The number of permutation multiplications of algorithm 10

is thus O
(
nk2 log n

)
and the time complexity accordingly

O
(
n2k2 log n

)
.

4. OTHER ACTIONS
We now turn to the case of a (finite) group G of automor-

phisms of another algebraic structure A (on which G acts
faithfully). Examples are A a vector space and G a matrix
group or A a group and G its automorphism group. We
assume A to be totally ordered by <. We choose a gener-
ating sequence B of A and define the ordering � on G by
lexicographic comparison of the images of B under automor-
phisms.

Remark 11. For the case of a matrix group acting on a
vector space we can take B to be the standard basis, then �
is the natural ordering of matrices mentioned in section 1.

We now assume that G is finite and denote by Ω the union
of the orbits of the elements in B under G: Ω =

⋃
β∈B βG.

The action of G on Ω is faithful because A = 〈B〉. We can
thus consider G to be a permutation group on Ω and observe
that B is a base. By definition of � we have for g, h ∈ G
that g � h if and only if Bg < Bh lexicographically. (To
improve the performance again one can remove those points
from B which are stabilized already by the stabilizer of the
previous points, however this is not strictly necessary.)



Remark 12. It should be pointed out, that we essentially
consider the group G as a permutation group. A total order-
ing of subgroups and cosets of G could be obtained by simply
constructing the isomorphic permutation group given by the
action on Ω and applying the methods of section 3. How-
ever, this ordering would not be the lexicographic ordering
derived from the natural ordering of the elements described
above. The purpose of the algorithms of the current section
is to compute that lexicographic ordering.

In particular, note that n = |Ω| will be the size of the
permutation domain. For matrix groups this is often ex-
ponential in the dimension and field size (and so the input
length). Complexities will be given in terms of this n.

We now aim to modify the algorithms of the last section
to find smallest and largest element with respect to � and
to find the smallest generating set of G. The problem here is
that the base B is not necessarily lexicographically smallest
in its G-orbit. (If it is, then the situation is (up to the
actual names of the points in Ω) exactly the same as in
section 3.) The first step of the calculation will therefore be
the calculation of the minimal base image:

Algorithm 13. (Smallest Base Image)
Assume that {Gi}k

i=1 is a stabilizer chain corresponding to
B = (β1, . . . , βk). This algorithm computes an element

min ∈ G such that C := Bmin is the minimal possible
base image as well as a stabilizer chain Hi corresponding to
C:

1. [Initialization] Let Hj := Gj and γj := βj for all j ≤ k,
let C := B, i := 1 and min := ().

2. [Finished?] If Hi = 〈1〉 then return min and {Hj}.

3. [Make current base point minimal] Take rep ∈ Hi such

that β
rep
i = min{βs

i | s ∈ Hi} is the minimal image of

the current base point. For j ≥ i replace Hj by H
rep
j

and γj by γ
rep
j . Let min := min · rep. (Now γi is the

minimal possible image of an i-th base point, the Hj

form a stabilizer chain for the new γj and g maps the
old base B to the base defined by the current γi.)

4. [Loop] Increment i. Go to step 2.

Proof. Because we compare base images lexicographi-
cally, we can find the minimal base image iteratively in a
loop over the base points.

The element min produced by this algorithm maps the base
B to the smallest image C, thus it is the smallest element
with respect to �.

In each of the k iterations of the algorithm a (partial) sta-
bilizer chain has to be conjugated. This involves mainly con-
jugacy of the strong generators. Thus the algorithm requires
O (ks) permutation multiplications, where s is the number
of strong generators (and these multiplications dominate the
algorithm).

Recall that, to compare subgroups lexicographically, using
lemma 6, we need to be able to compute maximum elements,
and smallest generating sequences.

If we apply algorithm 7 (in the variation to find the max-
imal element according to remark 8) to the stabilizer chain
Hi, we get an element x which maps C to the largest possi-
ble base image L. Therefore min · x maps B to L and thus
is the largest element of G with respect to �.

This leaves the task of computing S = S(G). For this we
modify algorithm 10. The main difficulty here is that S is
no longer guaranteed to be a strong generating set.

Let x be an element that maps the base C to an image D.
Then min · x maps the base B to the same image D. Fur-
thermore elements are smaller (with respect to �), when
they map more initial base points in B to the corresponding
points in C (because that yields the lexicographically small-
est images). Thus all the elements in the coset min ·Hi are
smaller than all the remaining elements in min ·Hi−1.

In other words: The smallest generating set S starts with
min, then contains elements of min ·Hk, then of min ·Hk−1

and so on.
Let Si be the prefix of S that contains all the elements in

S ∩ (min ·Hi).

Lemma 14. The orbit orb of γi under the stabilizer sub-
group Stab〈Si〉(γ1, . . . , γi−1) contains the orbit γHi

i .

Proof. Suppose that δ ∈ γHi
i but δ 6∈ orb. Then there

is h ∈ Hi such that γh
i = δ. Let x = min · h ∈ min · Hi.

By assumption, h 6∈ 〈Si〉 and thus – as min ∈ Si – x 6∈ 〈Si〉.
But x is smaller than any element not in min ·Hi. Thus, by
the definition of S, x would have to be chosen as generator
in S before any element not in min · Hi, which contradicts
the definition of S and Si.

Lemma 15. Let L be a prefix of S containing Si+1, 1 ≤
i ≤ k and K = Stab〈L〉(γ1, . . . , γi−1). Let x = min · h with

h ∈ Hi. Then x ∈ 〈L〉 if and only if γh
i ∈ γK

i . In particular

L ⊃ Si, if γK
i = γHi

i .

Proof. Since min ∈ L (it is the first element), we have
that x ∈ 〈L〉 if and only if h ∈ 〈L〉.

Proceed by (reverse) induction: The base case i = k + 1
is trivial. Thus assume the statement holds for i+1 and we
shall prove it for i:
Since L contains Si+1, lemma 14 shows that orbit of γi+1

under Stab〈L〉(γ1, . . . , γi) equals γ
Hi+1
i+1 . Thus, by induction,

〈L〉 contains every element of Hi+1.
If γh

i is in the orbit, K ≤ 〈L〉 ∩Hi contains an element in
the same Hi+1-coset as h, thus h ∈ 〈L〉.

Conversely, h ∈ 〈L〉 implies that h ∈ K.

This shows, that we can also find S in this case in an
iterative way, corresponding to the stabilizer chain {Hi}, by
first constructing Sk, then extending to Sk−1 and so on:

Consider the step that extends Si+1 to Si. The elements
added will be of the form min · h with h ∈ Hi − Hi+1.
Therefore they map the first i − 1 base points β1, . . . , βi−1

to γ1, . . . , γi−1 and map βi to an element of γHi
i . Lemma 15

shows that we have to find elements h ∈ Hi that give new γi

images. Furthermore (as min maps B to the smallest base
C) for g, h ∈ Hi we have that g � h (with respect to the
base C) if and only if min · g � min · h with respect to B.

This yields the following algorithm, generalizing algorithm 10:

Algorithm 16. (Smallest Generating set for arbitrary
base) Let min, {γi}k

i=1 and {Hi}k
i=1 as computed by algo-

rithm 13 for a group G. The following procedure computes
S(G):

1. [Initialization] Let i := k and L := [min].

2. [Compute stabilizer] Let K := Stab〈L〉([γ1, . . . , γi−1]).



3. [Orbit Reached?] Let orb := γHi
i −γK

i . If orb = ∅ then
go to step 5.

4. [Minimal Element] Let ω := min(orb) and take t ∈ Hi

from the transversal such that γt
i = ω. Using algo-

rithm 7 compute the minimal element r (with respect
to base C) of Hi+1t. (This uses Hi > · · · > Hk as a
stabilizer chain for Hi.) Add min · r to L. Go to step
2.

5. [Step] Let i := i − 1. If i > 0 then go to step 2.
Otherwise return S(G) := L.

Proof. The element r in step 4 maps γi to a new point,
fixes all prior base points in C and maps the further points
as small as possible. Thus the added generator max ·r maps
βi to a new image (and so is a new generator according to
Lemma 15), and it maps the remaining base points βi as
small as possible. Thus it is the smallest element not yet
contained in 〈L〉.

For the complexity, observe that the main difference to
algorithm 10 is the additional stabilizer chain calculation in
step 2. Assuming that G is a small-base group, and noting
that |G| is known, the cost of each of these is O (n log n)
equivalent toO (log n) permutation multiplications, each [5].

This stabilizer computation is performed once for every
new generator, of which there are (by the argument after
algorithm 10) at most k log2 n. Thus the total cost for sta-
bilizer computations is O

(
k log2 n

)
permutation multipli-

cations. This is bounded from above by the cost of algo-
rithm 10, the overall cost thus is the same as in the permu-
tation group case, namely O

(
n2k2 log n

)
. (For a large-base

group we get by a similar argument the total cost O
(
n3k

)
.)

5. CONCLUDING REMARKS
The algorithms in this paper have been implemented in

the system GAP [1] and are used therein for the comparison
of subgroups. (The system in general defines the ordering
of domains to be based on Definition 1).

In practice the cost of running the algorithms is typically
dominated by the initial computation of a stabilizer chain.
Thus computations for permutation groups typically are un-
problematic. Matrix groups however can have extremely
long orbits which can cause memory problems. This limits
the applicability of the algorithm to those matrix groups for
which the orbits of the vectors in a standard basis are still
of reasonably small length.

The limiting factor in practice, however is most frequently
the fact that the comparison of subgroups mainly is of in-
terest in computations where a large number of subgroups
are to be considered. Creating and storing these subgroups
(note that we have to store a stabilizer chain for each sub-
group as well) then typically becomes a problem in the first
place, even if single pair comparisons still performs well.

The authors would like to thank the referees for their help-
ful remarks.

6. REFERENCES
[1] The GAP Group, http://www.gap-system.org. GAP

– Groups, Algorithms, and Programming, Version 4.3,
2002.

[2] D. F. Holt. The calculation of the Schur multiplier of a
permutation group. In M. D. Atkinson, editor,
Computational Group theory, pages 307–319. Academic
press, 1984.

[3] A. Hulpke. Constructing transitive permutation groups.
submitted, http://www.math.colostate.edu/~hulpke/
paper/transgp.html.

[4] E. M. Luks. Permutation groups and polynomial-time
computation. In L. Finkelstein and W. M. Kantor,
editors, Groups and Computation, volume 11 of
DIMACS: Series in Discrete Mathematics and
Theoretical Computer Science, pages 139–175,
Providence, RI, 1993. Amer. Math. Soc.

[5] Á. Seress. Permutation Group Algorithms. Cambridge
University Press, 2003.

[6] C. C. Sims. Determining the conjugacy classes of a
permutation group. In G. Birkhoff and M. H. Jr.,
editors, Computers in Algebra and Number theory,
pages 191–195, Providence, RI, 1971. Amer. Math. Soc.


