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Abstract. We introduce a new algorithm to compute up to conjugacy the maximal
subgroups of a finite permutation group. Or method uses a “hybrid group” approach;
that is, we first compute a large solvable normal subgroup of the given permutation
group and then use this to split the computation in various parts.
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1. Introduction

Apart from being interesting themselves, the maximal subgroups of a group have
many applications in computational group theory: They provide a set of proper sub-
groups which can be used for inductive calculations; for example, to determine the
character table of a group. Moreover, iterative application can be used to investigate
parts of the subgroups lattice without the excessive resource requirements of com-
puting the full lattice. Furthermore, algorithms to compute the Galois group of a
polynomial proceed by descending from the symmetric group via a chain of iterated
maximal subgroups, see[Sta73, Hul99b].

In this paper, we present a new approach towards the computation of the conju-
gacy classes of maximal subgroups of a finite permutation group. For this purpose
we use a “hybrid group” method. This type of approach to computations in permu-
tation groups has been used recently for other purposes such as conjugacy classes
[CS97, Hul], normal subgroups[Hul98, CS] or the automorphism group[Hol00].

For finite solvable groups there exists an algorithm to compute the maximal sub-
groups using a special pc presentation, see[CLG, Eic97, EW] . Our approach incor-
porates a generalization of this method. Vice versa, if the group in question is finite
solvable, then our algorithm reduces to this known method.

For finite groups in general the commonly used approach so far to obtain the maxi-
mal subgroup has been via a computation of the full subgroup lattice, see[Neu60, Hul99a, CCH].
Our approach in contrast avoids the time and space consuming calculation of all sub-
groups and thus is not only more efficient but also capable of dealing with much larger
groups.
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2. Outline

Let G be a finite group andS its solvable radical; that is, its largest solvable normal
subgroup. Then the factorG/Sdoes not contain any solvable normal subgroups; i.e.
it is fitting free, and thus the socle Soc(G/S) is the direct product of nonabelian simple
groups.

If G is a permutation group ond points, then we can computeS and a faithful
permutation representation ofG/S on at mostd points [LS97, Hol97]. Similarly,
given G/S as a permutation group we can computeL/S= Soc(G/S) and a faithful
permutation representation ofG/L [CS, Corollary 2.3].

We use these algorithms to determine separately the maximal subgroups ofG in
the following three families:

I) Maximal subgroups that do not containS. This is done using a generalization
of the solvable group method, see Section 3.

II) Maximal subgroups that do containS but do not containL. These groups are
preimages of the maximal subgroups ofG/Sthat do not contain Soc(G/S), see
Section 4.

III) Maximal subgroups that do not containL; i.e. preimages of the maximal sub-
groups ofG/L. SinceL is a non-trivial subgroup ofG and we have a permu-
tation representation forG/L we obtain these subgroups by a recursive call of
the algorithm.

Our algorithm for the first step is very efficient in general. Moreover, the groups
G/L as considered in step III) are often solvable and very small. Hence the last step
is usually easy for our methods. Therefore, we are left with step II) as the main
time-consuming part of the algorithm.

3. The Solvable Radical

We first consider case I) of Section 2 and thus we want to compute the maximal
subgroupsM of G which do not contain the solvable radicalSof G.

Let S= S1 B S2 B . . . B Sl B Sl+1 = {1} the lower nilpotent series ofS; that is,
Si+1 is defined as the minimal normal subgroup ofSi with nilpotent factor group.
Furthermore letS∗i /Si+1 = Φ(Si/Si+1) the Frattini subgroup of the nilpotent factor
Si/Si+1. Then the refined lower nilpotent series

S= S1 > S∗1 ≥ S2 > .. . > Sl > S∗l ≥ Sl+1 = {1}

is a characteristic series of S and hence a normal series ofG. Note that this series
can be computed effectively by the methods described in[CLG] . The factorsSi/S∗i
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are calledheadsof S and they are non-trivial direct products of elementary abelian
groups.

In the following lemma we relate maximal subgroups ofG with the refined lower
nilpotent series and the heads ofG. The proof of it for solvable groups in[Eic97] will
carry over directly also to nonsolvable groups.

Lemma 3.1. Let M be a maximal subgroup of G with MS= G.

a) M covers all but one of the factors of the refined lower nilpotent series of S.
This non-covered factor is a head of S.

b) Suppose that M does not cover the head Si/S∗i for some i. Define N= Si ∩M.
Then N/S∗i is a maximal G-normal subgroup of Si/S∗i .

c) M/N is a complement to Si/N in G/N.

Thus for each maximal subgroupM of G with MS= G there exists a unique head
Si/S∗i which is not covered byM. For eachi ∈ {1, . . . , l} we will separately compute
the maximal subgroups which do not coverSi/S∗i .

For this purpose we proceed in two steps: First we compute all maximalG-normal
subgroupsN/S∗i of Si/S∗i . SinceSi/S∗i is a direct product of elementary abelianp-
groups, we may consider each Sylowp-subgroup ofSi/S∗i separately and compute its
maximalG-normal subgroups. This, in turn, can be translated into a calculation of
the maximal submodules of a finite dimensional IFpG-module which can be obtained
efficiently using the MeatAxe, see[HLOR95] .

Then in the second step we consider each of the computed subgroupsN in turn
and compute the conjugacy classes of complements toSi/N in G/N. By Lemma 3.1
these are the conjugacy classes of maximal subgroups as desired. To compute the
complements we distinguish again two cases. Ifi > 1 and henceSi < S, we can use
a very efficient method described in Section 3.2. However, ifi = 1, this algorithm
cannot be applied and we have to determine the complements by a more general and
less efficient approach, see Section 3.1.

To simplify notation, we assume from now on thatS∗i = 1 and thatSi is an ele-
mentary abelianp-group.

3.1. The top headS1/S∗1. Recall thatS1 = S and letN be a maximalG-normal
subgroup ofSas considered in Lemma 3.1.

We wish to compute the conjugacy classes of complements toS/N in G/N. For
this purpose we need a finite presentation forG/S. A polynomial length presentation
can be obtained efficiently by the methods described in[BGK +97, KS99], since we
have a permutation representation ofG/S.

If the finite presentation is given, then the calculation can be performed as de-
scribed in[CNW90]. SinceS/N is an elementary abelianp-group, this can be re-
duced to solving linear equations over the finite field withp elements.
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Still, the calculation of a presentation and subsequential complement calculation
may be time-consuming. In general, there seems to be no better method available,
but in the special case whenS is central under the action ofG we can avoid the
computation of a presentation with the following method.

Lemma 3.2. Let S be a central normal p-subgroup of the finite group G. Further-
more let R= G′Gp. Then the maximal subgroups of G which do not contain S are
preimages of those maximal subgroups of the elementary abelian p-group G/R which
do not contain SR/R.

Proof. Any maximal subgroupM of G which does not containSmust be normal of
indexp in G, sinceSis central, and therefore we obtainR≤M. Thus we can translate
the problem toG/Rwhich completes the proof.

To check the condition of Lemma 3.2, we consider the elementary abelianp-group
G/Ras a vector spaceV over the field withp-elements. ThenSR/Rcorresponds to a
subspaceW of V and we need to find all those maximal subspaces ofV which do not
containW.

3.2. The lower headsSi/S∗i with i > 1. In this case we can determine complements
more efficiently than in the case of Section 3.1. In particular, we can always avoid the
computation of a presentation ofG/S∗i . We use the following theorem on the head
Si/S∗i and again we assume thatS∗i = 1 andSi is an elementary abelianp-group. We
use the following well-known lemma to prove the main theorem of this section.

Lemma 3.3. Let G be finite group with normal elementary abelian p-subgroup A
and nilpotent p′-subgroup T such that TAC G and [A,T] = A. Then NG(T) is a
complement to A in G and all complements to A in G are conjugate.

Proof. First we show thatNG(T) is a complement toA in G. Letg∈A∩NG(T). Then
for eacht ∈ T we obtain[g, t] = g−1 ·gt ∈A and[g, t] = t−g ·t ∈ T. Hence[g, t] = 1 for
all t ∈ T and thusg∈CA(T). However, since[A,T] = A andA andT are of coprime
order, this yieldsg = 1. ThereforeA∩NG(T) = 1.

Now let g∈G. Note thatTA is a solvable normal subgroup ofG with p-comple-
mentT. ThusTg ≤ TA andTg is anotherp-complement ofTA. HenceTg = Ta for
somea∈A. Thereforega−1 ∈NG(T) and we obtain thatANG(T) = G. HenceNG(T)
is a complement toA in G.

Finally let K be an arbitrary complement toA in G. SinceTAC G, we have that
|TA∩K|= |TA/A| and henceTA∩K is anotherp-complement ofTA. ThusTA∩K
is conjugate toT. ThereforeK = NG(TA∩K) is conjugate toNG(T).

Now we can apply the above lemma to show the following theorem.
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Theorem 3.4. Let i∈{2, . . . , l} and suppose that N is a maximal G-normal subgroup
of the elementary abelian p-group Si . Then there exists exactly one conjugacy class
of maximal subgroups M of G with Si ∩M = N. A representative of this class can be
computed as N·NG(Ti,p) where Ti,p is a p-complement of Si−1.

Proof. Note that in[EW] a proof is given for the case thatG is solvable. We give an
alternative proof which shows the theorem in its more general version.

Let L be an arbitaryG-normal subgroup ofSi and considerA = Si/L andT =
Ti,pL/L. SinceA is the last term of the lower nilpotent series ofG/L, we obtain that
[A,T] = A and hence we can apply Lemma 3.3. This yields that there exists exactly
one conjugacy class of complements toSi/L in G/L.

Thus, forL = 1 we obtain thatNG(Ti,p) is a complement toSi in G.
Moreover, forL = N a maximalG-normal subgroup ofSi the above argument

shows that there is exactly one maximal subgroupM of G with Si ∩M = N. However,
N ·NG(Ti,p) is a complement toSi/N and thus it is a maximal subgroup of this type.

Thus instead of computing complements by the standard approach we determine
the normalizerNG(Ti,p). Again, we do not use the a general method for this pur-
pose, but we introduce a special approach. Note that the existence of a nilpotentp-
complementTi,p is crucial for our special method. As there is no suchp-complement
in G/S∗1, we cannot apply this method to the top headS/S∗1, but only to all the lower
heads.

3.3. Computing a normalizer ofTi,p. To simplify notation letA = Si andT = Ti,p.
SinceNG(T) is a complement toA in G, for everyg∈G there exists an elementa∈A
with ga∈ NG(T). We introduce a method to compute such an elementa as solution
of a linear equation over IFp. This enables us to compute a generating set ofNG(T)
from a generating set ofG.

Remark 3.5. The factorTA/A is the p-complement of the nilpotent groupSi−1/A.
SinceSi−1/A is normal inG/A, we obtain thatTA/A is normal inG/A, and hence
TA is normal inG.

Let t ∈ T ≤ TA andg∈ G. Then[t,g] ∈ TA and thus[t,g] = sb for somes∈ T
andb∈ A. Note thats andb are unique, sinceTA is the semi-direct product of the
p-groupA and thep′-groupT.

If ga∈NG(T), then[t,ga]∈T. Since[t,ga]≡ [t,g] modA, we obtain that[t,ga] =
s in this case. On the other hand we have
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[t,ga] = t−1 ·a−1 ·g−1 · t ·g·a
= (a−1)t · [t,g] ·a
= (a−1)t ·s·b·a
= s· (a−1)ts ·b·a

Combining the above formulas we obtain

[t,ga] = s if and only if atsa−1 = b.

Note thatts acts onA ast[t,g] = tg and hence the action ofts can be computed
easily fromt andg. Moreover, the factorisation[t,g] = sb is easy to compute, sinceb
is just thep-part of the commutator[t,g].

Altogether we can compute the elementa as solution of the equationsatga−1 = b
wheret runs over a generating set ofT. SinceA is an elementary abelianp-group, we
can translate this set of equations into a system of inhomogeneous linear equations
over IFp.

4. Fitting-free groups

Now we turn our attention to the maximal subgroups in case II) of Section 2. Thus
we want to determine the maximal subgroups ofG which contain the solvable radical
S, but do not containL, whereL/S is the socle ofG/S. Recall that we may determine
a permutation represenation ofG/Sefficiently and hence, without loss of generality,
we assume thatS= 1 andG is a fitting free group with socleL.

We first compute aG-chief seriesL = N0> · · ·> 〈1〉 of L, see[KL90, CH97, Hul] .
We will parametrize the maximal subgroups according to the largest of theNi they
contain. We shall describe this process only for one index, to obtain all maximal
subgroups one has to run in a loop over allNi .

Let M be a maximal subgroup ofG with L 6≤M and let j the smallest index such
thatNj ≤M. To simplify the notation we assume now thatNj = 〈1〉 by translation to
the factorG/Nj and we denoteNj−1 by N. Note that we do not need to construct a
faithful representation for this factor group in our algorithm, since all necessary cal-
culations can be performed with representatives for the elements and full preimages
of subgroups.

Thus we have reduced to the case thatN is a minimal nonabelian normal subgroup
of G and we want to determine the maximal subgroupsM of G with N 6≤M.

Let C = CG(N) andK = CoreG(M) =
⋂

g∈GMg CG. ThenK ≤M and therefore
N 6≤ K. Moreover,N∩K = 〈1〉, sinceN is a minimal normal subgroup, and thus the
normal subgroupK centralizesN. Hence we obtainK ≤C and we can summarize the
situation as in the following picture.
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Remark 4.1. In this notation we obtain
thatG/K has a faithful primitive permuta-
tion representation on the cosets ofM/K
and M/K can be described as the point
stabilizer of this permutation representa-
tion. Thus to determine all maximal sub-
groups ofG not containingN we first com-
pute all possible candidates for the normal
subgroupK, then we calculate all faith-
ful primitive permutation representations
of G/K and finally we obtain the maximal
subgroupM as point stabilizer of the per-
mutation representation.
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The structure of the socle of a primitive permutation group can be described in
detail. We will use this to determine the structure ofG/K more precisely.

Theorem 4.2. Consider the notation as in the above picture. ThenSoc(G/K) =
NC/K. Moreover, one of the following two cases holds for G.

A) K = C andSoc(G/K) = NK/K ∼= N is a minimal subgroup of G/K.
(We say G/K is primitive of type A.)

B) K < C and Soc(G/K) = NK/K ×C/K ∼= N×N is a direct product of two
permutation isomorphic subgroups of G/K.
(We say G/K is primitive of type B.)

Proof. First we observe that Soc(G/K) = NC/K. Clearly,NK/K is a minimal normal
subgroup ofG/K and henceNK/K ≤ Soc(G/K).

Next we observe thatC/K ≤ Soc(G/K). This holds trivially ifC = K. Thus we
assume thatK <C. By definition ofK the factorG/K has a faithful primitive per-
mutation representation. Its nontrivial normal subgroupsNK/K andC/K centralize
each other and both act regularly by[DM96, Theorem 4.2A]. ThusC/K is a minimal
normal subgroup ofG/K and the claim follows.

Now we show that Soc(G/K) ≤ NC/K. Let AC G such thatA/K is a minimal
normal subgroup ofG/K. If N ≤ A, then we obtainA ≤ NK ≤ NC. Otherwise
N∩A = 〈1〉 and thusA≤C≤ NC. Thus we proved that Soc(G/K) = NC/K.

By Theorem 4.3B of[DM96] the socle of a primitive permutation group is either a
minimal normal subgroup or a direct product of two permutation isomorphic minimal
normal subgroups. Applying this to our sitation, we obtain directly thatG/K must be
of type A or B, proving the theorem.

Applying Theorem 4.2 we now distinguish the two cases A) and B) on the cen-
tralizerC of N in G and its relationship to the coreK of the desired maximal subgroup
M of G.



8 Bettina Eick, Alexander Hulpke

To compute all maximal subgroups in type A which do not containN we compute
the action ofG on N. The kernel of this action isC and in type A we haveC = K.
Following [Hul, section 3] the imageQ of this action can be represented as a per-
mutation group of small degree. We then must test whetherQ has faithful primitive
permutation representations of type A and compute point stabilizers of these repre-
sentations to determine the desired maximal subgroups. See Section 5 for further
details.

To determine the maximal subgroups in typeB we first must obtain all all possible
kernelsK <C. Again, we obtainC as the kernel of the action ofG on N. Then we
intersect the subgroupsNi of the chief series withC and remove duplicates. This
yields a seriesC = C0 >C1 > · · · > 〈1〉 of normal subgroups inC whose factors are
G-chief factors.

For every possibleK there is a minimal indexk with Ck≤K. In this caseCk−1/Ck

is isomorphic toC/K ∼= N and henceCk−1/Ck is nonabelian simple. Thus we obtain
K = CC/Ck

(Ck−1/Ck). In particular, each chief factor ofC isomorphic toN can give
rise only to at most one possible subgroupK.

To obtain all potential kernelsK we loop over the factorsCk−1/Ck for all k. If
Ck−1/Ck

∼= N, we compute the simultaneous actionϕ of G onN and onCk−1/Ck. Let
Q be the image of this action. If the index of kerϕ = CC/Ck

(Ck−1/Ck) in C is |N|, then
the socle ofQ is a direct product of two normal subgroups isomorphic toN and only
in this caseϕ might give a primitive factor of type B.

If this is the case, we have to test whetherQ has faithful primitive permutation
representations of type B and to compute the maximal subgroups afforded by these
representations. Again, see Section 5.

By the Jordan-Ḧolder Theorem primitive actions of type B can only arise if there
is anotherchief factorNi−1/Ni of G with i < j which is isomorphic toN. This can be
used as a quick initial test.

Note, that we do not need to get explicit isomorphisms of the chief factors, but
only isomorphism types. However, the isomorphism type of a finite simple group
is determined already by the size of the simple group except for|PSL3(4)| = |A8|
and|PSp2n(q)|= |PΩ2n+1(q)|, see[Cam81]; to distinguish between groups of same
size one can either consider the size ofp-element centralizers or use the approach of
[AB00].

5. Primitive Permutation Representations

By the reduction in the previous section we can assume that we have given a permu-
tation groupG and we need to determine the faithful primitive permutation represen-
tations ofG. We know that the socleH = Soc(G) is the direct product of isomorphic
simple groups; that is,H = T1× . . .×Tm with Ti

∼= T nonabelian simple. We say that
H is homogeneousand the simple groupT is called thetypeof H.
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The O’Nan-Scott Theorem[Sco80] gives a structural description of primitive
groups. We recall a version of it below in Theorem 5.1. A proof of the Theorem
can be found for example in[LPS88] or [DM96, chapter 4].

Our version of this theorem splits the primitive permutation groups in five types.
In the first type the socle of the primitive group is abelian and hence we do not need
to consider this type for the purpose of the computation of maximal subgroups. How-
ever, we include this type in the list for completeness. The types 2 - 5 on the other
hand have non-abelian socles and we will have to consider these types.

Theorem 5.1 (O’Nan-Scott). Let G be a group which acts primitively and faithfully
on Ω with |Ω| = n. Let H= Soc(G) andω ∈ Ω. Then H is homogeneous of type T
and exactly one of the following cases holds.

1. “Affine”. T is abelian of order p, n= pm andStabG(ω) is a complement to H
which acts irreducibly on H.

2. “Almost simple”. m= 1 and HCG≤ Aut(H).

3. “Diagonal type”. m≥ 2 and n= |T|m−1. Further, G is a subgroup of V=
(T oSm).Out(T)≤ Aut(T) oSm in diagonal action and either

a) m= 2 and G acts intransitively on{T1,T2} or
b) m≥ 2 and G acts primitively on{T1, . . . ,Tm}.

In case a) T1 and T2 both act regularly. Moreover, the point stabilizer Vω of V
is of the formdiag(Aut(T)×m).Sm

∼= Aut(T)×Sm and thus Hω = diag(T×m).

4. “Product type”. m= rs with s> 1. We have that G≤W = AoB and the wreath
product acts in product action with A acting primitively, but not regularly, on
d points and B acting transitively on s points. Thus n= ds. The group A is
primitive of either

a) type 3a with socle T2 (i.e. r = 2, s<m),
b) type 3b with socle Tr (i.e. r> 1, s<m) or
c) type 2 (i.e. r= 1, s= m).

We have that Wω∩As∼= A×s
1 andSoc(G) = Soc(W). Furthermore W= A×sG.

5. “Twisted wreath type”. H acts regularly and n= |T|m. Gω is isomorphic to a
transitive subgroup of Sm. The normalizer NGω(T1) has a composition factor
isomorphic to T . Thus, in particular, m≥ k+ 1 where k is the smallest degree
of a permutation group which has T as a composition factor.

Proof. The case distinction and closer description of the different cases is proved in
[DM96, chapter 4]. It remains to show thatG is of exactly one of the types listed and
cannot be listed under two different categories. In type 1 the socle is abelian, in type
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5 the socle is nonabelian but regular; type 2 is the only type with a simple nonabelian
socle. To distinguish type 3 from type 4, we observe that in type 3 the point stabilizer
in H is a diagonal and thus simple, while in type 4 this point stabilizer is a direct
product of point stabilizers of constituent groups and thus is not simple. Cases 3a and
3b are distinguished on whether the socle is a minimal normal subgroup. The three
subcases of type 4 are distinguished by the action of the point stabilizer in the socle
on its orbits.

Remark 5.2. The labelling of types in the literature is inconsistent. The following
table gives translations of the labellings used.

Type 1 2 3a 3b 4a 4b 4c 5
[DM96, Section 4.8] i iii iv iv v v v ii
[LPS88] I II IIIa IIIa IIIb IIIb IIIb IIIc
[Neu86] I V II III II III IV IV

Note that for case 3a/b) we change the case distinction of[DM96, Theorem 4.5A]
from degree 2/> 2 to intransitive/primitive.

Remark 5.3. Type A in Theorem 4.2 corresponds to primitivity of type 2, 3b, 4b, 4c
or 5. Type B corresponds to type 3a or 4a.

We now use Theorem 5.1 to determine primitive permutation representations of
our given groupG. We will need to answer the following questions for each of the
types 2 - 5 of Theorem 5.1:

i) What extra conditions onG are necessary and sufficient forG to have a faithful
primitive action of a certain type.

ii) If G has such an primitive action, then classify all these actions up to conjugacy
of the point stabilizers inG and determine their point stabilizers.

For type 2 these questions are answered easily: A groupG has faithful primitive
representations of type 2 if and only if its socle is nonabelian simple. The classifi-
cation of finite simple groups[Gor82] can be used to identify the socleT of G and
then we can employ pre-tabulated results as well as parametrizations for some of the
series to obtain the maximal subgroups ofG. See[Sax95]for a recent survey.

Another approach to obtain the primitive permutation representations of an almost
simple group is by using the data base of table of marks together with generator words
for subgroup representatives, see[Mer98] . Such a data base is available inGAP, see
[GAP00]. (In particular, such a data base can comprise all almost simple groups,
for which computation of the full lattice would be still feasible.) However, to use
this precomputed data, algorithms for the constructive recognition of almost simple
groups are required. Much work has been done in this area recently, see for example
[BP00, CFL97, KS].
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For types 3-5 the situation is more complex. Theorem[Kov86, 4.3] can give a
parametrization of maximal subgroups of type 3 and 4 though we have not studied
the feasibility of this approach. Similarly,[Bad93] describes groups of type 5 in more
detail. However, the computation of complements to a nonsolvable normal subgroup
might become a problematic subtask in this case.

A more detailed examination of whether a group can be primitive in one of these
cases will be the subject of a subsequent study.

6. Runtime requirements

The solvable part of the algorithm requires the solvable radical. This can be obtained
efficiently using the methods in[LS97, Hol97]. Then we need to construct the lower
nilpotent series and Frattini subgroups for the nilpotent factors involved. A practical
algorithm for this purpose is outlined in[CLG] . Furthermore, as one can consider
these subgroups asOΣ, for Σ the class of cyclicp-groups,[KL90] asserts that the
calculation is possible in polynomial time.

For the computation of maximal subgroups we use the algorithms of[LMR94]
and[HLOR95] . [Rón90] proves (for equivalent algorithms) that these calculations
can be done in polynomial time.

The remaining steps for the computation of complements are linear algebra which
is of polynomial time, provided the factor presentation is of polynomial length, which
[KS99] assures.

An implementation of the solvable part of the algorithm shows that this method is
highly efficient.

For the Fitting-free case we need to compute the action on chief factors. The
required chief series, kernel, and intersections with normal subgroups again are in
the polynomial time toolkit. Constructive recognition of the factor constituents[KS]
then permits to write down a representation for the action of the chief factor(s).

We have not yet examined the determination of possible faithful primitive actions.
However even for the almost simple case it seems impossible to give a general com-
plexity, as we have to rely on pretabulated data (to get the maximal subgroups of
almost simple groups) and we might only be able to bound the runtime by a function
of the size of the involved simple groups and the width of the nonabelian composition
factors.

7. Final comments

We have presented the algorithm for permutation groups. However – as with many
other “hybrid” algorithms – the permutational group structure is only needed within
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subtasks such as the computation of the solvable radical or a chief series. Once all
these subproblems are solvable for a group in another representation, our algorithm
becomes available immediately.

The authors would like to thank the referee for helpful comments.
Part of the work was undertaken while the second author was at the University of

St Andrews, supported by EPSRC Grant GL/L21013.
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[Kov86] L. G. Kovács,Maximal subgroups in composite finite groups, J. Algebra99
(1986), 114–131.
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[Rón90] Lajos Ŕonyai,Computing the structure of finite algebras, J. Symbolic Comput.9
(1990), no. 3, 355–373.

[Sax95] Jan Saxl,Finite simple groups and permutation groups, Finite and locally finite
groups (Istanbul, 1994), Kluwer Acad. Publ., Dordrecht, 1995, pp. 97–110.

[Sco80] Leonard L. Scott,Representations in characteristic p, The Santa Cruz conference
on finite groups (Providence, RI) (Bruce Cooperstein and Geoffrey Mason, eds.),
Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., 1980, Corrigendum in
[LPS88], pp. 318–331.

[Sta73] Richard P. Stauduhar,The determination of Galois groups, Math. Comp.27
(1973), 981–996.

Fachbereich 17, Universität Kassel,
Heinrich Plett Str. 40, 34132 Kassel, Germany
eick@mathematik.uni-kassel.de

Department of Mathematics, The Ohio State University
231 W 18th Avenue, Columbus, OH 43210, USA
ahulpke@math.ohio-state.edu


