Contemporary Mathematics

Normalizer calculation using automorphisms

Alexander Hulpke

ABSTRACT. We study how to reduce the calculation of the normalizer of a
subgroup U in G to the calculation of centralizers and element conjugacy in G
and calculations in the automorphism group Aut(U). Experimental run times
show that this can be substantially faster than existing backtrack algorithms.

1. Introduction

A fundamental technique for the computation of subgroups in a permutation
group, such as centralizer, normalizer, subgroup intersection or set stabilizer, is
backtrack search. The idea for this stems from Sims’s work on stabilizer chains
[Sim70]. A description can be found in [Ser03] or [HEOO5]. More recent devel-
opments using partition backtrack algorithms are described in [Le0o97] or [The97].

In general, backtrack algorithms are of exponential complexity, though in prac-
tice the performance is often good. For example the computation of centralizers
is considered to be easy in practice ([Ser03, p.205]). Furthermore, [Luk93] shows
that centralizer, set stabilizer and subgroup intersection are polynomial time equiv-
alent (and therefore also could be considered as “easy in practice”, even though
neither of them is known to be polynomial time).

Luks also shows that the computation of normalizers is at least as hard as
computing centralizers, though it is not known whether the algorithmic complexity
actually differs.

Recently, Luks and Miyazaki [LMO02] have shown that the calculation of nor-
malizers in permutation groups is polynomial time for groups with bounded com-
position factors. The complexity of the general case is unknown.

In practice — contrary to centralizer and its equivalents — normalizer computa-
tions are often hard with current backtrack-based algorithms. (A footnote on p. 121
in [HEOO5] describes them as “among the most difficult problems in CGT”.) This
motivates the search for a reduction to easier problems.

To see why normalizer computations are hard consider the reductions possible
in a backtrack search for N = Ng(U) with U < G < S,,. First, for each coset of

2000 Mathematics Subject Classification. Primary 20B40; Secondary 20B05.

Key words and phrases. normalizer, computation, automorphism group, backtrack, permu-
tation equivalent.

Supported in part by NSF Grant # 0633333.

©0000 (copyright holder)

2 ALEXANDER HULPKE

the normalizer (or a subgroup of the normalizer) only one element has to be tested.
If the index [G : N] is large this method alone will not yield sufficient reductions.

In many cases it is possible to reduce this index by considering combinatorial
or geometric invariants of the group U that is to be normalized (see for example
[RDO04], [Hul05, section 11}, [Miy06]): the normalizer N must preserve the set
of such invariants, thus the group G can be replaced by the stabilizer S of this
invariant set in G and thus Ng(U) = Ng(U). This is most fruitful if G is the full
symmetric group.

This approach fails, however, if the subgroup U is very “symmetric” and has
only little distinct permutational structure.

The second type of reduction employed is the actual problem-specific pruning
of the backtrack tree: Sims’s original work already suggests using the fact that
N¢g(U) permutes the orbits of U on pairs of points. If U is elementary abelian or
regular, however this approach often yields little improvement.

Another improvement, due to Holt [Hol91], uses the fact that elements of
Ng(U) induce automorphisms of U. In the case of a regular subgroup U this
implies that any element of Ng(U) is determined uniquely by specifying the images
of two points. Furthermore [Hol91] suggests a reduction if G and U have a faithful
permutation representation on a subset of the permutation domain: in this case the
images of points in this domain determine the automorphism and thus determine
the images of all other points.

However, if U < S, is elementary abelian but neither regular nor the intran-
sitive direct product C’;f , neither of these reductions might be applicable. In the
author’s recent work on classifying transitive permutation groups [Hul05] these
problems frequently occurred.

2. Determining the normalizer from its action

As the computation of element centralizers (and the corresponding task of
finding conjugating elements) seems to be so much easier in practice, the following
approach for normalizing “small” or “known” subgroups looks promising;:

Let € be a finite set, G < Sq be a permutation group and U < G. Then the
normalizer Ng(U) induces (by conjugation) automorphisms of U, and the kernel
of this action is Cg(U). Thus we can consider the quotient Ng(U)/Cq(U) as
a subgroup of Aut(U). We will assume that we know Aut(U) or can get it very
cheaply. (For example this is the case if U is comparatively small or if it is abelian.)

Next, suppose we know the subgroup A < Aut(U) which is induced by Ng(U).
We then can compute, for every « in a generating set X of A, a conjugating element
Jo € G such that u® = u9~ (see Section 3.3 for details). With this we get that

(1) Ng(U) =(Ca(U), ga)acx-

Assuming we know the subgroup A, this would reduce the normalizer compu-
tations to computations of centralizers and element conjugacies. Unfortunately, the
exact determination of A seems to be hard in general as well. We therefore employ
the following approximation:

Conjugacy in a permutation group preserves the cycle structure of elements.
We thus partition the elements of U into classes {C;} based on cycle structure. Let
B < Aut(U) be the stabilizer of this partitioning. Clearly A < B.

NORMALIZER CALCULATION USING AUTOMORPHISMS 3

If we consider Aut(U) as a permutation group on the (non-identity) elements
of U, we can calculate B as an iterated set stabilizer. This again is a backtrack
calculation, albeit of a different degree.

Using the conjugacy test from Section 3.3 for finding a conjugating element g,
we can also check whether an element 3 € B is in fact contained in A. We thus
can use a backtrack search over B (considering it as a permutation group and using
[HEOO05, §4.6.2]) to determine A. Doing so with the constructive test for normal-
izer induced automorphisms will automatically find conjugating permutations g,
for all the generators « that are needed in equation (1).

Essentially we are trading a normalizer backtrack search in G for a backtrack
search in Aut(U) and an element conjugacy backtrack in G. If U (and thus Aut(U))
is substantially smaller than G, this can be expected to yield shorter overall run
time. The example runtimes in Section 6 support this claim.

We will describe the individual steps of such a calculation, including the choice
of classes {C;} in detail in the next section. However even from the short description
the following question arises:

Can one guarantee that B = A or at least limit the index of A
in B? (If so, one could bound the backtrack search for A in B
which is potentially the worst-behaving part of the algorithm.)

We will study this question in Section 4.

3. Details of the algorithm

3.1. Normalizer classes. To obtain B we want to partition the elements of U
into classes according to the action of Ng(U). For this we observe the following:

e Conjugacy by N¢(U) will join U-conjugacy classes of the same cardinality
as U < N¢g(U).
e Conjugacy by Ng(U) preserves the cycle structure of elements.

In the first approximation we therefore consider the following classes {B;} as
the union of U-conjugacy classes: two elements u1,us € U are in the same B-class
if |ullj| = |u2U| and u; has the same cycle structure as uz. (If G is not transitive
on {2 one can even separate by cycle structures when restricted to G-orbits of a
particular length.)

To refine this partition, we observe that the class sums for the Ng(U)-classes
in U form a subalgebra of the center of the group algebra for Ng(U). We therefore
calculate “structure constants” for the multiplication of the classes {B;}:

For x € B;, let z; be the number of elements y € B; such that zy € By,. We
define the signature of x as the collection of values z;;, for all j, k.

Since the action of Ng(U) induces automorphisms of U, elements with different
signatures cannot be in the same class. This offers the possibility for a refinement by
splitting up the class B; according to element signatures; the same argument can be
used to split up the corresponding class B; using the same signatures. As (vy)~t =
y~ 27! and elements and their inverses stay in the same class, it is sufficient to
consider only ordered pairs 7, j. We thus obtain (often finer) classes {C;};.

In principle this process can be iterated. In practice, however it turns out that
further iterations do not typically yield improvements (that is, the classes turn out
to be maximally refined after one iteration).

4 ALEXANDER HULPKE

The calculations required in this step involve the multiplication of group ele-
ments and the identification of the class in which the result lies. Instead of multiply-
ing permutations, it is faster to work with base images and to do class identifications
based on hash values of base images.

3.2. Partition stabilizer. The next step is to calculate the automorphism
group of U, for example following [Sho28]| for abelian groups, [ELGO02] for p-
groups, and [CHO3] for non-solvable groups. Since we assume that U is small this
calculation will be fast.

We then construct the permutation action of Aut(U) on the set U# of non-
identity elements of U as a subgroup of S|y|—;. The classes C; of elements obtained
in the previous step thus correspond to sets of numbers. We arrange these sets in
increasing order (typically the calculation of a set stabilizer is faster if the corre-
sponding set is smaller) and iteratively compute the stabilizers of these sets using
a partition backtrack algorithm [Leo97]. The last stabilizer then stabilizes all sets
and therefore the (ordered) partition of U into classes; it is therefore equal to the
group B.

In the special case that U is elementary abelian two improvements are possible:
first, if any of the classes of U spans a subspace, the automorphism group can be
reduced from GL, (p) to a subspace stabilizer consisting of block matrices. Further-
more if the characteristic is different from 2, one can first consider the stabilizer
under the projective action.

3.3. Normalizing elements. We now assume that we have obtained a sub-
group B < Aut(U) which contains the group A of all automorphisms that are
induced by Ng(U), but might be larger. Assume that U = (uq, ..., u,). We calcu-
late iteratively Cq(u1), Ca((u1,u2)) = Cog(uy)(u2),. .. ete. to obtain Cq(U). The
following lemma describes an element test for A which simultaneously produces
elements g, € G inducing a particular automorphism o.

LEMMA 1. For a € Aut(U) we have that « is induced by No(U) if and only if
there exists

1. ¢1 € G such that u$ = uf*
2. go € Cq(u") such that ug = (ug")%2.

m. gm € Cg(ud',ud'9?, ..., ult?79" ") such that ul, = (ujp?>"9m=")9m.

In this case the element x = ¢19o - gm 1S an element that induces . Any other
element inducing the same automorphism will differ from x only by an element

of Ca(U).

PROOF. Assume that z is as given. Then uf = w7, As u € U, the
element = maps every generator of U into U and therefore normalizes the finite
group U. Furthermore for any v = w;, ---w;, € U, we have that

x

— s e e e . T — m..o x o o o o
u” = (g,)t = Ui u

Zk:uzluzk:(u”uyk) = U .

Conversely, if « is induced by y € Ng(U) we can set ¢ =y, g; = 1 for i > 1. Also
in this case we have that z -y~ € Cg(U) as it fixes all generators of U. O

For performance reasons it can be advantageous to arrange the generators u; in
order of decreasing support (number of points moved). While this does not usually

NORMALIZER CALCULATION USING AUTOMORPHISMS 5

result in a notable increase in the cost of a conjugacy test, it tends to decrease the
size of the first centralizer, thus making the subsequent conjugacy tests easier. This
is particularly relevant when computing normalizers in the full symmetric group.

4. Are all automorphisms induced?

An obvious question that arises at this point is whether indeed all automor-
phisms that stabilize the partition of U into classes are induced by the normalizer
of U in G or, if not, what we can say about the index [B : A].

One way to study this is via representation theory:

LEMMA 2. Let G be a permutation group acting on 2 with the natural permu-
tation matriz representation v: G — GLiq|(C) and a € Aut(G). The following are
equivalent:

a) « preserves the cycle shape of every element.

b) « preserves the number of fized points of every element

¢) The (complex) representations v and av afford the same permutation
character.

d) The representations v and av are equivalent (as complex representations).

In this case we say that o is equidistributing.

PROOF. As complex representations are equivalent if and only if they afford
the same character we only need to show that b) implies a). This follows, because
for a prime p dividing an integer n every n-cycle of an element g € G becomes a set

n

of p disjoint ;—cycles in gP. This gives rise to a recursive formula for the number

of n-cycles in terms of the number of fixed points of powers of g. O

This lemma incidentally shows that instead of cycle structure it would have
been sufficient to group elements according to their number of fixed points. How-
ever, this would have given initially larger classes B; and led to longer runtime since
the backtrack algorithm for set stabilizers runs faster if the set to be stabilized is
smaller.

On the other hand, « is induced by Ng, (U) if the representations v and av
are permutation equivalent, i.e., if they can be transformed into each other by a
permutation of the basis vectors, or equivalently if they can be conjugated into
each other by permutation matrices.

As the following examples show, these two concepts are not equivalent.

ExaMPLE 1. Let U = PSL;3(2), acting 2-transitively on 7 points. Then the
rational classes of U (and thus also the cycle structures) are determined solely by
the orders of elements. Thus the outer automorphism of order 2 is equidistributing.
This automorphism can be considered as a duality between points and lines in the
underlying projective geometry, so it cannot be induced by S7.

EXAMPLE 2. For our second example let G = Sg and let
U= <U1 = (273)(678)au2 = (2a 6)(35 8)(57 7)7”3 = (1a4)(5a 7)> < G.

Then U = C3, |Cs,(U)| = 16, |Ng,(U)| = 64. There exists an automorphism
« of U that maps the generators of U as uj — uz = (1,4)(5,7), us — ugugu; =
(2,6)(3,8)(5,7), and ug — uy = (2,3)(6,8). This automorphism is equidistributing,
but is not induced by Ng,(U).

6 ALEXANDER HULPKE

As the first example shows, such behavior is often associated with the existence
of interesting combinatorial structures. However — typically there are few interesting
structures associated to a permutation group — one can expect this behavior to be
infrequent.

For transitive groups the existence of an equidistributing automorphism «
which is not induced by a permutation means that Stabg (1) is not a point stabi-
lizer, i.e. G must have (at least) two classes of subgroups isomorphic to Stabg(1).
Thus the index [B : A] counts classes of subgroups isomorphic to, but not conjugate
to Stabg(1). In general there are just a few classes of such subgroups, indicating
that [B : A] ought to be small.

We can prove equality A = B in some cases, detailed below. Some of these
cases are of practical relevance, as the groups are small in comparison to the degree
and have comparatively little permutational structure to aid a backtrack search for
the normalizer.

LEMMA 3. Suppose that U < S, acts transitively with a cyclic point stabilizer
(for example, if U is regular), and let o € Aut(U) be equidistributing. Then « is
induced by Ng,, (U).

PRrROOF. Let S = Staby (1) = (g). Then S* = (¢9%). As « is equidistributing,
g“ and thus S* has a fixed point and thus S% < Staby(w) for some point w. As
the sizes coincide we must have equality. Thus a maps a point stabilizer to a point
stabilizer. By [DM96, Theorem 4.2B|, « is therefore induced by conjugation in
the symmetric group. O

A related question that has been studied in the literature, for example in
[PSZ78] and [CamO05], is whether two permutation groups which have the same
number of elements for any cycle structure of elements must be (permutation)
isomorphic. (This has applications to the recognition of Galois groups, see e.g.
[Hul99]). In this context Woltermann and Sehgal [WS79] obtained a result about
uniqueness of such groups; the proof can be translated easily to yield the following
result:

LEMMA 4. Let U be a solvable %—tmnsitive permutation group. Then every
automorphism « € Aut(U) is induced by Ng, (U).

PROOF. By [Wie64, Theorem 10.4] a solvable %—transitive group is either prim-
itive or a Frobenius group. In either case it has a characteristic, regular normal
subgroup N with S = Staby (1) a complement to N and all complements of N
are conjugate [Hup67, Satz I1.3.2, Satz V.8.3, Satz 1.18.3]. As N is characteristic
N = N®. Therefore S is a complement to N and thus conjugate to S. Thus S¢
is a point stabilizer and by [DM96, Theorem 4.2B] « is induced by Ng (U). O

The third important special case we consider is that of intransitive elementary
abelian groups that occur as base groups for imprimitive permutation groups. (This
is essentially the relevant case for the construction of transitive groups in [Hul05].)

LEMMA 5. Let p be a prime and m = L%J Then S,, has a subgroup V = Z*

whose m orbits are {1,...,p}, {p+1,...,2p},....,{(m—Dp+1,...,mp}. Suppose
that U <V and that o € Aut(U) is equidistributing. Then « is induced by Ng, (U).

NORMALIZER CALCULATION USING AUTOMORPHISMS 7

Proor. The action of V' on each orbit is the regular action of Z,. Because of
this the cycle structure of each element of V' is determined by the number of orbits
on which it acts nontrivially.

We consider V' as an m-dimensional vector space over F,, with basis

((1,2,...,p), (p+1,...,2p),.. .}

The weight (defined as in coding theory to be the number of nonzero entries in
a vector) of each element of V' corresponds to its cycle structure, considered as a
permutation: the weight equals the number of p-cycles.

Now suppose that U < V. Then B consists of the automorphisms that preserve
the weight of each vector, i.e., it consists of weight preserving linear transformations.

By the theorem of MacWilliams [Mac62], [HP03, Theorem 7.9.4] this implies
that every automorphism in B is a monomial transformation, that is an element
of IF;‘, ! Sm. Such elements however can be represented as elements of S, 1S, and
thus as elements of S,,. [l

5. Generalizations

The results of the previous section concentrating on elementary abelian groups
might seem to be very weak. If we consider a general permutation group U however
the following argument applies:

If U has a trivial radical the structure of U is very restricted and [Aut(U) : U] is
small. We can therefore simply set B := Aut(U) and just run the backtrack search
for A < Aut(U). (One can obtain the structure of Aut(U) easily by embedding
into a direct product of wreath products [CHO03].)

Otherwise, U has a nontrivial radical and therefore contains a characteristic
elementary abelian subgroup V' < U and thus Ng(U) < Ng(V). Setting M :=
Ng(V) we have that Ng(U) = Ny (U). As V < M we can compute this second
normalizer in the factor group as Ny (U/V'), which provides a further reduction.

While we have considered permutation groups so far, the same same strategy
can also be applied to the case of normalizing subgroups of GL,(g). The best
permutation representation for this group has degree at least (¢"™ —1)/(¢— 1) which
very quickly makes it infeasible to use such a permutation representation for a
backtrack-type calculation. In effect therefore there exists no practical algorithm
for the computation of subgroup normalizers.

On the other hand, the computation of normal forms of matrices yields an effec-
tive conjugacy test (as well as a determination of conjugating permutations). The
calculation of module automorphisms [Smi94] provides an algorithm to compute
element centralizers in GL,(q).

Furthermore, even a single element centralizer will be comparatively small.
This makes it feasible to then use a stabilizer-chain based approach [But82] for
the calculation of conjugating elements within the centralizer and to determine
iterated centralizers.

Therefore GL,,(¢q) fulfills all prerequisites for the algorithm proposed in this
paper. Instead of cycle structure of elements, one can use normal forms for matri-
ces. With this modification, the proposed algorithm makes it possible to compute
the normalizer of somewhat small matrix groups in GL,(q). Again it might be
preferable to start by normalizing small characteristic subgroups for which the au-
tomorphism group can be determined easily.

8 ALEXANDER HULPKE

6. Examples

As stated above, the algorithm proposed does not offer better complexity than
the ordinary backtrack for a normalizer calculation. On the other hand, for the
case of elementary abelian subgroups sometimes a dramatically better practical
performance has been observed. This section will present some evidence for such a
claim.

In the following description the “old” algorithm is the partition backtrack algo-
rithm for the normalizer as implemented in GAP 4.4 [GAPO04], following [The97].
It incorporates an initial reduction from 5, to a direct product of wreath products,
following [Hul05, section 11].

The “new” algorithm is the author’s GAP implementation of the automorphism-
based approach of this paper for the case of elementary abelian subgroups.

We shall consider randomly generated elementary abelian subgroups of Ssg.
They were generated by picking a random p-element of the group and then repeat-
edly selecting random p elements that centralize the elements chosen so far until a
group of the desired order was generated. It was possible that the process stopped
before the desired order was reached if there were no further p-elements in the
centralizer. In this case the attempt was abandoned and the construction started
anew from scratch.

Table 1 summarizes the results of these experiments. The column entries are:

|U|: Order of the subgroups to be normalized.

Runs: Number of experimental runs. (The attempt was made to run up
to 100 examples but some runs were interrupted by hand after spending
substantially more time, as long as the results obtained up to that point
appeared consistent.)

AvgOld: The average runtime for the “old” (backtrack-based) algorithm
(in milliseconds).

AvgNew: The average runtime for the “new” (automorphism-based) algo-
rithm (in milliseconds).

AvgRatio: The average ratio “old” to “new”.

MinRatio: The minimal ratio “old” to “new”.

MaxRatio: The maximal ratio “old” to “new”.

Runtimes were calculated by GAP 4.4 on a 2.4GHz Pentium 4 under Linux and are
given in milliseconds.

The cases in which runs were aborted by hand typically affected situations in
which the “old” algorithm was performing particularly badly. As the terminated
runs did not complete they were not included in the table but would have increased
substantially the “worst case” factors.

Again, the results show that the new algorithm not only is faster in most cases,
it also performs much less badly in the cases in which the old algorithm is superior
than vice versa. In particular for larger subgroups that are still away from the
theoretical maximum size for subgroups of Ssq (e.g. 27, 3%) the performance of the
old algorithm is spectacularly worse.

The only cases in which the old algorithm is consistently better are subgroups
of order 5°, 55, 7% and 112. The reason for this is that the structure of the p-
Sylow subgroups of Szo ((515) x 5, 7%, 112) very much restricts the possibilities for
random subgroups of the given order: they will be almost always direct products

NORMALIZER CALCULATION USING AUTOMORPHISMS 9

|[U| Runs | AvgOld AvgNew | AvgRatio MinRatio MaxRatio
22 100 261 152 2.37 0.23 8.12
23 100 419 142 3.98 0.51 77.0
24 100 737 342 5.87 0.14 90.9
25 100 17546 174 206 0.66 15707
26 100 48698 236 491 0.67 12656
27 29 | 956058 448 3245 0.50 87103
32 100 426 182 3.73 0.31 11.8
33 100 3489 579 21.6 0.12 381
34 23 | 316277 834 2235 1.67 41826
35 13 | 376365 381 1202 1.86 12528
36 41 935833 1758 378 0.91 1103
52 100 2120 106 26.8 0.13 318
53 31 94583 195 477 0.70 4642
54 21 85266 1018 114 1.52 477
55 70 2176 23059 0.41 0.028 2.34
56 100 312 10770 0.029 0.019 0.047
72 100 575 109 5.81 0.51 27.7
73 100 457 328 1.43 0.30 3.09
74 100 139 1305 0.10 0.081 0.18
112 100 106 197 0.61 0.24 1.61

TABLE 1. Runtime Comparisons

|U| Runs | AvgOld AvgNew | AvgRatio MinRatio MaxRatio

57 20 | 737772 15425 186 1 648
73 20 11729 428 22 0.7 64

TABLE 2. Runtime Comparisons in Sss

of disjoint cycles. The stabilizer of this orbit partition, obtained as the first step
of the normalizer algorithm is then very close to the normalizer, which leaves very
little work for the backtrack search.

As soon as G is increased this second effect vanishes, and the “new” algorithm
again performs better, as the times for normalizers in S35, given in table 2 shows.

References

[But82] Gregory Butler, Computing in permutation and matriz groups II: backtrack algorithms,
Math. Comp. 39 (1982), no. 160, 671-670.

[Cam05] Peter J. Cameron, Partitions and permutations, Discrete Math. 291 (2005), 45-54.

[CHO3] John Cannon and Derek Holt, Automorphism group computation and isomorphism
testing in finite groups, J. Symbolic Comput. 35 (2003), no. 3, 241-267.

[DM96] John D. Dixon and Brian Mortimer, Permutation groups, Graduate Texts in Mathe-
matics, vol. 163, Springer, 1996.

[ELGOO02] Bettina Eick, C.R. Leedham-Green, and E.A. O’Brien, Constructing automorphism
groups of p-groups, Comm. Algebra 30 (2002), no. 5, 2271-2295.

[GAP04] The GAP Group, http://www.gap-system.org, GAP — Groups, Algorithms, and Pro-
gramming, Version 4.4, 2004.

10

[HEO05]

[Hol91]
[HPO3)

[Hul99)]

[Hulo)]
[Hup67]

[Leo97]

[LM02]

[Luk93]

[Mac62]

[Miy06]

[PSZ78)
[RD04]

[Ser03]
[Sho28]

[Sim70]

[Smi94]

[The97]

[Wie64]
[WST9]

ALEXANDER HULPKE

Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien, Handbook of Computational
Group Theory, Discrete Mathematics and its Applications, Chapman & Hall/CRC,
Boca Raton, FL, 2005.

D. F. Holt, The computation of normalizers in permutation groups, J. Symbolic Com-
put. 12 (1991), no. 4-5, 499-516, Computational group theory, Part 2.

W. Cary Huffman and Vera Pless, Fundamentals of error-correcting codes, Cambridge
University Press, 2003.

Alexander Hulpke, Techniques for the computation of Galois groups, Algorithmic Al-
gebra and Number Theory (B. H. Matzat, G.-M. Greuel, and G. Hiss, eds.), Springer,
1999, pp. 65-77.

, Constructing transitive permutation groups, J. Symbolic Comput. 39 (2005),
no. 1, 1-30.

Bertram Huppert, Endliche Gruppen I, Grundlehren der mathematischen Wis-
senschaften, vol. 134, Springer, 1967.

Jeffrey S. Leon, Partitions, refinements, and permutation group computation, Pro-
ceedings of the 2nd DIMACS Workshop held at Rutgers University, New Brunswick,
NJ, June 7-10, 1995 (Larry Finkelstein and William M. Kantor, eds.), DIMACS: Se-
ries in Discrete Mathematics and Theoretical Computer Science, vol. 28, American
Mathematical Society, Providence, RI, 1997, pp. 123—-158.

Eugene M. Luks and Takunari Miyazaki, Polynomial-time normalizers for permuta-
tion groups with restricted composition factors, Proceedings of the 2002 International
Symposium on Symbolic and Algebraic Computation (Teo Mora, ed.), The Association
for Computing Machinery, ACM Press, 2002, pp. 176-183.

Eugene M. Luks, Permutation groups and polynomial-time computation, Groups and
Computation (Providence, RI) (Larry Finkelstein and William M. Kantor, eds.), DI-
MACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 11,
American Mathematical Society, 1993, pp. 139-175.

F. J. MacWilliams, Combinatorial problems of elementary abelian groups, Ph.d. thesis,
Harvard University, 1962.

Izumi Miyamoto, An improvement of GAP normalizer function for permutation
groups, Proceedings of the 31st International Symposium on Symbolic and Algebraic
Computation held in Genova, July 9-12, 2006 (Jean-Guillaume Dumas, ed.), ACM
Press, New York, 2006.

Ann Scrandis Playtis, Surinder Sehgal, and Hans Zassenhaus, Equidistributed permu-
tation groups, Comm. Algebra 6 (1978), no. 1, 35-57.

Colva M. Roney-Dougal, Conjugacy of subgroups of the general linear group, Experi-
mental Mathematics 13 (2004), no. 2, 151-163.

Akos Seress, Permutation group algorithms, Cambridge University Press, 2003.
Kenjiro Shoda, Uber die Automorphismen einer endlichen Abelschen Gruppe, Math.
Ann. 100 (1928), 674-686.

Charles C. Sims, Computational methods in the study of permutation groups, Com-
putational Problems in Abstract Algebra (John Leech, ed.), Pergamon press, 1970,
pp. 169-183.

Michael J. Smith, Computing automorphisms of finite soluble groups, Ph.D. thesis,
Australian National University, Canberra, 1994.

Heiko Theiflen, Fine Methode zur Normalisatorberechnung in Permutationsgruppen
mit Anwendungen in der Konstruktion primitiver Gruppen, Dissertation, Rheinisch-
Westfalische Technische Hochschule, Aachen, Germany, 1997.

Helmut Wielandt, Finite permutation groups, Academic Press, 1964.

Michael Woltermann and Surinder Sehgal, Equidistributed %-tmnsitive solvable per-
mutation groups. I, II, Comm. Algebra 7 (1979), no. 15, 1599-1643, 1645-1672.

DEPARTMENT OF MATHEMATICS, COLORADO STATE UNIVERSITY, FORT COLLINS, CO 80523
E-mail address: hulpke@math.colostate.edu

