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1. Prolegomena

Let f ∈ Q[x] be an irreducible polynomial of degree n. Then the splitting field L ≥ Q of
f is a normal extension. We want to determine the Galois group G = Gal(f) = Gal(L/Q)
of f which is the group of all field automorphisms of this extension. This task is basic in
computational number theory [Coh93] as the Galois group determines a lot of properties of
the field extension defined by f .

Because the index [L : Q] might be large, however, we do not intend to construct L and
thus cannot give explicitly the automorphism action of G on L. Instead we consider the
action of G on the roots {α1, . . . , αn} of f . As f is defined over the rationals the set of
these root must remain invariant under G. This permutation action is faithful, because L
can be obtained by adjoining all the αi to Q. This action has to be transitive because f is
irreducible. In other words: For a fixed arrangement of the roots, G can be considered as a
transitive subgroup of Sn. We will utilize this embedding without explicitly mentioning it.

While the problem itself is initially number-theoretic, the approaches to solve it are mainly
based on commutative algebra and permutation group theory. This paper presents a new
approach, approximating the Galois group by its closures (subgroups of Sn that stabilizer
orbits of G). This in turn gives rise to questions about permutation groups.

In the course of the paper we shall need a few facts from number theory about p-adic
extensions and the relation between extensions of Q and extensions of Fp. These will be
provided in an appendix.

2. Identification tools

We will assume that f is a monic integer polynomial of degree n, that is the roots of f
are algebraic integers. Obviously we can always enforce this by a transformation of the type
f(x) 7→ anf(x/a) = f̃(x) which yields a polynomial f̃ defining the same extension as f . The
degree n will be typically in the range n / 30.

2.1. Orbits of Elements. By Dedekind’s theorem (appendix, theorem 5) factorization of
f modulo a non-ramifying prime yields the cycle structure of an element of G = Gal(f). Such
factorizations are very cheap and it is feasible to factorize f modulo several hundred primes.
By this method it is usually very easy to find out whether G is symmetric or alternating
[DSar].

Using Tschebotareff’s result we may even hope that we have obtained all cycle shapes
of G if we look at sufficiently many primes. In practice “sufficiently many” means: Factorize
modulo new primes, until t(n) times no new shape emerged (or we can prove already that
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G contains the alternating group). For small degrees t(n) = 3n seems to be a reasonable
choice.

In any case, such factorizations eliminate those groups as candidates for G which do not
contain all shapes observed. Unless we are content with a probabilistic result, however, we
cannot be certain to have found all shapes and cannot use the frequency of these shapes.

2.2. Orbits of the Galois group. The main tool for the identification of Galois groups is
the polynomial ring R = Z[x1, . . . , xn] and the specialization homomorphism ϕ = ϕf : R→
O(L), h 7→ h(α1, . . . , αn). As a permutation group, G acts on R by permuting inde-
terminants; as a Galois group it acts on O(L). For these two actions ϕ is a G-module
homomorphism, we have that

ϕ(r)g = ϕ(rg) for all r ∈ R(1)

The basic idea is to recognize G from G-invariant polynomials in R. G-invariance of an
algebraic integer a ∈ O(L) implies that a ∈ Z and thus G-invariance of h ∈ R implies
that ϕ(h) ∈ Z. For example, recall that the discriminant of a monic polynomial with roots
α1, . . . , αn is defined as disc(f) =

∏
i<j(αi−αj)2. Any transposition of two roots will change

a sign of
√

disc(f) =
∏

i<j(αi − αj). Thus this root is invariant under Gal(f) if and only

Gal(f) consists only of even permutations. Therefore Gal(f) is a subgroup of An if and

only if disc(f) is a square. Otherwise Q(
√

disc(f)) is the subfield of L corresponding to the
subgroup of even permutations.

In general, the condition ϕ(h) ∈ Z is not sufficient to prove G-invariance of h as the follow-
ing example shows. The polynomial f = x4 − 2 has Galois group D(4) = 〈(1, 2, 3, 4), (1, 3)〉,
acting on the roots { 4

√
2, i 4
√

2,− 4
√

2,−i 4
√

2}. Then h = x1x2 + x3x4 is not D(4)-invariant,
but ϕ(h) = 0. It is easy, however, to make the criterion sufficient:

Lemma 2. Assume that

ϕ(h) 6= ϕ(h′) for all h′ ∈ hSn .(3)

Then h is G-invariant if and only if ϕ(h) ∈ Z.

Proof. We have to show sufficiency: Assume that ϕ(h) ∈ Z and that there is a g ∈ G such
that hg 6= h. Then by (3) we have ϕ(h) 6= ϕ(hg), in contradiction to ϕ(h) ∈ Z and (1).

2.3. Invariant method. One approach [Sta73, EO95, DF89] uses precomputed invariants
hT for all transitive subgroups of T ≤ Sn and filters G from these T by testing which hT are
actually G invariant. This test is done by testing ϕ(hT ) for rationality.

If G and G′ are conjugate under Sn, the invariants of G′ are Sn-images of the invariants
of G, so it is sufficient to store only representatives of the invariants.

A further reduction is obtained by using relative invariants: The set of transitive groups
is a semi-lattice with respect to inclusion. Determination of G then proceeds stepwise down
this lattice. If G is known to be contained in U and if V is a subgroup of Sn, then every
invariant for V can be used to test whether G is contained in U ∩ V . Such invariants can
be substantially simpler than an invariant for U ∩ V as a subgroup of G. Furthermore, the
number of invariant images to consider is reduced from [Sn : V ] to [U : V ]. This way the
identification process steps down through chains of transitive subgroups, stepping from a
subgroup U to a maximal subgroup V < U .
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However, the number of images will still be prohibitive if every subgroup chain from G to
Sn includes a step of large index. This typically holds, as (with few exceptions) all transitive
maximal subgroups of the symmetric and alternating groups are of large index [LPS87].

A further problem can be approximation accuracy: The roots {αi} are not known exactly
but only by approximation. Therefore instead of ϕ we only know an approximation ϕ̃.
Consequentially can only test ϕ̃(h)∈̃Z and ϕ̃(a) ≈ ϕ̃(b). With numerical approximation of
the roots this leads to substantial problems with the needed accuracy to prove approximated
numbers to be integers or equal. A better approach is to use p-adic approximation, relying
on numerical estimates only to deduce the necessary accuracy of the p-adic approximation
as done in [DF89].

Instead of testing integrality of ϕ(h) for a V -invariant h, usually it is checked whether the
polynomial R(x) =

∏
g∈hU (x− ϕ(g)) ∈ Z[x] has an integral root. This permits to round the

coefficients of R to the nearest integer and thus reduce the influence of approximation errors.
In a variant, avoiding approximation, it is shown in [Col95] how to compute R by calcu-

lations in R, using only rational operations on the coefficients of f .

2.4. Resolvent method. Another approach [SM85] tries to overcome the problem with
approximation of roots and large numbers of invariant images by using only invariants of
very restricted type. The approximation of roots in this case is deferred inside a polynomial
factorization (which uses p-adic approximation of the factors).

If A ⊂ R is an orbit of G, then every elementary symmetric function in the elements of
A is obviously G-invariant. Thus the polynomial

∏
a∈A(x − a) is G-invariant as well. (We

extend the action of G to the polynomial rings R[x] and L[x] by acting on the coefficients.)
Thus the polynomial

∏
a∈A(x− ϕ(a)) is an integer polynomial.

To get A we consider it as a subset of a larger orbit Â of the symmetric group. Suppose that

Â = hSn . Then R(h, f) :=
∏

a∈Â(x−ϕ(a)) is the product of the polynomials of the G-orbits

within Â. We call R(h, f) a resolvent. (The name derives from the fact that polynomials of
such type were used initially to solve polynomial equations.)

If condition (3) is fulfilled, the Q-irreducible factors of R(h, f) are in bijection to the G-
orbits on hSn . Especially, the factor degrees are the orbit lengths and a factor discriminant
is a square if and only if the image of the action on the corresponding orbit is a subgroup of
the alternating group.

We define the parity of a permutation action to be even if the image of this action is a
subgroup of the alternating group and odd otherwise.

By the Galois correspondence we also deduce immediately the same type of correspondence
between the orbits of U ≤ G and the factorization of R(g, f) over Q(β) when U and Q(β) are
Galois correspondents. Such intermediate fields can be obtained by factors of other resolvents
or simply by adjoining the root of the discriminant to obtain a field in correspondence to
the subgroup of even permutations.

Using this approach one might compute sufficiently many orbit lengths and parities of G
and its subgroups to identify up to conjugacy the Galois group uniquely among a list of all
transitive subgroups of Sn. A list with the possible orbit lengths and parities therefore has
to be prepared a priori. The method will give only the permutational type of the group but
not its actual action on the roots. An algorithm of this type has been implemented by the
author in GAP 3 [S+97] for n ≤ 15.
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2.5. Computation of resolvents. We note that the coefficients of R(h, f) are symmetric
in the root of f . So they can be expressed in the elementary symmetric functions in the
{αi} (which are up to a sign the coefficients of f) using only ring operations. Practically
this could be done using resultants [Loo82].

As these resultant calculations can be computationally expensive, however, we shall restrict
ourselves to the orbits of elements of the type x1 + · · ·+ xk, x1 · · · · · xk or x1 + 2x2 + · · ·+
kxk. As they correspond to the orbits on k-sets, respectively k-tuples of points, we call the
arising resolvents k-set resolvents (respectively k-tuple resolvents). For computation of the
set resolvents R(x1 + · · ·+xk, f) and R(x1 · · · · ·xk, f), efficient formulae have been published
in [CM94].

For a resolvent R = R(h, f), condition (3) simply means that R is square-free. This can
be tested easily by checking whether gcd(R,R′) = 1 (with ′ denoting the usual derivative).

If R(h, f) is not square-free, f gets replaced by a Tschirnhaus-transform f̂ of f that

defines the same field. Then R(h, f̂) is computed anew. Unless the preimage of R in R
already contains a square, there always is a transform f̂ which renders R(h, f̂) square-free
[Gir83, theorem 3,(2)]. The transformations given in the proof in [Gir83] however not only

might involve resultant calculations to compute f̂ but also result in a polynomial f̂ with
very large coefficients. Thus in practice we restrict ourselves to simple combinations of the
transformations τ1 : f(x) 7→ f(x+ 1) and τ2 : f(x) 7→ xnf(1/x). Both together generate (up
to a sign) the modular group PSL(2,Z) and so lead to a vast number of possible composite
transforms. Most of them, however, have unsuitably large coefficients.

In some cases certain transforms will never yield a square-free resolvent and thus can be
discarded immediately. For example if f(x) = g(x2) roots come in pairs differing by a sign.
In such a case resolvents for h = x1 + x2 are never square-free and τ1 will not remedy this
problem.

Instead of changing f it might be possible as well to change h (without changing the
equivalence type of G’s action, for example x1 + x2 and x1x2 both correspond to the action
on 2-sets) to ĥ to obtain a square-free resolvent R(ĥ, f).

On a (square-free) R(h, f), similar transforms can be used profitably to get its coefficients
smaller again. (The size of the coefficients is a measure for the amount of lifting neces-
sary in the factoring algorithm. Usually in the literature on polynomial factorization only
transformations of type τ2 are suggested.)

2.6. Drawbacks. Both methods mentioned so far rely on explicit lists of all transitive sub-
groups of the symmetric group of the given degree. Though progress has been made on the
determination of such lists [Hul96] it will be hard to compute these lists for further degrees
beyond 31. Also the needed determination of properties for all the relevant groups would
take substantial time to be spent before running the actual identification algorithms. Finally
handling the large lists involved (like for the over 25000 groups needed for degree 24) is a
challenge on its own.

Our aim will be to combine both presented methods with a group theoretic approach.
From this we obtain an algorithm that is capable of determining the Galois group up to a
few possibilities in reasonable time, that will work independently of the degree, provided the
Galois group itself is not overly large. It also provides the possibility to obtain the exact
Galois group (not just the type but its exact action on approximated roots) if a user is willing
to invest further computing resources on this problem. It is understood that there will be
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cases remaining that are inherently hard to decide. These are basically highly transitive
groups which are maximal with very large index in the symmetric or alternating group. The
Mathieu groups are a typical examples of this.

3. A new approach

In general the orbits of G convey more information than only their lengths and the per-
mutation actions parities. Therefore the approach from 2.5 does not necessarily make full
use of the information obtained by the resolvent factors.

As an example of two potential Galois groups that have the same orbit lengths but different
orbits consider 1

2
[3:2]cD(4) and 1

2
[3:2]dD(4), the 12th and 15th transitive group of degree

twelve. (The names reflect the composition structure corresponding to a block system. Lists
of all the groups and a description of the naming scheme used can be found in [CHM]. The
same names are also used in GAP [S+97].) On sets of order 2 both have 5 orbits of length 12
and one orbit of length 6. Even the parities for the actions on all those sets are the same for
both groups. On the other hand, both groups are stabilizers of their respective partitions of
2-sets within the symmetric group.

To overcome this shortcoming, L. Soicher suggested the following approach [Soi]:
Suppose Sn acts on a domain Ω and A ⊂ Ω is an orbit of G. Then G ≤ StabSn(A) and

G 6⊂ StabSn(B) for B $ A. So the intersection of the orbit stabilizers is a subgroup of
Sn containing G. By computing these stabilizers we therefore obtain approximations to G
without the need to refer to tabulations of subgroups of Sn.

If a is a factor of a (square-free) resolvent R(g, f) the orbit corresponding to a consists of
those images ĝ of g, for which ϕ(ĝ) is a root of a. We apply this for approximated roots, using
approximation modulo a prime. Let p be a prime which does not divide the discriminant
of f or R(g, f) and let π be reduction modulo p as defined in the appendix. As π is a ring
homomorphism, π(ϕ(g)) is a root of π(a).

As in Lemma 2 this is sufficient to distinguish the orbits if π(R(g, f)) is square-free over
Fp. This holds, if p 6 | disc(R(g, f)), so there are only finitely many unsuitable primes.

If we identify the roots by their approximations {π(αi)} modulo p, we have π(ϕ(h)) =
h(π(α1), . . . , π(αn)) for any h ∈ R. Once we have factorized the resolvent R(g, f) obtained
from the polynomial g ∈ R we compute the reduced values π(ϕ(h)) for all h ∈ gSn . Then,
under the action of G, ϕ(h) is in the orbit corresponding to the factor a of R(g, f) if π(ϕ(h))
divides π(a). Thus simple evaluation of polynomials if Fp will yield the orbits of G (with
respect to the arrangement of the approximated roots π(αi)). Computations of this type can
be performed very quickly.

3.1. k-Closures. Usually, we are considering the action on k-tuples or k-sets of points. For
these actions the stabilizer of all the orbits of G are “closures” as defined in [Wie69]: The k
closure G(k) of G ≤ Sn is the largest subgroup of Sn which has the same orbits on k-tuples
of points as G has. Similarly, the {k}-closure G{k} of G is the largest subgroup of Sn which
has the same orbits on k-sets as G has. We call k the level of the closure. (G(2) also can be
interpreted as the stabilizer of all the orbital graphs of G. These are directed graphs with
vertices Ω and edges given by one orbit of G on Ω × Ω .) Properties of such closures have
been studied before in the literature [Wie69, Sie82], we list some of them which we shall
need later on:
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1) G ≤ G(k) ≤ G{k}. 4) If p ≤ k then p| |G| if and only if p|
∣∣G(k)

∣∣.
2) G(k+1) ≤ G(k). 5) If G has base length m then G = G(k) for all k > m.

3) G{k+1} ≤ G{k} if k < bn
2
c. 6)

(
G(k)

)(k)
= G(k),

(
G{k}

){k}
= G{k}.

7) G has the same block systems as G{2}.

As G(k) = Sn only if G is k-fold transitive, these closures quickly yield a proper subgroup of
Sn. For a given permutation group G, closures can be computed as stabilizers by a backtrack
search, the 2-closure can also be computed via the orbital graphs. Algorithms for these tasks
have been published in [McK81, IAFM94, Leo91, The97] and are available in programs like
nauty, COCO, Magma or GAP.

Suppose we have computed a set of closures of G up to the k-closure and {k′}-closure. Let
C be their intersection. (Due to properties 2. and 3. this is in most cases the smallest of
the closures computed. Nevertheless it is worthwhile to compute closures of different level,
as knowledge of a closure can be very helpful for the factorization of resolvents, needed to
compute a closure of higher level. See 5.2.) Then we know that G is a transitive subgroup
of C with the following properties:

• G has the same m-closures and {m′}-closures as C (for all m ≤ k and m′ ≤ k′.);
• G contains elements of prescribed cycle types. (Obtained by factoring f , 2.1.)
• One element of G is known. (The Frobenius-Automorphism for the prime chosen to

approximate the roots.)

We denote the set of all these groups by L.

3.2. Computation of L. While the computation of L might be difficult, it is easy to check,
whether a given group U is contained in L, as this involves mainly orbit calculations. So
the main problem for the computation of L is to produce a sufficiently small superset of
potential candidates.

To do so, we compute the maximal subgroups of C and test which of these are contained
in L. For these we compute again the maximal subgroups and so forth. As L is closed under
taking intermediate chains (if U,W ∈ L and U ≤ V ≤ W , then also V ∈ L) this process
exhausts all possible groups in L.

3.3. Determination of G. Usually L will contain more than one group. Nevertheless even
this may be sufficient information to, say, show the solvability of the extension or give size
bounds for the splitting field. If G is needed exactly, we will make use of the invariant
method:

Suppose we know already that G ≤ U . For each conjugacy class of maximal subgroups
of U we compute an relative invariant h and check for all of its images under U whether
ϕ(hu) ∈ Z. We do this using p-adic approximation of the roots of f as in [DF89].

The use of relative invariants requires knowledge of the action of U on the approximated
roots. This is fulfilled as we obtained C not only up to conjugacy but also its action.

Of course in practice one should combine the determination of L with the downward steps
and only compute maximal subgroups of a group U after G has been proven to be contained
therein.

4. Group theoretic problems

Algorithms published so far for the determination of Galois groups [AV94, SM85, Sta73]
were usually limited to a predetermined set of possible degrees (those degrees for which
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invariants or orbits information were precomputed). Thus asking for the complexity of these
algorithms was not a sensible question. On the other hand the presented approach is, a
priori, degree-independent. To estimate its performance, it is crucial, however, to learn more
about the set L. Similarly knowledge about L can determine up to which level closures
should be computed.

This leads to purely group-theoretic questions about the set L of permutation groups.
We will state these questions, indicate which type of answer we need for our algorithm to
perform well, and give some indication why these hopes are not unreasonable. A full answer
seems to be beyond the scope of this article.

Problem 1: How large is L? As the groups in L have to be distinguished by invariants,
we hope that L is small.

Experiments with degrees up to 16 show that if C is the intersection of the 2- and the
{4}-closure, that L is typically of size less then 10 and almost always of size less than 20.
The worst case is size 106 in degree 16.

If we have computed k-closures we can (property 5) uniquely identify all groups of base
length smaller than k. For example, for primitive, not 2-transitive groups, the base length
is limited to 4

√
n log n [DM96, Theorem 5.3A]. (By property 7., we know whether G is

primitive, 2-transitivity is determined by the 2-closure.)

Problem 2: How different are the groups in L? Or – in other words – which properties
of G can we deduce from L? We hope the groups in L to be of small index in the largest
one, as this reduces the number of conjugate maximal subgroups and thus the number of
invariants that have to be tested. Again experiments with degrees up to 16 show that for
C the intersection of the 2- and the {4}-closure, the largest and smallest group in L differ
typically by a factor of less than 10 and almost always by less than 100. By far the worst case
is index 5040 in degree 12, which happens for M12. Such highly transitive groups however
occur rarely and should be considered as exceptions.

For higher degrees however closures of higher level will be needed: If U and V have the
same {k}-closure then for any transitive T the groups U oT and V oT (acting naturally) have
the same {k}-closure, but [U o T : V o T ] = [U : V ]deg T . Therefore the size range for groups
with the same {k}-closure can grow exponentially.

The properties of the closures show that we can obtain small prime divisors of |G| and
block systems of G from knowledge of C.

Problem 3: Compute the maximal subgroups. If the group is small, one can simply
compute the full subgroup lattice to obtain maximal subgroups iteratively. For solvable
groups in general, there is an efficient algorithm to compute maximal subgroups [Eic93].
In the insolvable case such an algorithm (without computing the full lattice first) is still a
desideratum. However use of the O’Nan-Scott theorem [DM96, 4.1A] could provide an
approach. Finally, for degrees up to 31, the lists of transitive permutation groups computed
in [Hul96] can be used.

4.1. Problem 4: Determination of invariants. When computing relative invariants for
V < U we need one invariant of V that is not invariant under U . Furthermore, we want
this invariant to be “small”, not only to reduce the amount of work needed to evaluate one
invariant but also to reduce the magnitude of |ϕ(h)| (which determines the needed p-adic
lifting accuracy). As sum of monomials this magnitude is determined primarily by the degree
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of the monomials. As we use p-adic instead of numerical approximation, error propagation
is not a problem. Thus it is not critical to express h in a special way.

The permutation image of a monomial is a monomial of the same degree. So we can
assume without loss of generality that we are looking for a homogeneous invariant which
is the V -orbit sum b =

∑
c∈aV c of a “defining” monomial a. It is a V -invariant for U if∣∣aU ∣∣ > ∣∣aV ∣∣. If V is normal in U (note that V is maximal in U anyhow) this holds if and

only if StabU(a) ≤ V , otherwise this criterion is sufficient but not necessary.
Classical results on the generation of invariant rings [Noe16] concentrate on generating

the full invariant ring and so give an unsuitably large bound (namely |G|) for the degree of
a.

To restrict the degree we observe the following bounds: If (b1, . . . , bm) is a base of U the
monomial xb1 · x2

b2
· · · · · xmbm has a regular orbit under U and so may serve as an a. So

deg(a) ≤ m(m+1)
2

. Similarly deg(a) > k if both groups have the same k-closure.
If U and V are small enough to compute their conjugacy classes, one can also compute

the Molien series FU(λ) for the permutation action [Sta79]. (It is sufficient to know the
conjugacy classes of U to compute this series.) In expanded form FU(λ) =

∑
i≥0 d(U)iλ

i

with d(U)i being the dimension of the space of the i-dimensional homogeneous invariants of
U . So the smallest i for which d(V )i > d(U)i is the smallest possible degree.

As we are interested only in invariance and not in absolute degrees we can assume that
the exponent i occurs in a only if the exponent i− 1 occurs as well. So we may assume that

a = (xi1 · · ·xil1 )(xil1+1
· · ·xil2 )2 · · · · ·

(
xilm−1+1

· · ·xilm
)m

(4)

with l1 ≥ l2− l1 ≥ · · · ≥ lm− lm−1. The stabilizer of such a monomial is an m-times iterated
stabilizer of sets of length li − li−1. (As the computation of set stabilizers is usually easier
for smaller sets, this stabilizer should be computed backwards from m to 1.)

A general strategy to compute invariants is discussed in [Gir87].
It is shown in [Göb95] that a orbit sums of a subset of the monomials of the form (4) of

degree at most max(n, n(n− 1)/2) generate the full invariant ring.

5. Factoring resolvents

The hardest subtask of the proposed algorithm usually will be the factorization of the
resolvents.

5.1. Difficulties. For the usual factoring approach [Zas69],[DST88, §4.2.2] of Hensel lifting
combined with trial quotients of the polynomial with products of the lifted factors, the
resolvent polynomials R(g, f) are of the worst possible kind: By Dedekind’s theorem (5)
the degrees of the factors of R(g, f) modulo any prime divide the order of elements in
Gal(f), but the degrees of the irreducible factors of R(f, g) are orbit lengths of Gal(f) and
so of magnitude |Gal(f)| instead of |σ| (σ ∈ Gal(f)). Thus as soon as the Galois group is not
regular, resolvent polynomials will split into many factors modulo any prime while splitting
only in few factors over Q. So not only many factors have to be lifted first, but also the
exponential combination step might become extremely hard.

An obvious remedy seems to be the use of a polynomial time factoring algorithm as
suggested in [LLL82]. Unfortunately this algorithm requires substantially better lifting and
thus has a comparatively worse runtime in “small” cases. However, on current computers
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within reasonable run times only such “small” examples can be computed anyhow. The
break-even point of the exponential algorithm can not yet be reached.

5.2. Use of partial information. If we use the fact that we do not factor arbitrary poly-
nomials but resolvents, we can help the factoring algorithm: The partial knowledge about
the Galois group and its possible actions will limit the possible orbit lengths and thus the
possible factor degrees:

Factoring a polynomial a means to find the orbits of the Galois group on its roots. The first
approximation are the orbits of one element (the Frobenius automorphism) of this Galois
group. They are given by factorization modulo p: a ≡

∏
i ai (mod p). This approximation

is used in the standard Hensel lifting. Suppose, we have already computed a closure C from
the factorization of some resolvents Ri. Reduction of the factors of the Ri modulo this prime
p gives (by the save process as described in section 3) the action of C on the roots of f
modulo p and in turn (if a is a resolvent) on the roots of a. G is a subgroup of C and so the
orbits of G refine the orbits of C. This yields a partition J of the {ai} (modulo p). When
combining the lifted factors, only the ai (mod pm) in the same block J ∈ J of the partition
(i.e. i ∈ J) have to be combined. Furthermore this will give better bounds for the degrees
of potential factors, probably reducing the necessary lifting bound.

If we even know L (or a reasonably small superset) we can also test whether modulo p
the roots of two factors – say ai and aj – always lie in the same orbit of U for all U ∈ L.
If this is the case, the factorization will not separate ai and aj and we can replace them by
their product even before starting the lifting. (Note that Hensel lifting only requires coprime
factors. They do not need to be irreducible.)

Both reductions will substantially reduce the work needed for the factorization.

6. Block systems

We have noted already that we obtain the imprimitivity structure of the Galois group
G even from the {2}-closure of G. If the degree n is high, however, factorizing the 2-set
resolvent might be initially too hard while computation of block systems [Hul95, KP97] is
still feasible. Then we can compute the intersection of the corresponding wreath products
and take this as a group C to simplify the polynomial factorization (5.2).

Recall that each block system corresponds to a subfield ofQ(α). We can express a primitive
element γ of this subfield as a polynomial γ = h(α) and take the minimal polynomial g of
γ. So g(h(α)) = 0, respectively f(x)|g(h(x)).

Then the evaluation of h at any root αi of f will yield a root of g, which corresponds to
a block. So every block consists of those roots αi of f which evaluate under h to the same
number γj. Again this test can be done modulo any non-ramifying prime.

If a system of m blocks of size l has been found G is a subgroup of Sl o Sm. By calling
the identification algorithm recursively to determine the action of G on the blocks we can
further restrict to the wreath product Sa oGal(g), its top group acting on the blocks as Gal(g)
does. While the {2}-closure already determines the block systems, it does not necessarily
determine this block action Gal(g). Therefore this identification may reduce C to a smaller
group and improve the discrimination of groups.

Theoretically, by the theorem of Krasner and Kaloujnine [KK51], one could even
replace Sa by the action of a block stabilizer on its block. However, the determination of
this action requires the identification of Galois groups over algebraic extensions which seems
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to be too expensive for the gain possible.Also, for obtaining the correct permutation action,
this identification would have to take place for any block, as we do not get the action of
Gal(g) on the roots of f .

The method of [KP97] utilizes p-adic approximation of the roots of f . Therefore it might
be desirable to use the same prime later on for determining G’s action, as the root approxi-
mations can be re-used.

We finish this section with the remark that though the best known practical algorithm
[KP97] to find block systems is of exponential nature the problem is known to be polynomial
in theory [LM85].

Appendix: Reduction modulo a prime

The aim of this appendix is to establish some facts about the relation of field extensions
over Q defined by a polynomial f with extensions of the prime field Fp defined by a reduction
of f modulo p. We shall consider only extensions of the base fields. Generalization to relative
extensions is possible, but will not be needed here. For this as well as for proofs we refer to
the literature [Cas86, Mar77, Neu92]. We assume knowledge of basic Galois theory. (This
appendix proceeds relatively quickly through material which is not needed elsewhere in the
paper. The faint-hearted may want to skip it almost completely and only take theorem 5
and the existence of the homomorphisms established in the last paragraph of this appendix
as facts.)

For any prime p there is the p-adic valuation νp of the rational numbers given by νp(
a
b
) = n

if a
b

= pn c
d

with p 6 |c, d. Taking the completion of the rationals with respect to this valuation
we obtain the p-adic field Qp. There is a natural embedding of Q into Qp and we will from
now on consider Q as a subfield of Qp without explicitly mentioning this embedding. This

implies that we can embed the algebraic closure Q of the rationals into the algebraic closure
Qp of Qp. If we embed L (as L is a normal extension this image is unambiguous) into Qp we
get a normal extension Lp = 〈L,Qp〉 of Qp. The Galois group Gal(Lp/Qp) of this extension
then naturally embeds into Gal(L/Q). Note that [Lp : Qp] might be strictly smaller than
[L : Q] and the Galois groups be strictly contained in each other, because Qp already contains
algebraic irrationalities.

AsQp is complete there is a unique extension of νp to Lp. For K ∈ {Qp, Lp} we consider the
discrete valuation rings O(K) = {k ∈ K | νp(k) ≥ 0} and their maximal ideals P(K) = {k ∈
K | νp(k) > 0} C O(K). We note that O(Qp) = Zp. By definition we have O(Lp)∩Qp = Zp
and P(Lp)∩Qp = P(Qp). As 1/k ∈ O(K) for k ∈ K \O(K) (by the definition of a valuation
ring), we have 〈Qp,O(Lp)〉 = Lp while M := 〈Zp,P(Lp)〉 usually is smaller than O(Lp).
We also note that the ring O(L) of algebraic integers in L is contained in O(Lp), because
Z ⊂ Zp ⊂ O(Lp) and because valuation rings are integrally closed. Table 1 illustrates this
situation.

As P(K) is a maximal ideal in the integral domain O(K) the quotient ring O(K)/P(K)
is a field. This field is finite because the valuation is discrete. We have Zp/P(Qp) ∼= Fp, the
field with p elements. By the isomorphism theorem we get a natural embedding

Zp/P(Qp) ∼= M/P(Lp) ↪→ O(Lp)/P(Lp) =: Fq,

thus Fq is a finite extension of Fp.
There is a natural homomorphism (action modulo P(Lp)) from Gal(Lp/Qp) onto Gal(Fq/Fp).

The kernel of this mapping is usually called the ramification subgroup. If it is nontrivial we
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Table 1. Algebraic extensions

call p a ramifying prime. If L is the splitting field of f , every ramifying prime must divide
the discriminant of Q(α)/Q and thus divides the discriminant of f . So there are only finitely
many ramifying primes and we can avoid these when choosing a prime.

If Lp/Qp does not ramify we have Gal(Lp/Qp) ∼= Gal(Fq/Fp). Accordingly, there is an
element in Gal(L/Q) that corresponds to the Frobenius automorphism (taking p-th powers)
generating Gal(Fq,Fp). We call this element in Gal(L/Q) the p-Frobenius automorphism.
If L is the splitting field of f , the action of the p-Frobenius automorphism on the roots of
f is the same as the action of the Frobenius automorphism on the roots of the reduction of
f modulo p. The orbits of this automorphism then are in correspondence to the irreducible
factors of f modulo p. We have shown:

Theorem 5 (Dedekind’s theorem[vdW71, §66]). For a prime p not dividing the discrimi-
nant of an irreducible rational polynomial f the degrees of the irreducible factors of f modulo
p give the cycle shape of one element in the Galois group of f .

Using analytic number theory this result can be strengthened to the Tschebotareff

density theorem [Tsc25], by which the density of the non-ramifying primes for which the
Frobenius automorphism has a given shape equals the proportion of elements of this shape
in the Galois group G.

It can be shown that Gal(L/Q) is generated by all ramification subgroups. Unfortunately
this property cannot be utilized easily, as each ramification subgroup is given by its action
on the roots in Lp. However, there is no simple way (without knowing G) to identify the
roots in Lp with those in Lp′ for two different primes p and p′. This identification would be
needed to obtain the group they generate together.

Finally, for all powers of P(Lp) there is a natural ring homomorphism (“reduction modulo
pn”), the approximation map πi : O(Lp) → O(Lp)/P i(Lp) that restricts to πi|Zp : Zp →
Zp/P i(Qp) ∼= Z/piZ. Restricted to Z this is the well known reduction modulo pn. We
usually abbreviate π1 to π.
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