Computing the maximal subgroups
of a permutation group |
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Abstract. We introduce a new algorithm to compute up to conjugacy the maximal
subgroups of a finite permutation group. Or method uses a “hybrid group” approach;
that is, we first compute a large solvable normal subgroup of the given permutation
group and then use this to split the computation in various parts.
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1. Introduction

Apart from being interesting themselves, the maximal subgroups of a group have
many applications in computational group theory: They provide a set of proper sub-
groups which can be used for inductive calculations; for example, to determine the
character table of a group. Moreover, iterative application can be used to investigate
parts of the subgroups lattice without the excessive resource requirements of com-
puting the full lattice. Furthermore, algorithms to compute the Galois group of a
polynomial proceed by descending from the symmetric group via a chain of iterated
maximal subgroups, s¢8ta73, Hul99b].

In this paper, we present a new approach towards the computation of the conju-
gacy classes of maximal subgroups of a finite permutation group. For this purpose
we use a “hybrid group” method. This type of approach to computations in permu-
tation groups has been used recently for other purposes such as conjugacy classes
[CS97, Hul], normal subgroupBul98, CS] or the automorphism groypiol00].

For finite solvable groups there exists an algorithm to compute the maximal sub-
groups using a special pc presentation,[€465, Eic97, EW]. Our approach incor-
porates a generalization of this method. Vice versa, if the group in question is finite
solvable, then our algorithm reduces to this known method.

For finite groups in general the commonly used approach so far to obtain the maxi-
mal subgroup has been via a computation of the full subgroup latticB\ea&0, Hul99a, CCH]
Our approach in contrast avoids the time and space consuming calculation of all sub-
groups and thus is not only more efficient but also capable of dealing with much larger
groups.
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2. Outline

Let G be a finite group an& its solvable radical that is, its largest solvable normal
subgroup. Then the fact@/S does not contain any solvable normal subgroups; i.e.
itis fitting freg and thus the socle S@8/S) is the direct product of nonabelian simple
groups.

If G is a permutation group od points, then we can compufand a faithful
permutation representation &/S on at mostd points [LS97, Hol97]. Similarly,
given G/S as a permutation group we can compls = SodG/S) and a faithful
permutation representation Gf/L [CS, Corollary 2.3].

We use these algorithms to determine separately the maximal subgroGga of
the following three families:

I) Maximal subgroups that do not contds This is done using a generalization
of the solvable group method, see Section 3.

II) Maximal subgroups that do contafbut do not contair.. These groups are
preimages of the maximal subgroups3fSthat do not contain S¢6/S), see
Section 4.

III) Maximal subgroups that do not contaln i.e. preimages of the maximal sub-
groups ofG/L. SinceL is a non-trivial subgroup o and we have a permu-
tation representation fag/L we obtain these subgroups by a recursive call of
the algorithm.

Our algorithm for the first step is very efficient in general. Moreover, the groups
G/L as considered in step Ill) are often solvable and very small. Hence the last step
is usually easy for our methods. Therefore, we are left with step Il) as the main
time-consuming part of the algorithm.

3. The Solvable Radical

We first consider case 1) of Section 2 and thus we want to compute the maximal
subgroupsv of G which do not contain the solvable radicof G.

LetS=S > S>...> S > S41 = {1} the lower nilpotent series @, that is,
S.1 is defined as the minimal normal subgroupSfwith nilpotent factor group.
Furthermore le§/Sy1 = ®(S/S+1) the Frattini subgroup of the nilpotent factor
S/S+1. Then the refined lower nilpotent series

S=S5>5>%>...>5>5>S5.1={1}

is a characteristic series of S and hence a normal seri€s d®fote that this series
can be computed effectively by the methods describd@irG] . The factorsS /S
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are calledheadsof Sand they are non-trivial direct products of elementary abelian
groups.

In the following lemma we relate maximal subgroups=ofvith the refined lower
nilpotent series and the headg®afThe proof of it for solvable groups {iEic97] will
carry over directly also to nonsolvable groups.

Lemma 3.1. Let M be a maximal subgroup of G with MSG.

a) M covers all but one of the factors of the refined lower nilpotent series of S.
This non-covered factor is a head of S.

b) Suppose that M does not cover the hegBSfor some i. Define N= SN M.
Then N'S' is a maximal G-normal subgroup of /S

¢) M/N is a complement to 8\ in G/N.

Thus for each maximal subgroiy of G with MS= G there exists a unique head
S /S which is not covered bil. For each € {1,...,1} we will separately compute
the maximal subgroups which do not co&(rS'.

For this purpose we proceed in two steps: First we compute all magdmakrmal
subgroupN/S' of §/S. SinceS /S is a direct product of elementary abelipn
groups, we may consider each Sylpvgubgroup of5 /S separately and compute its
maximal G-normal subgroups. This, in turn, can be translated into a calculation of
the maximal submodules of a finite dimensiongl@module which can be obtained
efficiently using the MeatAxe, sdelLOR95].

Then in the second step we consider each of the computed subdfaapsirn
and compute the conjugacy classes of complemergs/tddin G/N. By Lemma 3.1
these are the conjugacy classes of maximal subgroups as desired. To compute the
complements we distinguish again two cases.>f1 and henc& < S we can use
a very efficient method described in Section 3.2. However=fl, this algorithm
cannot be applied and we have to determine the complements by a more general and
less efficient approach, see Section 3.1.

To simplify notation, we assume from now on tl&it= 1 and thatS is an ele-
mentary abeliamp-group.

3.1. The top headS;/S;. Recall thatS; = Sand letN be a maximalG-normal
subgroup ofSas considered in Lemma 3.1.

We wish to compute the conjugacy classes of complemergNan G/N. For
this purpose we need a finite presentationGg6. A polynomial length presentation
can be obtained efficiently by the methods describgd@®BK ~97, KS99] since we
have a permutation representatiorGfS.

If the finite presentation is given, then the calculation can be performed as de-
scribed iIN[CNW90]. SinceS/N is an elementary abeliap-group, this can be re-
duced to solving linear equations over the finite field witblements.
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Still, the calculation of a presentation and subsequential complement calculation
may be time-consuming. In general, there seems to be no better method available,
but in the special case whehis central under the action & we can avoid the
computation of a presentation with the following method.

Lemma 3.2. Let S be a central normal p-subgroup of the finite group G. Further-
more let R= G'GP. Then the maximal subgroups of G which do not contain S are
preimages of those maximal subgroups of the elementary abelian p-grtRipvi@ich

do not contain SFR.

Proof. Any maximal subgroupM of G which does not contai must be normal of
indexpin G, sinceSis central, and therefore we obtd®< M. Thus we can translate
the problem td5/R which completes the proof. O

To check the condition of Lemma 3.2, we consider the elementary alpetaoup
G/Ras a vector spacé over the field withp-elements. TheSR/R corresponds to a
subspac#V of V and we need to find all those maximal subspacaswhich do not
containw.

3.2. The lower heads5 /S with i > 1. In this case we can determine complements
more efficiently than in the case of Section 3.1. In particular, we can always avoid the
computation of a presentation &f/S'. We use the following theorem on the head
S/S and again we assume thgt= 1 andS is an elementary abeligngroup. We

use the following well-known lemma to prove the main theorem of this section.

Lemma 3.3. Let G be finite group with normal elementary abelian p-subgroup A
and nilpotent frsubgroup T such that TA G and [A, T] = A. Then N(T) is a
complement to A in G and all complements to A in G are conjugate.

Proof. First we show thalNg(T) is a complementtdin G. Letge ANNg(T). Then
for eacht € T we obtain[g,t] =g~*-¢' € Aand[g,t] =t~9-t € T. Hencelg,t] = 1 for
allt € T and thugg € Ca(T). However, sincgA, T| = AandA andT are of coprime
order, this yieldg = 1. ThereforeANNg(T) = 1.

Now letg € G. Note thatT Ais a solvable normal subgroup &fwith p-comple-
mentT. ThusT9 < TAandT9 is anothemp-complement off A HenceT9 = T2 for
somea € A. Thereforega! € Ng(T) and we obtain thaANg(T) = G. HenceNg(T)
is a complement té in G.

Finally letK be an arbitrary complement #oin G. SinceTA < G, we have that
ITANK| = |TA/A] and henc&d ANK is anothem-complement of A ThusTANK
is conjugate td. ThereforeK = Ng(TANK) is conjugate tdNg(T). O

Now we can apply the above lemma to show the following theorem.



Computing maximal subgroups of permutation groupshl

Theorem 3.4. Letie {2,...,1} and suppose that N is a maximal G-normal subgroup
of the elementary abelian p-group. Ihen there exists exactly one conjugacy class
of maximal subgroups M of G with SM = N. A representative of this class can be
computed as NNg(T; p) where T is a p-complement of S;.

Proof. Note that inff[EW] a proof is given for the case th&tis solvable. We give an
alternative proof which shows the theorem in its more general version.

Let L be an arbitaryG-normal subgroup of and consideA = S/L andT =
TipL/L. SinceA s the last term of the lower nilpotent series®fL, we obtain that
[A,T] = A and hence we can apply Lemma 3.3. This yields that there exists exactly
one conjugacy class of complements§glL in G/L.

Thus, forL = 1 we obtain thaNg(Tj p) is a complement t& in G.

Moreover, forL = N a maximalG-normal subgroup of the above argument
shows that there is exactly one maximal subgrbupf G with § "M = N. However,
N-Ng(Ti,p) is a complement t& /N and thus it is a maximal subgroup of this type.

]

Thus instead of computing complements by the standard approach we determine
the normalizeMNg(Ti p). Again, we do not use the a general method for this pur-
pose, but we introduce a special approach. Note that the existence of a nilpotent
complement; j, is crucial for our special method. As there is no spetomplement
in G/S;, we cannot apply this method to the top h&i&;, but only to all the lower
heads.

3.3. Computing a normalizer of Ty ,.  To simplify notation letA = § andT = T p.

SinceNg(T) is a complement té in G, for everyg € G there exists an elemeat A

with ga€ Ng(T). We introduce a method to compute such an eleraext solution
of a linear equation over | This enables us to compute a generating sé&JiiT)

from a generating set @.

Remark 3.5. The factorT A/A is the p-complement of the nilpotent grouf_,/A.
SinceS_1/Ais normal inG/A, we obtain thafl A/A is normal inG/A, and hence
TAis normal inG.

Lett e T <TAandge G. Then[t,g] € TAand thuslt,g] = sbfor somese T
andb € A. Note thats andb are unique, sincé& A is the semi-direct product of the
p-groupA and thep'-groupT.

If gae Ng(T), then[t,ga € T. Sincelt,ga = [t,g] mod A, we obtain thajt, ga =
sin this case. On the other hand we have
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tgd = ttatgttga
= @h'tg-a
= (aﬁl)t .s-b-a
- s (a’l)ts. b-a
Combining the above formulas we obtain
t,ga =s ifandonlyif aa!=h.

Note thatts acts onA ast|t,g] = tY and hence the action o$ can be computed
easily fromt andg. Moreover, the factorisatioft, g] = sbis easy to compute, sinde
is just thep-part of the commutatdt, g].

Altogether we can compute the elemargts solution of the equatior&’at =b
wheret runs over a generating set’df SinceA is an elementary abeligmgroup, we
can translate this set of equations into a system of inhomogeneous linear equations
over IFp.

4. Fitting-free groups

Now we turn our attention to the maximal subgroups in case Il) of Section 2. Thus
we want to determine the maximal subgroup§afhich contain the solvable radical
S, but do not contaiih, whereL /Sis the socle of5/S. Recall that we may determine
a permutation represenation @f S efficiently and hence, without loss of generality,
we assume th&@= 1 andG is a fitting free group with soclke.

We first compute &-chief seried. =Np > --- > (1) of L, sedKL90, CH97, Hul] .
We will parametrize the maximal subgroups according to the largest dfitkeey
contain. We shall describe this process only for one index, to obtain all maximal
subgroups one has to run in a loop overNll

Let M be a maximal subgroup @ with L £ M and letj the smallest index such
thatN; < M. To simplify the notation we assume now tigt= (1) by translation to
the factorG/N; and we denotéN;_; by N. Note that we do not need to construct a
faithful representation for this factor group in our algorithm, since all necessary cal-
culations can be performed with representatives for the elements and full preimages
of subgroups.

Thus we have reduced to the case tii& a minimal nonabelian normal subgroup
of G and we want to determine the maximal subgrolMpsf G with N £ M.

LetC =Cg(N) andK = Corez(M) = NgegM9 <t G. ThenK < M and therefore
N £ K. MoreoverNNK = (1), sinceN is a minimal normal subgroup, and thus the
normal subgrouf centralizesN. Hence we obtaiiX <C and we can summarize the
situation as in the following picture.
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Remark 4.1. In this notation we obtain
thatG/K has a faithful primitive permuta-
tion representation on the cosets M{K
and M/K can be described as the point
stabilizer of this permutation representa-
tion. Thus to determine all maximal sub-
groups ofG not containingN we first com-
pute all possible candidates for the normal
subgroupK, then we calculate all faith-
ful primitive permutation representation
of G/K and finally we obtain the maximal
subgroupM as point stabilizer of the per-
mutation representation.

The structure of the socle of a primitive permutation group can be described in
detail. We will use this to determine the structure€3®fK more precisely.

Theorem 4.2. Consider the notation as in the above picture. Ti8oTG/K) =
NC/K. Moreover, one of the following two cases holds for G.

A) K=C andSodqG/K) = NK/K = N is a minimal subgroup of &X.
(We say GK is primitive of type A.)

B) K < C andSodG/K) = NK/K xC/K =2 N x N is a direct product of two
permutation isomorphic subgroups of k.
(We say GK is primitive of type B.)

Proof. First we observe that SG&/K) =NC/K. Clearly,NK/K is a minimal normal
subgroup ofG/K and henc&NK/K < SodG/K).

Next we observe thal/K < SoqG/K). This holds trivially ifC = K. Thus we
assume thaK < C. By definition ofK the factorG/K has a faithful primitive per-
mutation representation. Its nontrivial normal subgroNips/K andC/K centralize
each other and both act regularly [®M96, Theorem 4.2A]. ThusC/K is a minimal
normal subgroup o&/K and the claim follows.

Now we show that Sd6&/K) < NC/K. Let A < G such thatA/K is a minimal
normal subgroup of5/K. If N < A, then we obtairA < NK < NC. Otherwise
NNA= (1) and thusA < C < NC. Thus we proved that S6&/K) = NC/K.

By Theorem 4.3B ofDM96] the socle of a primitive permutation group is either a
minimal normal subgroup or a direct product of two permutation isomorphic minimal
normal subgroups. Applying this to our sitation, we obtain directly @é{ must be
of type A or B, proving the theorem. O

Applying Theorem 4.2 we now distinguish the two cases A) and B) on the cen-
tralizerC of N in G and its relationship to the cokeof the desired maximal subgroup
M of G.
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To compute all maximal subgroups in type A which do not conthime compute
the action ofG on N. The kernel of this action i€ and in type A we hav€ = K.
Following [Hul, section 3] the imageQ of this action can be represented as a per-
mutation group of small degree. We then must test whegheas faithful primitive
permutation representations of type A and compute point stabilizers of these repre-
sentations to determine the desired maximal subgroups. See Section 5 for further
details.

To determine the maximal subgroups in typeve first must obtain all all possible
kernelsK < C. Again, we obtairC as the kernel of the action @ on N. Then we
intersect the subgroupy; of the chief series witlC and remove duplicates. This
yields a serie€ = Cp > C; > --- > (1) of normal subgroups i€ whose factors are
G-chief factors.

For every possibl& there is a minimal indek with C, < K. In this caseCy_; /Cy
is isomorphic taC/K = N and henc&€y_1/Cx is nonabelian simple. Thus we obtain
K =Cc¢/c (Ck-1/Ck). In particular, each chief factor & isomorphic toN can give
rise only to at most one possible subgrdUp

To obtain all potential kernel& we loop over the factor€_1/Cy for all k. If
C«-1/Ck = N, we compute the simultaneous actipof G onN and onCy_1/Cy. Let
Q be the image of this action. If the index of ke Cc c, (Ck-1/Ck) in Cis|NJ, then
the socle ofQ is a direct product of two normal subgroups isomorphibltand only
in this casad might give a primitive factor of type B.

If this is the case, we have to test whetl@@has faithful primitive permutation
representations of type B and to compute the maximal subgroups afforded by these
representations. Again, see Section 5.

By the Jordan-KIder Theorem primitive actions of type B can only arise if there
is anotherchief factorN;_; /N; of G with i < j which is isomorphic tdN. This can be
used as a quick initial test.

Note, that we do not need to get explicit isomorphisms of the chief factors, but
only isomorphism types. However, the isomorphism type of a finite simple group
is determined already by the size of the simple group excepiPBts(4)| = |Ag|
and|PSpn(g)| = |PQ2n+1(9)|, see[Cam81]; to distinguish between groups of same
size one can either consider the sizepeflement centralizers or use the approach of
[ABOO].

5. Primitive Permutation Representations

By the reduction in the previous section we can assume that we have given a permu-
tation groupG and we need to determine the faithful primitive permutation represen-
tations ofG. We know that the soclel = SodG) is the direct product of isomorphic
simple groups; thatid] =Ty x ... x Ty with T; 2 T nonabelian simple. We say that

H is homogeneouand the simple group is called thetypeof H.
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The O’Nan-Scott TheorerfSco80] gives a structural description of primitive
groups. We recall a version of it below in Theorem 5.1. A proof of the Theorem
can be found for example [LPS88] or [DM96, chapter 4].

Our version of this theorem splits the primitive permutation groups in five types.
In the first type the socle of the primitive group is abelian and hence we do not need
to consider this type for the purpose of the computation of maximal subgroups. How-
ever, we include this type in the list for completeness. The types 2 - 5 on the other
hand have non-abelian socles and we will have to consider these types.

Theorem 5.1 (O’Nan-Scott). Let G be a group which acts primitively and faithfully
on Q with |Q| =n. Let H= SodG) andw € Q. Then H is homogeneous of type T
and exactly one of the following cases holds.

1. “Affine”. T is abelian of order p, n= p™ and Stali(w) is a complement to H
which acts irreducibly on H.

2. “Almost simple”. m=1and H< G < Aut(H).

3. “Diagonal type”. m> 2 and n= |T|™ . Further, G is a subgroup of \&
(T1Sm).Out(T) < Aut(T) Sy, in diagonal action and either

a) m=2and G acts intransitively ofiT, To} or
b) m> 2 and G acts primitively o4 Ty,..., Tm}.

In case a) T and T both act regularly. Moreover, the point stabilizeg, \éf V
is of the formdiag(Aut(T)*™).Sy = Aut(T) x Sy and thus K, = diag T*™).

4. “Product type”. m=rs with s> 1. We have that & W = A;B and the wreath
product acts in product action with A acting primitively, but not regularly, on
d points and B acting transitively on s points. Thus-@®. The group A is
primitive of either

a) type 3a with socle (i.e. r=2, s<m),
b) type 3b with socle T(i.e. r> 1, s<m) or
c) type2(i.e. =1, s=m).

We have that WN AS = A;® and Soq G) = SoqW). Furthermore W= A*SG.

5. “Twisted wreath type”. H acts regularly and-a |T|™. G, is isomorphic to a
transitive subgroup of &5 The normalizer i,(T1) has a composition factor
isomorphic to T. Thus, in particular, m k+ 1 where k is the smallest degree
of a permutation group which has T as a composition factor.

Proof. The case distinction and closer description of the different cases is proved in
[DM96, chapter 4]. It remains to show thas is of exactly one of the types listed and
cannot be listed under two different categories. In type 1 the socle is abelian, in type
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5 the socle is nonabelian but regular; type 2 is the only type with a simple nonabelian
socle. To distinguish type 3 from type 4, we observe that in type 3 the point stabilizer
in H is a diagonal and thus simple, while in type 4 this point stabilizer is a direct
product of point stabilizers of constituent groups and thus is not simple. Cases 3a and
3b are distinguished on whether the socle is a minimal normal subgroup. The three
subcases of type 4 are distinguished by the action of the point stabilizer in the socle
on its orbits. O

Remark 5.2. The labelling of types in the literature is inconsistent. The following
table gives translations of the labellings used.

[DM96, Section 4.8] iii iv iv % % % ii
[LPS88] I Ia Ia Hb b b lic

Type 1 2 3a 3b 4a 4b 4c 5
i
I
[Neu86] IV Tl i m v v

Note that for case 3a/b) we change the case distinctigb®96, Theorem 4.5A]
from degree 2¢ 2 to intransitive/primitive.

Remark 5.3. Type A in Theorem 4.2 corresponds to primitivity of type 2, 3b, 4b, 4c
or 5. Type B corresponds to type 3a or 4a.

We now use Theorem 5.1 to determine primitive permutation representations of
our given groupG. We will need to answer the following questions for each of the
types 2 - 5 of Theorem 5.1:

i) What extra conditions o are necessary and sufficient fdto have a faithful
primitive action of a certain type.

i) If Ghas such an primitive action, then classify all these actions up to conjugacy
of the point stabilizers i and determine their point stabilizers.

For type 2 these questions are answered easily: A g®hbas faithful primitive
representations of type 2 if and only if its socle is nonabelian simple. The classifi-
cation of finite simple groupg0r82] can be used to identify the socleof G and
then we can employ pre-tabulated results as well as parametrizations for some of the
series to obtain the maximal subgroupszfSee[Sax95]for a recent survey.

Another approach to obtain the primitive permutation representations of an almost
simple group is by using the data base of table of marks together with generator words
for subgroup representatives, $kter98]. Such a data base is availableGAP, see
[GAPOO]. (In particular, such a data base can comprise all almost simple groups,
for which computation of the full lattice would be still feasible.) However, to use
this precomputed data, algorithms for the constructive recognition of almost simple
groups are required. Much work has been done in this area recently, see for example
[BPOO, CFL97, KS].



Computing maximal subgroups of permutation groupslil

For types 3-5 the situation is more complex. Theof&wv86, 4.3] can give a
parametrization of maximal subgroups of type 3 and 4 though we have not studied
the feasibility of this approach. SimilarljBad93] describes groups of type 5 in more
detail. However, the computation of complements to a nonsolvable normal subgroup
might become a problematic subtask in this case.

A more detailed examination of whether a group can be primitive in one of these
cases will be the subject of a subsequent study.

6. Runtime requirements

The solvable part of the algorithm requires the solvable radical. This can be obtained
efficiently using the methods {iLS97, Hol97]. Then we need to construct the lower
nilpotent series and Frattini subgroups for the nilpotent factors involved. A practical
algorithm for this purpose is outlined [€LG]. Furthermore, as one can consider
these subgroups &%, for = the class of cycligp-groups,[KL90] asserts that the
calculation is possible in polynomial time.

For the computation of maximal subgroups we use the algorithnfishdiR94]
and[HLOR95]. [R6n90] proves (for equivalent algorithms) that these calculations
can be done in polynomial time.

The remaining steps for the computation of complements are linear algebra which
is of polynomial time, provided the factor presentation is of polynomial length, which
[KS99] assures.

An implementation of the solvable part of the algorithm shows that this method is
highly efficient.

For the Fitting-free case we need to compute the action on chief factors. The
required chief series, kernel, and intersections with normal subgroups again are in
the polynomial time toolkit. Constructive recognition of the factor constitup<®
then permits to write down a representation for the action of the chief factor(s).

We have not yet examined the determination of possible faithful primitive actions.
However even for the almost simple case it seems impossible to give a general com-
plexity, as we have to rely on pretabulated data (to get the maximal subgroups of
almost simple groups) and we might only be able to bound the runtime by a function
of the size of the involved simple groups and the width of the nonabelian composition
factors.

7. Final comments

We have presented the algorithm for permutation groups. However — as with many
other “hybrid” algorithms — the permutational group structure is only needed within



12 Bettina Eick, Alexander Hulpke

subtasks such as the computation of the solvable radical or a chief series. Once all
these subproblems are solvable for a group in another representation, our algorithm
becomes available immediately.

The authors would like to thank the referee for helpful comments.

Part of the work was undertaken while the second author was at the University of
St Andrews, supported by EPSRC Grant GL/L21013.
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