
Computing Conjugacy Classes of Elements in Matrix
Groups

Alexander Hulpke

Department of Mathematics, Colorado State University, 1874 Campus Delivery,
Fort Collins, CO, 80523-1874, USA

Abstract

This article describes a setup that – given a composition tree – provides function-
ality for calculation in finite matrix groups using the Trivial-Fitting approach
that has been used successfully for permutation groups. It treats the composi-
tion tree as a black-box object. It thus is applicable to other classes of groups
for which a composition tree can be obtained. As an example, we consider an
effective algorithm for determining conjugacy class representatives.

Keywords: Matrix Group, Calculation, Solvable Radical, Conjugacy Classes

1. Introduction

The algorithms developed in the context of the matrix group recognition
project [O’B11] produce as their principal output a composition tree, a data
structure that represents a composition series of the group. Such a tree also
provides homomorphisms from the subnormal subgroups in this series onto the
simple composition factors. Implementations of algorithms determining a com-
position tree have recently reached a point at which it becomes feasible to use
this tree for calculations beyond only the group order or composition structure,
see [BHLGO].

One approach for such higher level calculation is the so-called Trivial-Fitting
method (also called the “Solvable Radical” method) that has been used success-
fully for permutation groups and is the basis of many algorithms provided by
the computer algebra systems GAP [GAP13] and Magma [BCP97].

This method sits at the heart of the black-box group approach of [BB99]. For
permutation groups it has been used to design effective algorithms for determin-
ing conjugacy classes of elements [CS97, Hul00, CH06], conjugacy classes of sub-
groups [CCH01], normal subgroups [Hul98], maximal subgroups [CH04, EH01],
and automorphism groups [CH03].

Email address: hulpke@math.colostate.edu (Alexander Hulpke)
URL: http://www.math.colostate.edu/~hulpke (Alexander Hulpke)

Preprint submitted to Elsevier April 24, 2013

The Trivial-Fitting method requires determining the solvable radical Rad(G)
(the largest solvable normal subgroup of G), a representation of its factor group
G/Rad(G) and an effective natural homomorphism ρ : G → G/Rad(G). (We
shall call a homomorphism effective if we can determine the images of elements
of the domain as well as preimages of elements of the image in time and storage
requirement sub-linear in |G|).

The Trivial-Fitting method also requires a means for performing linear alge-
bra in the elementary abelian layers of Rad(G). Following [HS08] it is possible
to modify an existing composition tree to expose Rad(G) as a subgroup in the
composition series, though this does not necessarily expose ρ as the top-most
homomorphism of the tree. It therefore provides no immediate way to represent
the radical factor.

The main result of this paper is an alternative approach that uses a compo-
sition tree to construct a new group H ∼= G/Rad(G), together with an effective
epimorphism ρ : G → H (Section 3). This is done by considering the tree as a
black-box object without having to refer to the geometric structures that gave
rise to it. The natural input size measurement for working with such a tree is
the number of composition factors, the natural cost is operations on the compo-
sition tree (Definition 6). We shall show in Theorem 9 that with these metrics
the construction of H and ρ can be performed in polynomial time; evaluating ρ
on an element of G can be performed in linear time.

We obtain Rad(G) as kernel of ρ.
We then show how to adapt methods for solvable permutation groups [Sim90]

to obtain a polycyclic generating set for Rad(G) (which implicitly allows the
use of linear algebra for the elementary abelian layers), Section 4. We finally
describe how these data structures allow us to handle arbitrary subgroups of
G without the need to perform a new recognition procedure, Section 5. As
an illustration of this approach, we describe a practical implementation of an
algorithm that computes representatives of conjugacy classes of elements, as
well as their centralizers, Section 6.

The composition tree approach we shall use follows [NS06], as implemented
in the recog package for GAP, though other composition tree methods would
work as long as they provide support for a set of basic tree operations that we will
list in Section 2. In particular, if a composition tree (providing homomorphisms
as well as constructive recognition of the leaves) is given for a group in a different
representation, e.g. an automorphism group, then the approach described here
would apply immediately.

2. Composition Trees

We assume that we have already computed a composition tree for the group
G and have established simplicity of the leaves. (If G is a matrix group, such a
tree is exactly the result of matrix group recognition [O’B11].)

Concretely, this means that if G is simple we have proven so and have an
effective isomorphism to a “natural” representation for this simple group.

2

Remark 1. By applying constructive recognition [O’B11, Section 8] to the sim-
ple group we may assume that for groups of Lie Type this natural representation
is an absolutely irrreducible, projective representation of small degree in defining
characteristic. In particular, if the simple group is PSX(d, q), we assume that
the representation is by d× d matrices over the field with q elements.

Otherwise we have constructed an effective homomorphism ϕ on G, together
with generators for kerϕ and for Gϕ. Recursively, kerϕ and Gϕ are treated in
the same way as G was, i.e. we either have established simplicity or a new
decomposing homomorphism.

This produces recursively a tree structure for G (which is called a composi-
tion tree) in which each node corresponds to a subgroup, or factor group of a
subgroup, of G. The root of the tree is G. The leaves of the tree correspond to
the simple composition factors of G.

Such a composition tree implies a composition series 〈1〉 = ClC· · ·CC1CC0 =
G for G with Ci/Ci+1 simple and nontrivial. (The subgroups in this series are
the kernels of the homomorphisms for the tree, respectively preimages of these
kernels under homomorphisms from nodes higher in the tree.)

We note that the homomorphisms of the composition tree yield effective
homomorphisms γi : Ci → Ci/Ci+1, identifying this factor group with the cor-
responding leaf of the composition tree.

To enable a reduction to calculation in composition factors, we shall use the
following definition:

Definition 2. A group G, in a particular representation on the computer, is
called benign, if the following tasks can be performed:

I One can determine the order of a subgroup of G, given by a generating set.
II Given a generating set for G, it is possible to write an arbitrary element of
G as a product of these generators.

III For given g1, . . . , gk, h1, . . . , hk ∈ G, one can effectively find x ∈ G such
that gxi = hi, or show that no such element exist.

Remark 3. Task II does not make assumptions about particular generating
sets or length of word expressions. In concrete applications, or for a complexity
analysis, short words (or short straight line programs [Ser03, p.10]) will often
be desirable and might necessitate choice of particular generating sets.

Remark 4. If G is represented as a permutation group or as a matrix group of
moderate degree, then stabilizer chains and backtrack search [HEO05, chapter
4] provide effective solutions to these tasks: Tasks I, II immediately follow from
the existence of stabilizer chains. Task III can be solved using multiple backtrack
searches for conjugating elements. (Find x1 ∈ G that maps g1 to h1. Then find
x2 ∈ CG(h1) that will map gx1

2 to h2, and so on. The desired element is
∏
i xi.)

We finally shall assume that for each non-abelian leaf T of the composition
tree we have an effective homomorphism T → Aut(T), with Aut(T) benign.

3

Remark 5. Representing T as a subgroup of Aut(T) rarely changes the complex-
ity of the problem: From [CCN+85, Table 1, p. viii and Table 5, p. xvi] we deduce
that for every finite simple group T there are normal subgroups D,F C Aut(T),
T ≤ D ≤ F ≤ Aut(T). Here D is generated by T and diagonal automorphisms
(such as automorphisms induced by GL on SL) and F is in addition generated
by field automorphisms. If T is represented in its “natural” representation (see
Remark 1) in defining characteristic, this representation extends to D. Field
automorphisms can be treated by forming a semidirect product with a Galois
group acting in a natural way. Finally, Aut(T)/F is generated by graph au-
tomorphisms and automorphisms of alternating and sporadic groups. Thus its
order is universally bounded by m = 6. We can therefore embed Aut(T) in a
wreath product F o Sm.

In the current implementation the benignness of Aut(T) comes from repre-
senting it as a permutation group. On a theoretical level of course the expecta-
tion is that constructive recognition and the theory of simple groups will provide
a benign representation with efficient algorithms for the tasks in Definition 2.

Definition 6. Motivated by [BB99], our approach towards the radical factor
now considers the composition tree as a black-box structure. For working with
such a tree we will use the following basic operations:

Depth For x ∈ G, determine the maximum d such that x ∈ Cd. We call this
value d the depth of x.

Leaf Image For x ∈ Ci, with T = Ci/Ci+1 and γi : Ci → T , determine the
image xγi as an element of Aut(T).

Leaf Operations We shall assume for all simple leaves T of the tree that
Aut(T) is benign; thus the tasks I,II,III in Aut(T) each are considered
a basic composition tree operation.

Remark 7. Determining the depth of an element can be done by determining
images xγ0 , xγ1 , . . . until an image is nontrivial. We shall denote a large numer-
ical value of the depth d as “deep” and a small numerical value as “shallow”.
That is, a deep element lies in a small subgroup in the composition series, while
shallow elements only occur in the largest subgroups of the series.

Remark 8. One could argue about the appropriateness of counting a Leaf Im-
age as of comparable cost to a conjugacy tests of element sequences in a leaf.
The data structure of a composition tree however means that the leaf image
might require a sequence of homomorphisms, together with constructive recogni-
tion, but a conjugacy test in a classical group might only involve normal forms.
We thus use the coarse granularity of composition tree operations to hide any
particularities of the implementation of the tree and its leaves.

4

3. Determining the radical factor

Recent algorithms for finite groups have emphasized the following struc-
ture [BB99]. A finite group G possesses characteristic subgroups R ≤ S∗ ≤
Pker ≤ G where R = Rad(G) = O∞(G) is the solvable radical (i.e. the largest
solvable normal subgroup of G), S = S∗/R is the socle of G/R and Pker is the
kernel of the action π of G permuting the direct factors of S∗/R. (By the proof
of Schreier’s conjecture [Fei80] Pker/S∗ is solvable.) For a permutation group
G, the algorithms of [LS97, Hol97] provide a means for constructing a represen-
tation of G/R as a permutation group, together with the natural homomorphism
ρ : G→ G/R.

See [BHLGO] for discussion on how to retreive these subgroups from a com-
position tree.

Our approach differs in that it constructs a representation of G/R first, never
building a new composition tree. We shall prove the following.

Theorem 9. Let G be a group for which a composition tree has been determined
such that for all nonabelian leaves T of this tree Aut(T) is benign. Denote by
m the number of nonabelian composition factors of G and by n the maximum
of the total number of composition factors of G and the number of generators
of G.

Then there exists a group H ∼= G/Rad(G) and an effective homomorphism
ρ : G → H with ker ρ = Rad(G), such that for g ∈ G an image gρ can be
determined in 2m element conjugation operations in G and 4m basic composition
tree operations.

The initial setup for constructing H and ρ requires at most 4n3 composition
tree operations.

To construct H, we observe that S := Soc(G/R) is a direct product of
nonabelian simple groups, and CG/R(S) = 〈1〉. The action of G/R on its socle
thus is faithful and we can identify G/R with a subgroup of Aut(S). The action
of G/R on S induces an action of G on S (with kernel R) and we will build an
effective version of ρ from this action.

By Jordan-Hölder, the direct factors of S are (with multiplicities) a subset
of the nonabelian leaves of the composition tree. For ease of description we first
consider the case where the radical factor lies in a single wreath product and
G/Pker is solvable, and then show how to generalize.

3.1. Case 1: Minimal Normal Socle
We shall assume first that G/Pker is solvable and that S is minimally nor-

mal in G/R. This means [BB99] that S = T1 × · · · × Tn ∼= Tn for a simple
nonabelian group T . Then Aut(S) ∼= Aut(T) o Sn and the direct factors of S
correspond exactly to the nonabelian composition factors of G. If Aut(T) is
given as a permutation group or matrix group of degree k, then Aut(T) oSn can
be represented in degree k ·n. Assume that ρ : G→ Aut(T) oSn is the (induced)
action of G on S. We will describe how to make this action effective:

5

If we represent t ∈ Ti by a preimage x ∈ S∗, the depth of x corresponds to
the index i of the direct factor.

We first choose the nonabelian leaf in the composition tree that is maximally
deep (denote the depth by d). This choice ensures that the image of the d-th
subgroup in the composition series under ρ is one of the direct factors of S (and
not a diagonal subgroup). We set Cdρ = T1 and therefore represent the simple
group T by the image Cdγd .

We will now determine which composition factors correspond to the other
copies of T in S. As each of these copies Ti corresponds to a composition factor
of a different depth, we will record the bijection between depths of nonabelian
composition factors and direct factors of S in two lists, v and w. That is,
Cvi/Cvi+1 corresponds to the i-th copy Ti and w(vi) = i for all i. The ini-
tial setup gives v1 = d and wd = 1. Other values will be determined as the
calculation progresses.

By [AG84] every finite simple group can be generated by two elements. We
thus take a generating sequence t = (t1, t2) (we shall use underlined bold letters
to denote generating sequences) for T ∼= Cd/Cd+1.

Let x1 = (x1,1, x1,2) ⊂ Cd be preimages of these generators under γd. As
we have chosen a generating pair for T , we know that x1,i 6∈ Cd+1. Conjugates
of x1 under G (with elements xi,j) will then be used as generating sets for the
other Ti.

To allow the identification of socle factors with composition factors of partic-
ular depths, we will need to ensure that no element of G we use for representing
factor Ti has shallower depth than the corresponding depth vi. (By definition
of depth such an element can never be deeper, as it has a nontrivial image in
Cvi/Cvi+1.)

Such a situation could arise for example if

G = (A×B) o S2 = ((A1 ×B1)× (A2 ×B2)) o S2

and if the subgroups in the composition series are (in ascending order) C5 = B1,
C4 = B1×A1, C3 = (B1×A1)×A2, C2 = (B1×A1)× (A2×B2) and C1 = G.
Assume that we have chosen x ∈ C4 to represent a nontrivial element of A1 (i.e.
x has depth 4), but that x also projects nontrivially to B1. If we now conjugate
x with (1, 2) ∈ S2, we would want y = x(1,2) to represent the composition factor
A2; however y also has a nontrivial image in B2 and therefore is of depth 2 and
not depth 3 as expected.

If such a situation arises, the algorithm will resolve it by modifying the chosen
generating sets xi. We will describe this correction process in Section 3.1.1 after
the initial description of the algorithm which we give here:

Denote by g a generating sequence of G. We now perform (by forming
conjugation images of x1) an orbit algorithm for the action of G on the indices
{1, . . . , n} of the direct factors of S, determining the permutation image Gπ =
G/Pker.

During this calculation, we will also determine, once we encounter factor i
for the first time, the corresponding depth vi in the composition series (as well

6

as the inverse wvi = i).
As we intend to form a wreath product Aut(T) o Sn, we will represent each

direct factor Ti by the same group T . To play the role of γvi we determine for
each i a homomorphism µi : Cvi → T and an element sequence xi ⊂ Cvi such
that T = 〈xµii 〉. (Thus the same generating set t has different preimages xi
under the different projections µi.)

The following algorithm describes this process. Here v and w are lists that
describe the index translation, µ is a list of homomorphisms, rep is a list of
group elements mapping the first copy of T to the respective other copies (repi
is required for the evaluation of µi).

1: v := []; w := []; µ := []; rep := [];
2: v1 := d; wd := 1;i := 1; k := 1; rep1 := 1G; µ1 := γd.
3: while i ≤ k do
4: for g ∈ g do
5: Let y = xgi = (xg | x ∈ xi).
6: Let e be the depth of y1 ∈ y. If the depths of elements of

y differ, or if e is the depth of an abelian layer then correct
all generating sets xk defined so far (and y) as described in
Section 3.1.1 below.

7: if we is not known then
8: k := k + 1; {The new direct factor found is labelled Tk}
9: Set vk := e; we := k;

10: Set xk := y; repk := repi · g; {Thus xk,j := x
repk
1,j .}

11: Set µk : x 7→
(
x(rep−1

k)
)γd
∈ T .

12: fi;
13: Record that the permutation gπ maps i to we.
14: od;
15: i := i+ 1
16: od;

The algorithm terminates when k = n and i = k+ 1. At that point we have
determined the images gπ for all g ∈ g and therefore the permutation image
Gπ ≤ Sn. An obvious variant without the for-loop and the if-case can determine
gπ for an arbitrary g ∈ G. Thus π is an effective homomorphism.

3.1.1. Ensuring correct depths
Note that (since d is maximally deep), when decomposing as elements of

Aut(T)oSn, the image of x1,j in G/R, and thus also the image of every conjugate
xi,j = xg1,j for g ∈ G, has identity components for all but one copy of T . Thus
in step 6 of the algorithm, if the observed depth e of a conjugate xgi,j is that of
a nonabelian layer, it must be the correct depth. The depth can only be wrong
if it is that of an abelian layer. This can be detected easily.

In this situation, as x1 is a list of preimages of generators of Cd/Cd+1, the
subgroup Cgd (and therefore also Cd itself) must have an abelian quotient. This

7

quotient of Cd arose in the chosen composition series deeper than d, and at least
one of the chosen generators x1,j has a nontrivial image in this quotient.

We thus must modify x1 so that it has a trivial image in this abelian quotient.
This can be achieved by choosing new generators in the derived subgroup of 〈x1〉.
As Cd/Cd+1 is simple nonabelian, such a change does not affect generation of
the factor group. Indeed, using pretabulated data, we may assume that for the
chosen generating set t of the simple group T , we know words in t that express
the elements of t as words in commutators of t.

We thus replace x1 by the values of these same words in x1. These new
generators therefore will lie in the derived subgroup 〈x1〉′ but still have the
same images t in Cd/Cd+1.

After such a modification, we can keep the data structures consistent by
replacing every generating set xk computed so far by the values of these same
words in xk, because conjugation is an isomorphism. (This is the correction of
generators referred to in step 6 of the algorithm.)

Since the newly chosen generators lie in the derived subgroup 〈x1〉′, this
situation can happen at most once for every pair of abelian and nonabelian
composition factor and thus at most m(n−m) times. (Alternatively, one could
immediately form (n−m)-fold repeated commutator expressions in the original
generators and then select these commutator words for x. As this takes time,
creates unnecessarily long words, and as this kind of exception occurs rarely,
the single-step “correction” process described above is preferable in practice.)

3.1.2. Evaluating the homomorphism
This action homomorphism π, together with the homomorphisms µi, now

lets us determine the action of G on S and thus yields an effective version
of ρ : G → G/R. For this, we need to determine for g ∈ G its image gρ in
Aut(T) o Sn that describes the action of g.

For each i ∈ {1, . . . , n} we calculate the images of the generators xi, repre-
senting the i-th copy of T , under conjugation by g. These images lie in the j-th
copy of T where j = i(g

π). We obtain j from the depth of xgi,1 and thus construct
gπ. The generator images in T thus are y = (xgi)

µj . Using the conjugacy test
in Aut(T) (fundamental task III) we find αi ∈ Aut(T) such that tαi = y. The
standard embedding into a wreath product gives the image

gρ =
(
α1/g, α2/g, . . . , αn/g; gπ

)
∈ Tn o Sn = Aut(T) o Sn,

where i/g denotes the image of i under (g−1)π. (The inverse g−1 arises, as
the index denotes the entries that are permuted into the i-th component.) As
we can compute π as an action homomorphism, and the α’s by calculations in
Aut(T), we can effectively evaluate this image gρ for arbitrary g ∈ G.

Calculating gρ this way for all g ∈ g gives generators for Gρ ∼= G/R.
We note that this process – acting on generators of the simple factors and

forming an image in a wreath product – always constructs a valid homomor-
phism on G. The only place where the conditions – S being minimally normal
and G/Pker being solvable – are used is in establishing that ker ρ = R.

8

3.2. Case 2: Decomposable Socle
Next consider the case that S is not minimal normal, but G/Pker still is

solvable. The same process can be used to determine the action of G on the
minimal normal subgroups of G/R in S separately. To this end we maintain
a list of marks for all nonabelian leaves, having initially all unmarked. When
selecting a nonabelian leaf that is maximally deep, we choose only amongst the
so far unmarked leaves. In the orbit algorithm on indices we then mark all leaves
whose depth is encountered (and obtain n as the value of k at termination). This
construction then gives one homomorphism, call it ρ1.

If there are yet unmarked leaves remaining, we repeat the process, starting
with the deepest so far unmarked leaf and obtain a second homomorphism ρ2.
(Since the nonabelian leaves leading to a ρi are obtained under a group action,
the calculation of ρ2 will never encounter a nonabelian leaf that already had
been used in the construction of ρ1.)

To keep the argument from Section 3.1.1 valid for the construction of ρ2, we
now need to ensure that the elements in the generating set x1 have nontrivial
images in only one direct factor of Soc(G/R). If we choose the new generating
set x1 as generators on the level of maximal unmarked depth d, then x ∈ x1

could violate this condition only if its image in G/R projected nontrivially on
a socle component corresponding to a deeper composition factor. We can test
for such a condition by checking whether the image xρ1 under the previous
homomorphism has a nontrivial socle part.

If this is the case, we find a preimage a ∈ G under ρ1 of xρ1 (see Section 3.4
on how to compute preimages). As ρ1 was constructed from elements that
project only on socle components for previously marked layers, this means that
x/a will have trivial image under ρ1, but still have the same image at depth d.
It thus still represents the same image in the composition factor of depth d.

(If multiple previous homomorphisms ρi exist, then we consider all of them
in sequence.)

In practice, this correction is only relevant if the algorithm would encounter
a wrong depth for a conjugate. This can be detected, as this depth had been
marked already. One thus can treat this correction in the same way as that of
encountering abelian layers, correcting the generators only if a nonabelian layer
is encountered, avoiding unnecessary evaluation of the previous ρi.

In this way, we obtain homomorphisms ρ1, ρ2, . . . until all nonabelian leaves
are marked. Since R acts trivially on S, but every element outside R acts
nontrivially, R =

⋂
i ker ρi.

The homomorphism ρ thus can be taken as the subdirect product of the ρi,
i.e.

gρ = (gρ1 , gρ2 , . . .) ∈ Gρ1 ×Gρ2 × · · · .

3.3. Case 3: Nonsolvable Socle Factor
Finally, consider the situation that G/Pker is not solvable and assume that

a (so far unmarked) nonabelian composition factor Cd/Cd+1 corresponds to a

9

nonabelian composition factor F of G/Pker. Then all socle factors of S that
are moved by F must be deeper in the composition series than d.

The above process therefore first determines sufficiently many ρi such that
the image of their subdirect product represents all socle factors of G/R which
are permuted by F , as well as the action of G on these (which includes the
contribution of F). When working on Cd/Cd+1, the construction then produces
another homomorphism ρ̃ whose kernel contains

⋂
ker ρi for these ρi.

As it is a valid homomorphism, we can include ρ̃ in the subdirect product
construction of ρ without changing ker ρ. Thus the algorithm as described will
work also in the case of a nonsolvable socle factor.

In practice of course the extra factor ρ̃ in the image of ρ is an unnecessary
burden. When constructing ρ we can simply consider the order of the image
group formed by the several ρi and eliminate those factors that do not increase
the image order. This will automatically eliminate ρ̃.

3.4. Preimages
To make ρ effective, we finally need to be able to compute preimages of

elements of Gρ. Let P := Pkerρ ≤ G/R be the base subgroup of G/R as
subgroup of a direct product of wreath products and let $: G/R → G/Pker
be defined such that π = $ ◦ ρ. By stabilizer chain methods applied to the
permutation group G/Pker, we can find a generating set p for P , together with
elements h ⊂ G such that hρ = p. Working in the direct product factors of P
(each isomorphic to Aut(T) and thus permitting decomposition into generators
by condition II) with this generating set, we can thus for y ∈ P determine g ∈ G
such that gρ = y.

For an arbitrary x ∈ G/R, we first use stabilizer chain methods for G/Pker
(see [Ser03, p. 80]) to find f ∈ G such that fπ = x$. As we can evaluate ρ, we
calculate fρ and consider the quotient x/fρ ∈ P . By the above argument, we
can determine g ∈ G such that gρ = x/fρ. Thus g · f is a preimage of x under
ρ.

3.5. Proof of the Theorem
To prove Theorem 9, we first estimate the cost of calculating images under

ρ. We observe that to determine the image of g ∈ G, we conjugate the two
generators for every socle factor by g. We then determine the depth of the
images (one chain operation), calculate the images of the generators in the
appropriate leaf (two chain operations) and finally conjugate these in Aut(T)
to the chosen generators (one chain operation). This establishes the cost of an
element image computation as 4m tree operations.

The initial setup and choice of the generating sets xi consists essentially of
determining images gρ for all (at most n) generators of G. We have seen that
the correction of generators for an abelian factor (Section 3.1.1) can happen
at most m(n − m) times and each time requires a new depth computation.
The generator correction in Section 3.2 will map each new generator pair xi,j ,
(i = 1, 2, . . ., j = 1, 2) under the previous ρz (1 ≤ z < i) and thus map at most

10

2(1 + 2 + ·+n− 1) = (n− 1)n elements. Each image computation therefore has
cost at most 4m composition tree operations.

The initial setup thus has a worst case cost of (generator images + correction
of wrong abelian depth + correction of nonabelian depth)

4mn+m(n−m) + 4m(n− 1)n ≤ 4m(n+ n−m+ (n− 1)n)
= 4m(n2 + n−m) ≤ 4(mn2 + n2(n−m)) = 4n3

composition tree operations. This completes the proof.

Having constructed ρ and the image Gρ, we now construct normal subgroup
generators for ker ρ. We obtain these by evaluating relators for a presentation
for Gρ in preimages of the generators in G. Such a presentation is formed by
choosing a composition series for Gρ, for example from images of the compo-
sition tree under ρ, or by using the decomposition of Gρ as embedded into a
direct product of wreath products. For each composition factor we create a
presentation using the methods of [HEO05, Chapter 6]. Finally we combine
these presentations of composition factors to a presentation of Gρ as described
in [BGK+97, Section 8].

As the algorithm for the radical given in the next section considers G-
conjugates, such normal subgroup generators are all we need to proceed.

4. Solvable Matrix Groups

We now return to the specific case of matrix groups. The next aim is to
build a data structure for handling the radical R, given its (normal subgroup)
generators. For this we want to determine a normal series R = R0BR1B· · ·B〈1〉
such that Ri C G and Ri/Ri+1 is elementary abelian. We also want to obtain
a polycyclic generating sequence (PCGS, [LNS84]) r = (r1, . . . , rk) for R that
exhibits this normal series, i.e. for each i there are indices ai < bi such that
Ri−1 = 〈Ri, rai , rai+1, . . . , rbi〉.

For each x ∈ R this yields unique exponents ej ∈ {0, . . . , pi−1} (setting pi =[
〈rj , . . . , rk〉:〈rj+1, . . . , rk〉

]
) such that x =

∏
r
ej
j . (We shall call this product

expression of x the r-factorization of x.) These exponents will be crucial for
further calculations, and it therefore is important to make their determination
as efficient as possible. Thus, while the composition tree in principle allows for
the determination of such exponents, we will use an alternative approach, based
on [Sim90], which determines the series Ri (from the bottom up) as well as
the PCGS r simultaneously. This approach has been used before for handling
solvable matrix groups (for example in [AE05]). The main differences here is
that we form a normal closure under the larger group G, we ensure elementary
abelian layers, and finally we investigate the question of orbit length and give a
strategy for the choice of base points.

The main loop in the algorithm from [Sim90] (the procedure solvable_group)
assumes that already a normal subgroup NCR, together with a PCGS for N , is

11

known (it is initialized withN := 〈1〉 at the start) and then processes a generator
x ∈ R. If x ∈ N it is discarded. Otherwise we start determining the normal
closure M := 〈N, x〉R by adding conjugates of x to N (by transitive closure)
until all conjugates under generators of R lie in the resulting subgroup M . If
during this process we find two conjugates y, z of x such that the commutator
w := [y, z] 6∈ N , then M/N cannot be abelian. In this case we replace x by
w (we remember x for processing at a later stage) and repeat the process of
extending N . (As w lies in a lower derived subgroup of R than x does, this kind
of exception may happen at most a bounded number of times, a bound being
given by [Dix68].)

If, on the other hand, all commutators were found to lie in N , then we
determined a larger normal subgroup M CG with M/N abelian and use M as
the next step in the normal series, extending the PCGS for N with generators
representing a basis of M/N .

We modify this procedure in two places. The first is that we want to ensure
that M/N is not only abelian, but elementary abelian. This is clearly the case
if the order of x modulo N is prime. We thus determine |Nx| in G/N and if
necessary replace x by an appropriate power. (This is repeated if x originated
from a commutator w. Also in such a case, the original x needs to be fed to the
algorithm again afterwards.) If we assume knowledge of the prime divisors of
|R|, we can compute |Nx| using [BB99, Claim 3.5], replacing the identity test
by a membership test in N .

Secondly, we modify the procedure by determining normal closure (i.e using
element conjugation) not just under R, but under G. This guarantees that the
subgroups for each elementary abelian layer are G-normal. It also enables us to
feed only a set of G-normal subgroup generators for R to the algorithm. The
only issue in this modification is termination of the process.

Lemma 10. When replacing R-closure by G-closure, a commutator can lie
outside N only finitely many times.

Proof. Without loss of generality, assume that N = 〈1〉 and that A = 〈x〉R
is elementary abelian (because otherwise there will be commutators with R-
conjugates that generate a smaller nontrivial subgroup). Suppose for g, h ∈ G
that [xg, xh] 6= 1. Then B = 〈xg〉R 6= 〈xh〉R = C are elementary abelian normal
subgroups of R such that 1 6= [xg, xh] ∈ B ∩ C. Thus B ∩ C C R is a smaller,
nontrivial, elementary abelian normal subgroup of R. As R is finite, every
strictly descending chain of normal subgroups is finite.

To allow for an element test in N , we will represent N by a stabilizer chain.
As discussed in Section 4.1, this is a feasible endeavor. Once all generators of
R have been processed, we end up with a stabilizer chain for R.

As mentioned in [HEO05, p.102], sifting x ∈ R along this chain allows us to
determine the first nonzero exponent in the r-factorization of x. In fact, we can
determine the exponents for a whole abelian layer Ri−1/Ri simultaneously. The
stabilizer chain will yields an expression of x as a product in r. The restriction
to a single abelian layer becomes necessary, because this product will not be

12

in the canonical order of a r-factorization. If the multiplication of elements of
R is comparatively expensive (and the iterated decompositions for the multiple
elementary abelian layers thus is costly), it may be sensible to determine a PC-
presentation for R in r for once, and afterwards use this PC-presentation to
collect a non-canonical factorization afforded by the stabilizer chain to a proper
r-factorization.

Furthermore (assuming no rebalancing of the Schreier tree takes place), since
the stabilizer chain is built by adding normalizing elements and since each ele-
ment of r only extends one layer of the stabilizer chain, the position of the base
image in its orbit determines the exponent of an element (e.g. if the element ri
extends an orbit of length a to length a · p, any element of the form

∏k
j=i r

ej
j

maps the base point to an image at position a · ei ≤ q < a · (ei + 1).) That
means that exponents can be read off immediately from the positions of the
base images without need of group element division.

By also using powers reii , 1 ≤ ei < pi, of the PCGS elements as Schreier
generators, the sifting process along the stabilizer chain will require exactly k
steps, rendering the issue of balancing Schreier trees less relevant.

Remark 11. The algorithm of [Sim90] selects base points ad-hoc when a new
one is needed. In the case of permutation groups, all orbits are bounded by the
permutation degree. In the case of matrix groups more care is needed, as a good
base point for a normal subgroup Ri might extend to a long orbit under R.

We therefore first need to determine a suitable base for R, which requires
knowledge of a generating set for R. Note that the initial composition tree gave
us |G|. As we also know |G/R| we thus know |R|. The following method thus
can certify that a set q ⊂ R generates R:

• Set R̂ = 〈q〉.

• In a Random-Schreier-Sims algorithm (with a small number of random
stabilizer generators on each level) compute a probabilistic stabilizer chain
for R̂. Section 4.1 below describes how we choose suitable base points for
this chain.

Let a be the group order obtained from this stabilizer chain.

• As a failure in the Random-Schreier-Sims algorithm produces an order
that is too small, a result a = |R| thus certifies that R = 〈q〉.

We perform this test, setting q in first approximation to be the list of normal
subgroup generators for R. If the test fails, then we extend q by a few random
conjugates and repeat this process until we have a proven generating set for R.

The base points obtained from this stabilizer chain for R then will be used
for building the data structure as described above.

4.1. Choice of base points
To make use of a stabilizer chain for solvable matrix groups feasible, we

need to show the existence of comparatively short orbits, and give a way of

13

finding them. An indication of this is already given by the solvable groups in
the experiments in [MO95]. The actions we will be considering are the natural
actions of matrix groups, i.e. the actions on vectors, on subspaces and on cosets
of submodules (that is, if M is a submodule, we act on cosets M+−→v , represented
by considering representatives −→v sifted through an echelonized basis for M). We
will consider these actions not just over the defining field, but also over algebraic
extensions, if this provides shorter orbits.

We shall assume in this section that for a finite field K = Fq the group
R ≤ GLn(K) is a finite solvable group. (If R is defined in characteristic zero,
we can first reduce modulo a prime and determine a short orbit there.) We
denote the natural module by V = Kn.

The condition for “short” we shall use is that the orbit length is bounded
by max(12, n) · (q n2 + 1), i.e. roughly

√
qn. This is motivated by the following

theorem.

Theorem 12 ([Ber76]). Assume that |R| and q are odd, n even, and that R
preserves a nonsingular symplectic form on V . Then R has an orbit on V \{−→0 }
of length bounded by (q

n
2 + 1)/2.

As the following observation shows, in general only the trivial bound 2n − 1
holds.

Remark 13. Let p = 2n − 1 a Mersenne prime. Then H := GLn(2) has a
Singer cycle 〈s〉 ≤ H which is a Sylow p-group of G. Since p is prime, 〈s〉 will
have only regular nontrivial orbits of length 2n − 1 which is essentially the full
natural module.

The core of this problem however is the large prime factor of |G|. Such large
prime factors in general seem to be an obstacle for matrix group calculations,
for example [BBS09] needs to assume a discrete logarithm oracle.

We now aim to show that large prime factors are indeed the only obstacle.
For this we first consider the case of irreducible abelian groups:

Definition 14. For a finite field K and an integer n, let F be the degree n
extension of K and α a generator of F ∗. A Singer subgroup of G = GLn(K) is
a subgroup that is G-conjugate to the multiplication action of αe on F ∼= Kn,
where K(αe) = F .

Lemma 15. Let K be a finite field with q elements and A ≤ GLn(K) an
irreducible abelian group with natural module V = Kn. Then:
a) [Hup67, Satz II.3.10] A is a Singer subgroup and thus is cyclic.
b) In this situation A has a nontrivial orbit on subspaces (of Ln for an algebraic
extension K ≤ L) of length dividing qn−1

qa−1 for every a | n, a < n.

Proof. Let L be a minimal normal extension of K that contains all eigenvalues of
all elements of A. Over this field we can bring every element of A into upper tri-
angular form. Since commuting elements preserve each others eigenspaces, this
can be done simultaneously for all elements. Thus A preserves a 1-dimensional

14

eigenspace W over L. For σ ∈ Gal(L/K) the Galois conjugate Wσ is a module
for Aσ = A. Now consider U := 〈Wσ | σ ∈ Gal(L/K)〉. Then U is a K-invariant
A-module, and thus a KA-submodule of V . Since V is irreducible we have that
U = V .

By construction, U is generated from 1-dimensional submodules for A, the
action of A on each of these being determined by its action on W . Thus the
action of A on U = V is diagonalizable and is completely determined by the ac-
tion of A on W . Thus A is isomorphic to a subgroup of L∗ and therefore cyclic.
Let α ∈ L∗ be a generator of this cyclic image and g ∈ A the corresponding
group element. The minimality of L implies that L = K(α), thus A is a Singer
subgroup and |L| = qn.

Now suppose that there is a subfield K ≤M ≤ L with |M | = qa with a | n.
Let e be minimal such that αe ∈M , thus e is a divisor of |L|−1

|M |−1 = qn−1
qa−1 . Then

the minimal polynomial of αe and of ge has degree at most [M : K] < [L : K].
This means that the action of 〈ge〉 on V cannot be irreducible, it must preserve
a submodule S ≤ V . Then this subspace S has an orbit of length e under A,
i.e. A has a nontrivial orbit on subspaces of Ln of length e.

If n is even, we can simply chose a = n/2 and obtain orbit length qn−1
qa−1 =

q
n
2 + 1 as desired.

For other cases (indeed this is without conditions on n) we observe that in
general qn−1

qa−1 has large prime divisors that are unlikely to arise in the order of
the groups R that are obtained as radical. Since e must be a divisor of the
group order this will limit its magnitude substantially.

Definition 16. Let q be a prime power, n be an integer and a the largest proper
divisor of n. Let m = qn−1

qa−1 =
∏
i p
ei
i with pi prime. A prime p|m is called q,n-

fat, if
∏
pi≤p

peii > q
n
2 + 1.

As the orbit length of Lemma 15 must also divide the group order, this yields
the trivial consequence:

Corollary 17. Let A ≤ GLn(q) be abelian irreducible. If |A| is not divisible by
any q,n-fat prime, then A has an orbit of length bounded by q

n
2 +1 on subspaces.

Factorizations of qn − 1 indicate that fat primes are usually very large:

Lemma 18. For q,n as given in the following table

q 2 3 4 5 7 8 9 11 13 16 17 19
n ≤ 822 522 226 204 268 226 138 226 192 226 172 162

a q,n-fat prime is larger than n3

24 , with the exception q = 2, n = 21 (for which
the orbit length is bounded by 16513). Furthermore, all fat primes in this range
are primitive prime divisors for qn−1, i.e. groups divisible by fat primes in this
range are large in the sense of [GPPS99].

15

Proof. Explicit calculation in GAP [GAP13], using the “Cunningham” tables [BLS+88].

The limits on n given are purely due to limitations of factorization algo-
rithms. We conjecture that this bound n3

24 for the magnitude of fat primes holds
for arbitrary n.

Now we consider the general case.

Theorem 19. Let R ≤ GLn(q) be a solvable group whose order is not divisible
by any q,m-fat prime for n/2 < m ≤ n. Then R has an orbit on vectors,
subspaces or submodule cosets of Ln (where Fq ≤ L ≤ Fq) of length at most
max(12, n) · (q n2 + 1)

Proof. Assume first that R acts reducibly, i.e. it affords a proper submodule
M ≤ V of dimension d < n. If the action of R on M is nontrivial we recursively
find an orbit on vectors, subspaces or submodule cosets within M of length
bounded by max(12, d) · (q d2 + 1) ≤ max(12, n) · (q n2 + 1).

Similarly, if the action of R on V/M is nontrivial, we recursively consider
this action and find an orbit of the desired bounded length. By replacing vectors
of V/M with M -cosets, subspaces of V/M with their full preimages in V , and
subspace cosets with cosets for the subspace preimage, this also provides an
action for R with the same orbit length.

If the actions both on M (of dimension d) and on V/M (of dimension d̄ =
n−d) are trivial, then the elements of R (in a basis adapted to M) are matrices

of the form
(

1d 0
A 1d̄

)
and multiply by addition of the A-parts. In particular

R is abelian.
Furthermore, in this basis, the subspaces Li, spanned by the first i basis

vectors (1 ≤ i < n) all are submodules. If for some i the action on Li or the
action on V/Li is nontrivial, the above recursive argument again holds.

If the action on all the Li and all the V/Li is trivial, then all elements of R
have 1 on the diagonal and the only other nonzero entry in position n, 1, thus
|R| = q. The result follows trivially. This concludes the case of a reducible
action.

If R acts irreducibly, but preserves a system of imprimitivity V = V1⊕· · ·⊕
Vk, we can act on the subspaces of this system, resulting in an orbit of length
at most k ≤ n.

Otherwise, by [Luk92, Theorem 6.1], R has an abelian subgroup of index
≤ max(12, n). If this subgroup A is reducible, we take the R-orbit of an A-
submodule, which therefore must have length ≤ max(12, n).

If A is irreducible, then Lemma 15, together with the exclusion of fat primes,
shows that A has an orbit on vectors of length at most q

n
2 − 1. Now R will

extend this orbit to length at most max(12, n) · (q n2 − 1) as claimed.

Remark 20. For a unimodular R, the recursion to vectors in submodules and
to cosets of submodules guarantees an orbit of length ≤ q.

16

The proof of Theorem 19 indicates a strategy to find short orbits for a matrix
group R. (In practice these orbits often are much shorter than promised by the
theorem).

After testing a few vectors using the default strategy of [MO95], test whether
R acts reducibly, using the MeatAxe [Par84]. If this is the case, consider the
action on vectors in the submodule or cosets of the submodule and try to find
short orbits there. This forms the first class of candidates for short orbits.

Instead of determining imprimitivity, we observe that an imprimitive R can
be embedded in a wreath product of the form B o C with C solvable. Some
subgroup in the derived series of R will then be contained in the base subgroup
Bm ∩R and thus will act reducibly, exposing submodules. Therefore, if R acts
irreducibly, we look for reducible subgroups in the derived series of R.

To approximate the derived series, we determine iteratively subgroups Ri ≤
R by setting R0 = R and Ri being generated by random commutators of ele-
ments of Ri−1. (In practice, forming 10 random commutators seems to work
well.) We construct these subgroups for increasing i until, for some i, Ri acts
reducibly on the natural module; let M be a minimal proper submodule for
this Ri. As a subspace, M has an orbit under G of length ≤

[
G:Ri

]
. If R

acts imprimitively and Ri ≤ Bm, then M is a candidate for the imprimitivity
decomposition of the regular module. In this case the length of the orbit of M
divides the dimension of the natural module.

If neither of these strategies succeeds, R (and thus G) acts irreducibly and
primitively. Using the classification of [GPPS99], in these cases either G has
only small solvable normal subgroups, in which case orbit length of R is not a
concern; or G is solvable, in which case it is probably most efficient to work in
G using a polycyclic presentation, following [AE05].

5. Representation of Subgroups

We now consider how to represent arbitrary subgroups of G in a way that
provides a constructive element test.

Thanks to the PCGS, the radical R, as well as its subgroups, can be handled
efficiently. We also already assumed that the radical factor G/R is represented
in a suitable way so that we can compute preimages of elements of G/R under
ρ. The process described in Section 3 can be used to determine element images
under ρ, but this calculation is expensive, possibly requiring multiple conjugacy
tests in Aut(T) to determine the image of a single element. It therefore is
desirable to minimize the number of evaluations of ρ. This suggests the following
data structure to represent subgroups:

Definition 21. Let U ≤ G. A generalized PCGS (GPCGS) for U is the fol-
lowing triple of elements:

a) A PCGS {u1, . . . , uk} for U ∩R, induced with respect to the PCGS for R.
b) A set of group elements {g1, . . . , gm}, such that

U = 〈u1, . . . , uk, g1, . . . , gm〉.

17

c) Images ai := gρi of these extra generators under ρ. (This means that Uρ =
〈a1, . . . , am〉.)

Clearly such a data structure is obtained for G. If U ≤ G is given by gener-
ators, it can be obtained by determining Uρ ≤ G/R (by calculating generator
images) and by evaluating relators for a presentation for Uρ to obtain normal
subgroup generators for U ∩ R. We can then form an induced PCGS for the
U -closure of the subgroup generated by these using standard techniques for
solvable groups [LNS84].

We observe that a GPCGS lets us solve the three basic tasks for subgroups:

Subgroup Order |U | = |Uρ| · |U ∩R|. The first of these two factors can be
computed in G/R from the images {ai}, the second is the product of the
relative orders of the PCGS for U ∩R.

Membership test To decide if x ∈ U , first test membership xρ ∈ Uρ =
〈a1, . . .〉. If this test fails, x 6∈ U . Otherwise write xρ =

∏
j a

ej
ij

and

consider y = x/
(∏

j g
ej
ij

)
∈ R. Then x ∈ U if and only if y ∈ U ∩ R,

which can be tested using the PCGS.

Evaluating Homomorphisms The membership test implicitly decomposes
x ∈ U as a product of the elements in the GPCGS. Thus, if a homomor-
phism is given by prescribing images of a GPCGS, we can evaluate the
image.

5.1. Generalized PCGS in the Trivial-Fitting model
To work with such a GPCGS and group elements x, we will in general need to

know the image xρ ∈ G/R. To avoid evaluation of ρ, we will therefore maintain
for every x ∈ G that arises in an algorithm its image xρ as a “shadow”. (These
images are known by definition for all generators in a GPCGS.) When forming
a product x · y, we form the shadow xρ · yρ at the same time.

Doing so might seem complicated, but using the Trivial-Fitting model of
computation, the extra cost is limited.

These algorithms first solve the problem in G/R. This is typically the part
of the calculation that is more complicated, having to deal with the simple
nonabelian composition factors. However all of these calculations will take place
only in G/R.

The second stage of these algorithms then takes preimages under ρ. Suppose
U is the preimage of a subgroup V ≤ G/R. A GPCGS for U then consists of
a PCGS for R, together with preimages of generators for V , as well as these
generators themselves (as images of the preimages).

The algorithms now iteratively lift over the elementary abelian layers of
R. In each lifting step the result is assumed to be known modulo Ri and to be
computed modulo Ri+1. This computation typically involves an orbit/stabilizer
calculation for an action on Ri/Ri+1 (or a derived entity, such as a cohomology
group).

18

For U ≤ G given by a GPCGS, an orbit/stabilizer computation for ω ∈ Ω
now proceeds in two stages: For N = U ∩ R, calculate (using solvable groups
methods [LNS84]) the orbit ωN and stabilizer StabN (ω) = R ∩ StabU (ω). As
N C U , ωN is a block in a system of imprimitivity for U . Now U will act on
such blocks and we can do an orbit/stabilizer calculation under the action of
the extra generators {ui}. (To test whether two set images are the same, it is
sufficient to test containment of a single point. If “minimal” (in any definition)
orbit elements under N ≤ R can be determined efficiently, every image (ωN)u

needs to be represented by its minimal element only.) Whenever a Schreier
generators for the stabilizer arises, form the corresponding product generator
in the generator images {ai} ⊂ G/R; this will be the image of the Schreier
generator under ρ.

As N ≤ StabU (ωN), we can test redundancy of Schreier generators via these
images in G/R.

The elements of U obtained this way will stabilize ωN , they need to be
corrected by an element of N (using the known orbit ωN) such that they will
fix ω.

As we already know a PCGS for StabN (ω) = R∩StabU (ω), we can extend it
with these corrected Schreier generators (and their images) to obtain a GPCGS
for StabU (ω).

6. Element Conjugacy

The earliest practical Trivial-Fitting algorithm is that for conjugacy classes
of elements [CS97]. This section will briefly describe how to adapt this algo-
rithm to the data structures described so far. For this problem, both the lifting
step (essentially duplicating the calculation for solvable groups from [MN89]),
as well as the calculations for the radical factor, exploiting its structure as
a subdirect product of subgroups of wreath products [Hul00, CH06], are well
understood. This section therefore assumes knowledge of the algorithm for per-
mutation groups and will only describe the adaptations that were necessary.
We concentrate on the case of element centralizer whose description is easi-
est; element conjugacy and determination of class representatives can be done
analogously.

Assume that g ∈ G is given and we want to determine a GPCGS for CG(g).
Let x = gρ ∈ G/R. The first part of the calculation is to determine CG/R(x).

If we represent the radical factor G/R as a permutation group, we can use
standard backtrack algorithms for this centralizer computation.

Otherwise we can use the structure of the radical factor to perform such a
calculation.

To centralize x ∈ G/R, let S = S∗/R be the socle of G/R and let C =
CG/R(x). Clearly it is sufficient to determine C ∩ S together with coset repre-
sentatives for (generators of) C/C ∩ S.

To determine C ∩ S consider c ∈ S, formed from n components c1, . . . , cn.
We want to find all such c such that cx = xc. Assume first that component

19

i is left fixed by x. Then ci must centralize the projection of x onto the i-th
component, and the set of all possibilities for ci can be obtained by a centralizer
computation in the i-th component Ti of S.

If x maps the i-th component to the j-th component, then cj = cxi as both
are the j-th projection of c = cx. Furthermore c also must centralize any power
of x, thus ci must centralize xk where k is minimal such that ix

k

= i. (If this
holds for one component in the x-orbit, it automatically holds for all others once
cj = cxi is fulfilled.)

It is easily seen that these conditions on the ci are also sufficient to centralize
x. This completes the description of C ∩ S.

To find representatives of C/C ∩ S, first centralize x modulo S. (This can
be done for example by working in the permutation image G/Pker and then
lifting over the solvable factor Pker/S∗.) Let S ≤ D ≤ G/R such that D/S =
CG/S(Sx). For d ∈ D we can test by iterated conjugacy tests in the components
of S whether there exists s = sd ∈ S such that xd = xs. We now perform a
backtrack search over D/S (which typically is a small group), finding the largest
subgroup such that all its elements d have such an associated sd. The set of
these sd then generates C modulo C ∩ S.

We now form a GPCGS for the full preimage of C in G. This is formed
by taking preimages for generators of C, together with the PCGS for R. The
second part of the calculation now consists of lifting steps over the elementary
abelian layers of R.

In each step of this lifting (as described in [MN89]) we have a subgroup, given
by a GPCGS, that represents the centralizer in a factor group. This group acts
on the next elementary abelian layer and a vector stabilizer is computed in
an orbit/stabilizer algorithm as described in Section 5.1. (When calculating
centralizers, only the stabilizer is of interest; when determining conjugacy or
listing class representatives, orbit membership or representatives are also used.)

6.1. Large Modules
This orbit-stabilizer calculation (a group G acting on the module N) can

become problematic if N is too large to enumerate all elements. This is of par-
ticular concern when determining conjugacy classes for which the representative
h (using the notation of [MN89]) is central, as in this case the commutator [h,N]
is trivial, and no reduction to a space smaller than N is possible.

For matrix groups this situation occurs naturally for reducible groups. If

the elements of G have the form
(
A 0
B C

)
then the A-parts and the C-parts

describe factor groups. The intersection of the kernels for these two factor

groups consists of matrices of the form
(

1 0
B 1

)
but these matrices form an

elementary abelian normal subgroup N in defining characteristic. Often this
yields a minimal normal subgroup of large order.

20

However there is a normal subgroup M CG (e.g. the kernel when projecting
on the A-part or on the C part) that acts reducibly on N . By Clifford theory,
N is the direct sum of conjugate M -modules.

In such a situation, we first enumerate M -orbits on one such M -submodule.
This also determines the orbits of M on the conjugate M -submodules. The M -
orbits on N can then be parameterized as cartesian products of these submodule
orbits without the need to enumerate N . As MCG, these M -orbits form blocks
for the action of G. We can thus fuse the M -orbits to G-orbits, and obtain G-
stabilizers, by considering the action of G on single block representatives, similar
to the process described in Section 5.1.

In the examples below, groups such as 119.(SL3(11) × SL3(11)) are of this
type and special treatment of this case substantially aided performance.

6.2. Implementation
The existing algorithm in GAP [GAP13] for conjugacy classes in permutation

groups has been adapted by the author to use only the interface of the radical
factor homomorphism ρ and GPCGS of subgroups. These data structures are
provided for permutation and for matrix groups. For permutation groups this is
done using existing code (essentially [LS97] for ρ and [Sim90] for the PCGS). For
matrix groups this is done as described in the preceding sections, utilizing the
recog package [NS+] to obtain the composition tree. The resulting algorithm
will apply independent of the representation of the group and will be made
available in a future release of GAP.

The following table gives timings for a pool of examples, many of them
taken from maximal subgroups of sporadic groups as provided by the ATLAS
web pages [WWT+10]. Many of the larger examples do not have faithful orbits
on vectors (or related geometric structures) of reasonable length and thus are
beyond the scope of existing stabilizer-chain based methods. Timings are in
seconds on a 2.66GHz Mac Pro with 12GB of memory.

While the number of direct factors of Soc(G/R) in the examples is typically
small, this is purely to avoid an unfeasibly large number of conjugacy classes;
construction of ρ has been successful in larger cases.

In one case, the same group is given in different representations to indicate
the effect of element size – comparing the timings show they scale essentially as
element arithmetic does.

Each group’s name will either identify it in ATLAS notation as a subgroup
of a simple group, or (in particular if no larger parent group is given) give a
construction from smaller constituents. In this case semidirect products (“:”)
with elementary abelian groups were formed as affine groups. Direct products
are formed by acting on direct sums of submodules. Subdirect products (indi-
cated by the symbol “̂n”, where n is the order of the shared factor group) are
constructed as subgroups of the corresponding direct product. Wreath products
stabilize a decomposition as direct sum of subspaces (Aschbacher class C2).

All of these constructions are easy cases for finding a composition tree. The
runtimes given thus reflect primarily the algorithms described in this paper, not

21

the composition tree construction. A group that is a harder case for matrix
group recognition of course would show a larger absolute runtime for deter-
mination of its conjugacy classes. This in itself however would not make it a
better test example here, as we considered the composition tree as a black-box
structure.

For each group, “Parent” indicates in which group the example was con-
structed. An reverse arrow over this parent group name

←−
G means that the

representation of the subgroup obtained this way was reduced to a smaller de-
gree. If no parent is given, the group is constructed generically from imprimitive
wreath products and reducible direct products.

As all dependency on choice of basis vectors is hidden in the construction of
the composition tree, no attempt to hide the group construction by conjugation
with a random matrix was done.

The group’s order is given by “Order”; “Classes” is the number of conju-
gacy classes determined.

“q” indicates the field over which the matrices are written. If no q is given
the group is a permutation group. “deg” is the degree of the representation.

In the current implementation the factor group F = G/R is always repre-
sented as a permutation group, “degF ” indicates the permutation degree used.

“degR” is the maximal orbit length used in the stabilizer chain for R. The
existing implementation used some heuristic bounds to accept orbit lengths as
“good enough” without attempting further improvements.

“tSetup” is the time for constructing the composition tree and for setting
up the initial data structures (the homomorphism ρ and the PCGS for R =
ker ρ). “tClass” is the (additional) time for determining representatives for
the conjugacy classes of elements of the group as well as GPCGS for their
centralizers.

The implementation in GAP performs better for permutation groups than
the existing library method, as the choice of a GPCGS to represent subgroups
naturally limits the number of subgroup generators.

Acknowledgement

The author would like to thank an unnamed referee for pointing out the
need for generator correction (Section 3.1.1) as well as many other corrections,
James Wilson for helpful comments on a draft version, and Eamonn O’Brien for
suggestions on exposition. Part of the work was done during the author’s visits
to the University of St. Andrews and to the University of Auckland. The author
is grateful for the hospitality experienced during these visits. The author’s
work has been supported in part by NSF Grant DUE-0633333 and by Simons
Foundation Collaboration Grant 244502.

22

G
ro

up
P

ar
en

t
O

rd
er

de
g

q
C

la
ss

es
de

g F
de

g R
t S

et
up

t C
la

ss
22
.U

6
(2

).
2

F
i 2

3
21

8
36

5·
7·

11
25

3
3

14
6

67
2

4
14

8
10

3
21

1
.M

2
4

J4
22

1
33

5·
7·

11
·2

3
11

2
2

72
24

20
48

7
4

3.
Su

z.
2

C
o 1

21
4
38

52
7·

11
·1

3
98

28
0
−

10
6

32
76

0
98

28
0

67
43

6
3.

Su
z.

2
C

o 1
21

4
38

52
7·

11
·1

3
24

2
10

6
17

82
3

12
33

3.
21

5
.M

2
4
×

A
5

22
7
35

52
7·

11
·2

3
14

4
15

20
28

1
4

3
97

G
L

2
(5

)
oS

5
G

L
1
0
(5

)
22

8
36

56
10

5
17

62
56

35
25

6
12

76
5

21
+

2
0

:U
6
(2

)
2
E

6
(2

)
23

6
36

5·
7·

11
78

2
28

6
67

2
20

48
82

54
22

+
1
0
+

2
0
.(

M
2
2

:2
×

S 3
)

←− B
24

1
33

5·
7·

11
81

3
2

12
26

22
16

38
4

65
7

11
70

8
21

+
2
0

:L
6
(2

)
E

6
(2

)
23

6
34

5·
72

31
27

2
34

0
63

20
48

2
38

(4
2

:S
L

4
(2

))
oS

5
23

3
36

56
15

4
37

53
35

16
5

10
5

(G
L

2
(5

)
oS

3
) ̂6(

L
2
(1

1)
oS

3
)

22
2
37

56
11

3
21

5
12

35
20

0
21

6
64

17
22

88
6

(G
L

2
(5

)
oS

3
) ̂2(

L
2
(1

1)
oS

3
)

22
2
38

56
11

3
21

5
50

38
08

21
6

64
22

90
78

29
+

1
6
.S

8
(2

)
←− B

24
1
35

52
7·

17
39

4
2

70
3

25
5

81
92

45
5

99
8

31
+

1
2
.2

Su
z.

2
←− M

21
5
32

0
52

7·
11
·1

3
78

3
25

3
17

82
6

42
7

76
59

:(
G

L
3
(5

)
×

G
L

3
(5

))
21

4
32

51
5
31

2
6

5
18

46
4

62
12

5
3

36
1

(6
.A

5
)
oS

5
G

L
6
(2

5)
oS

5
22

3
31

6
56

30
25

52
64

73
80

77
76

27
28

63
31

5
:(

M
1
1
oS

3
)

A
G

L
1
5
(3

)
21

3
32

2
53

11
3

16
3

32
00

33
65

61
14

12
9

21
+

2
2
.C

o 2
←− B

24
1
36

53
7·

11
·2

3
10

45
2

44
8

23
00

81
92

65
4

47
90

((
22
×

3)
.U

6
(2

))
oS

2
23

5
31

4
52

72
11

2
54

4
77

81
4

13
86

4
41

12
81

11
9
:(

SL
3
(1

1)
×

SL
3
(1

1)
)

29
34

52
4
7·

31
6

11
20

75
9

26
6

13
31

5
28

19
(5

3
·L

3
(5

))
oS

3
←− L

y
oS

3
21

6
34

51
8
31

3
75

5
12

20
0

93
12

5
97

12
70

24
4
:(M

1
1
×
(24

:(
S 3
×

S 3
)
))

26
0
35

5·
7·

11
·2

3
15

2
10

75
9

27
6

16
5

41
67

(31
0
:(

M
1
1
o2

)) ̂2(J
2
o2

)
22

3
32

0
56

72
11

2
83

3
12

77
64

31
0

65
61

44
13

72
9

71
2
:(

SL
3
(7

)
×

SP
4
(7

))
21

4
35

52
71

9
19

7
7

77
01

45
7

24
01

12
26

70

23

References

[AE05] Björn Assmann and Bettina Eick. Computing polycyclic presenta-
tions for polycyclic rational matrix groups. J. Symbolic Comput.,
40(6):1269–1284, 2005.

[AG84] M. Aschbacher and R. Guralnick. Some applications of the first
cohomology group. J. Algebra, 90(2):446–460, 1984.

[Atk84] Michael D. Atkinson, editor. Computational group theory. Aca-
demic press, 1984.

[BB99] László Babai and Robert Beals. A polynomial-time theory of black
box groups. I. In C. M. Campbell, E. F. Robertson, N. Ruskuc,
and G. C. Smith, editors, Groups St Andrews 1997 in Bath, volume
260/261 of London Mathematical Society Lecture Note Series, pages
30–64. Cambridge University Press, 1999.

[BBS09] László Babai, Robert Beals, and Ákos Seress. Polynomial-time
theory of matrix groups. In Proceedings of the 41st Annual ACM
Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, pages 55–64. ACM Press, 2009.

[BCP97] W. Bosma, J. Cannon, and C. Playoust. The MAGMA algebra
system I: The user language. J. Symbolic Comput., 24(3/4):235–
265, 1997.

[Ber76] T. R. Berger. Characters and derived length in groups of odd order.
J. Algebra, 39(1):199–207, 1976.

[BGK+97] László Babai, Albert J. Goodman, William M. Kantor, Eugene M.
Luks, and Péter P. Pálfy. Short presentations for finite groups. J.
Algebra, 194:97–112, 1997.

[BHLGO] Henrik Bäärnhielm, Derek Holt, C.R Leedham-Green, and E.A.
O’Brien. A practical model for computation with matrix groups.
Preprint.

[BLS+88] John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman,
and S. S. Wagstaff, Jr. Factorizations of bn± 1, volume 22 of Con-
temporary Mathematics. American Mathematical Society, Provi-
dence, RI, second edition, 1988. b = 2, 3, 5, 6, 7, 10, 11, 12 up to
high powers.

[CCH01] John Cannon, Bruce Cox, and Derek Holt. Computing the sub-
group lattice of a permutation group. J. Symbolic Comput.,
31(1/2):149–161, 2001.

[CCN+85] J[ohn] H. Conway, R[obert] T. Curtis, S[imon] P. Norton,
R[ichard] A. Parker, and R[obert] A. Wilson. ATLAS of finite
groups. Oxford University Press, 1985.

24

[CH03] John Cannon and Derek Holt. Automorphism group computation
and isomorphism testing in finite groups. J. Symbolic Comput.,
35(3):241–267, 2003.

[CH04] John Cannon and Derek Holt. Computing maximal subgroups of
finite groups. J. Symbolic Comput., 37(5):589–609, 2004.

[CH06] John J. Cannon and Derek F. Holt. Computing conjugacy class
representatives in permutation groups. J. Algebra, 300(1):213–222,
2006.

[CS97] John Cannon and Bernd Souvignier. On the computation of con-
jugacy classes in permutation groups. In Wolfgang Küchlin, editor,
Proceedings of the 1997 International Symposium on Symbolic and
Algebraic Computation, pages 392–399. The Association for Com-
puting Machinery, ACM Press, 1997.

[Dix68] John D. Dixon. The solvable length of a solvable linear group.
Math. Z., 107:151–158, 1968.

[EH01] Bettina Eick and Alexander Hulpke. Computing the maximal sub-
groups of a permutation group I. In William M. Kantor and
Ákos Seress, editors, Proceedings of the International Conference
at The Ohio State University, June 15–19, 1999, volume 8 of
Ohio State University Mathematical Research Institute Publica-
tions, pages 155–168, Berlin, 2001. de Gruyter.

[Fei80] Walter Feit. Some consequences of the classification of finite simple
groups. In The Santa Cruz Conference on Finite Groups (Univ.
California, Santa Cruz, Calif., 1979), volume 37 of Proc. Sympos.
Pure Math., pages 175–181. Amer. Math. Soc., Providence, R.I.,
1980.

[GAP13] The GAP Group, http://www.gap-system.org. GAP – Groups,
Algorithms, and Programming, Version 4.6.3, 2013.

[GPPS99] Robert Guralnick, Tim Penttila, Cheryl E. Praeger, and Jan Saxl.
Linear groups with orders having certain large prime divisors. Proc.
London Math. Soc. (3), 78(1):167–214, 1999.

[HEO05] Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook
of Computational Group Theory. Discrete Mathematics and its
Applications. Chapman & Hall/CRC, Boca Raton, FL, 2005.

[Hol97] Derek F. Holt. Representing quotients of permutation groups.
Quart. J. Math. Oxford Ser. (2), 48(191):347–350, 1997.

[HS08] Derek F. Holt and Mark J. Stather. Computing a chief series and
the soluble radical of a matrix group over a finite field. LMS J.
Comput. Math., 11:223–251, 2008.

25

[Hul98] Alexander Hulpke. Computing normal subgroups. In Oliver Gloor,
editor, Proceedings of the 1998 International Symposium on Sym-
bolic and Algebraic Computation, pages 194–198. The Association
for Computing Machinery, ACM Press, 1998.

[Hul00] Alexander Hulpke. Conjugacy classes in finite permutation groups
via homomorphic images. Math. Comp., 69(232):1633–1651, 2000.

[Hup67] Bertram Huppert. Endliche Gruppen I, volume 134 of Grundlehren
der mathematischen Wissenschaften. Springer, 1967.

[LNS84] Reinhard Laue, Joachim Neubüser, and Ulrich Schoenwaelder. Al-
gorithms for finite soluble groups and the SOGOS system. In Atkin-
son [Atk84], pages 105–135.

[LS97] Eugene M. Luks and Ákos Seress. Computing the fitting subgroup
and solvable radical for small-base permutation groups in nearly
linear time. In Larry Finkelstein and William M. Kantor, editors,
Proceedings of the 2nd DIMACS Workshop held at Rutgers Univer-
sity, New Brunswick, NJ, June 7–10, 1995, volume 28 of DIMACS:
Series in Discrete Mathematics and Theoretical Computer Science,
pages 169–181, Providence, RI, 1997. American Mathematical So-
ciety.

[Luk92] E. M. Luks. Computing in solvable matrix groups. In Proceedings of
the 33rd Annual Symposium on Foundations of Computer Science,
pages 111–120. IEEE Computer Society, 1992.

[MN89] M. Mecky and J. Neubüser. Some remarks on the computation
of conjugacy classes of soluble groups. Bull. Austral. Math. Soc.,
40(2):281–292, 1989.

[MO95] Scott H. Murray and E. A. O’Brien. Selecting base points for the
Schreier-Sims algorithm for matrix groups. J. Symbolic Comput.,
19(6):577–584, 1995.

[NS+] Max Neunhöffer, Ákos Seress, et al. recog. http://www.
gap-system.org/Packages/recog.html. A GAP package.

[NS06] Max Neunhöffer and Ákos Seress. A data structure for a uniform
approach to computations with finite groups. In ISSAC 2006, pages
254–261. ACM, New York, 2006.

[O’B11] E A. O’Brien. Algorithms for matrix groups. In C. M. Campbell,
M. Quick, E. F. Robertson, C. Roney-Dougal, and G. C. Smith,
editors, Groups St Andrews 2009 in Bath, London Mathematical
Society Lecture Note Series, pages 83–90. Cambridge University
Press, 2011.

26

[Par84] Richard Parker. The Computer Calculation of Modular Characters
(the MeatAxe). In Atkinson [Atk84], pages 267–274.

[Ser03] Ákos Seress. Permutation Group Algorithms. Cambridge University
Press, 2003.

[Sim90] Charles C. Sims. Computing the order of a solvable permutation
group. J. Symbolic Comput., 9:699–705, 1990.

[WWT+10] R.A. Wilson, P. Walsh, J. Tripp, I. Suleiman, S. Rogers, R.A.
Parker, S. Norton, S. Nickerson, S. Linton, J. Bray, and R. Ab-
bott. ATLAS of finite group representations. http://brauer.
maths.qmul.ac.uk/Atlas/v3/, 2010.

27

