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Abstract. This note surveys recent developments in the problem of
computing Galois groups.

Galois theory stands at the cradle of modern algebra and interacts with many
areas of mathematics. The problem of determining Galois groups therefore is of
interest not only from the point of view of number theory (for example see
the article [89] in this volume), but leads to many questions in other areas of
mathematics. An example is its application in computer algebra when simplifying
radical expressions [37].

Not surprisingly, this task has been considered in works from number theory,
group theory and algebraic geometry. In this note I shall give an overview of
methods currently used.

While the techniques used for the identification of Galois groups were known
already in the last century [26], the involved calculations made it almost imprac-
tical to do computations beyond trivial examples. Thus the problem was only
taken up again in the last 25 years with the advent of computers.

In this note we will restrict ourselves to the case of the base field Q. Most
methods generalize to other fields like Q(t), Q,,, IF, () or number fields.

The results presented here are the work of many mathematicians. I tried to
give credit by references wherever possible.

1 Introduction

We are given an irreducible polynomial f € Q[z] of degree n and asked to
determine the Galois group of its splitting field L = Spl(f). This group G =
Gal(f) = Gal(L/Q) is usually called the Galois group of f. We denote the roots
of f by {a1,...,a,}. Without loss of generality (as one can replace f(z) by
a" f(x/a) without changing splitting field nor Galois group) one can assume
that f is monic with integer coefficients. Thus the «; are algebraic integers. We
denote the ring of algebraic integers in L by O(L). Groups act from the right by
exponentiation. The orbit of @ under G is written as a® = {a9 | g € G}.



The determination of elements of G explicitly is in general infeasible: To ex-
press elements of GG, we need to represent the splitting field they act on. If the
degree of the splitting field in not very small ([L : Q] up to 50 say), however,
construction of the splitting field is beyond any reasonable computational capa-
bilities. An algorithm for the calculation of splitting fields has been published
in [@], algorithms for the determination of elements of G for number fields are
given in [27].

Instead we observe that (as f(a?) = f(«a)? =09 =0 for 0 € G) the Galois
group acts on the roots of f. This action is transitive because f is irreducible
and faithful as L = Q(ay, . .., a,). Any arrangement of the roots therefore yields
an embedding of G as a subgroup of the symmetric group S,,. Our aim will be
to determine this image and — if possible — also identify the arrangement of the
roots «; that yields that image. This arrangement is usually determined by a
labelling of approximations of the «;.

In the sequel we will often use the embedding implicitly and consider G as a
transitive permutation group.

2 Local Analysis

For a prime p we denote reduction modulo p by w. This reduction extends nat-
urally to the algebraic integers and to polynomial rings. If p does not divide the
discriminant of f, a theorem of DEDEKIND shows that the Galois group G of the
reduced polynomial fr € IF,[z] embeds into G ([&2, (I1.7.12)], a proof in a more
computational context can be found in [49, §66]).

This Galois group G over IF, is cyclic, its orbits on the approximate roots
a7 are simply given by the IF,-irreducible factors of fw. We thus have

Lemma 1. If p does not the discriminant disc(f), the irreducible factors of fr
correspond to the cycle structure of an element of G; if fm =[], fi, this element

is of the form (...) - (...) -+~ (...).
~— =~ ~~~
deg f1 deg f2 deg fm

(For ramified primes we can embed the Galois groups over Q, into G. For
practical purposes however this usually does not yield new information.)

While this yields cycle structures of elements of G, the corresponding ar-
rangement of the «; is only determined modulo p. Without further information
about the Galois group G there is no possibility to “connect” the arrangements
for different primes. Thus the cycle structures obtained this way can only be
used to rule out candidates for G which are too small to contain all cycle struc-
tures found. This however permits to identify symmetric and alternating groups
quickly [IH], which is of practical importance as asymptotically all polynomials
have the symmetric group as Galois group [ER]. As it requires only factorizations
over F}, this test is very cheap and should always be run as a first filter to restrict
the type of G.

Using analytic number theory, one can generalize Lemma [l to TSCHEBOTAR-
EFF’s theorem [&7], by which the density of primes corresponding to a given



cycle structure equals the frequency of this cycle structure among the elements
of G. Effective bounds for the probability that all shapes have been found when
considering only a limited number of primes are given in [B1]. This permits a
probabilistic approach to finding G by factoring f modulo different non-ramified
primes and checking for which transitive subgroup of S,, this approximates the
shape distribution best. Besides its probabilistic nature, this approach gets into
problems if the shape distribution does not identify groups uniquely. It happens
first in degree 8 with the groups TgNip = [2%]4 and TgNy; = Qg : 2.

As the Galois group of f over a local field Q,, is usually a proper subgroup of
G, such local methods alone cannot determine G, but we have to look at global
properties:

3 Invariants

The approach to identifying the Galois group G will be to show that certain
relations between the roots of f are respected by G. This permits to identify G
from a list of transitive subgroups of S,, by finding enough relations that hold
(or do not hold) to determine one subgroup from this list uniquely.

The algorithms therefore usually rely on lists of transitive subgroups of S,.
These subgroups are classified up to degree 31 [P4] which covers the currently
interesting range for n. Explicit lists up to degree 15 can be found in [I2].

The tool for the identification of G is the polynomial ring R = Z[x1, ..., Z,].
The symmetric group S, acts on R by permutation of indeterminants. We call
h € R an invariant for U < S, if h* = h for all uw € U. The ring of all U-
invariants is traditionally denoted by RY. To abbreviate notation we shall write
x for (z1,...,2n).

The specialization homomorphism ¢: R — O(L),h +— h(ay,...,a,) con-
nects the permutation action of G on R (by permuting the indeterminants)
with the Galois action of G on L; it is a homomorphism of G-modules. As
O(L) N Q = Z, G-invariance of h € R implies that ¢(h) € Z. The con-
verse of this is not true in general: The polynomial f = z* — 2 has Galois group
D(4), generated by the permutations (1,2, 3,4), (1, 3) with respect to the root ar-
rangement {\4/5, iv2,—v?2, —z{‘/?} Then h = z1x2 — x324 is not D(4)-invariant,
though ¢(h) = 0 € Z. This however is an “accidental” relation among the roots
which is not due to the Galois group. The following lemma shows under which
conditions this can be avoided

Lemma 2. If
o(l) # @(h) forall 1€ h® \{h} (1)

then h is G-invariant if and only if p(h) € ZZ.

Proof. Assume that h is not G-invariant and ¢(h) € ZZ. Then there is a g € G
such that h9 # h, so we have by the assumption ([l) that ¢(h) # ¢(h?), and
because ¢ respects the actions @(h9) = p(h)? = p(h) holds, contradiction.



If the condition ([) is not fulfilled, one can change f by a Tschirnhaus transfor-
mation to another polynomial f which defines the same field (and thus has the
same Galois group). It is shown in [Z1] that for a given h it is always possible
to find such a transform f such that condition @) is fulfilled for ¢ ;. Care how-

ever has to be taken to ensure that the coefficients of f do not become too big.
Therefore in practice only very simple Tschirnhaus transformations are used and
it may be well worth to try an alternative h instead.

As the roots «; are only known by approximations ¢;, in practice however ¢
is only known by an approximation @: h — h(ayq, ..., a&,). The test for integrality
therefore has to rely on the approximation being good enough.

4 Descending Approach

If V< U we call h € R a U-relative invariant for V, if h is invariant under V'
but not under U. If G is known to be a subgroup of U then G < V if and only
if h is G-invariant.

The first computational approach towards finding G has been described in
[46]: We form the partial lattice of transitive subgroups of S,, and determine for
each minimal “step” U >V (V being a maximal subgroup of U) in this partial
lattice a U-relative invariant for V. This information is determined once and for
all. As the invariants for a conjugate of V' are simply images of the invariants of
V', it is sufficient to determine these invariants up to .S,, conjugation.

The algorithm now determines G by stepping downwards through this partial
lattice, starting with U = S,,. For a maximal subgroup V < U it then tests
whether a V-invariant h is invariant under G and if this is the case continues
with V being the U for the next step. If on the other hand G is not contained
in any proper transitive maximal subgroup of U, G must be equal to U and the
algorithm stops. As there are only finitely many transitive subgroups, this will
always happen. Of course all subgroups V', which do not contain cycle shapes
known to occur in G by Lemma [ll, can be excluded as well.

The test for G-invariance of a V-invariant h is performed by testing whether

w(h) € Z (prov1ded of course that condition ([[) holds). An example for this is
Vdise(f) = ]I;<;(c; — ;) which is integral if and only if G is contained in A,,.

To reduce the storage requirements of transitive groups down to storing only
representatives up to conjugacy, the following approach is used: For each pair
U > V, the subgroups V are stored up to U-conjugacy (respectively: for each
pair of S),-representatives U,V the embeddings V < U are stored up to U-
conjugacy). For each class representative V' with invariant h the resolvent poly-
nomialﬁ R =[] eqv(x—¢(g)) € Z[z] is formed. As h is not U-invariant, the
degree of R is [U : V]. Then R is tested for integer roots. An integer root of R
determines a U-image of h and thus a U-conjugate of V' in which G is contained.

! The name resolvent dates back to Lagrange. Polynomials of this type can be used to
construct subfields and thus were used for solving polynomial equations.



Instead of continuing with this conjugate, the algorithm then re-sorts the roots
appropriately and continues with V.

A further advantage of forming the resolvent R is that R must be invariant
under the Galois action of G and thus has integer coefficients. When computing
with approximate roots (and using ¢ instead of ¢) therefore the coefficients of
R can be rounded to the next integer. This permits to use exact methods to test
for integral roots.

Finally, as G-invariance is tested via ¢, a condition like () must be fulfilled.
As G < U the symmetric group S,, can be replaced in ([ll) by U; sufficiency holds
if R is square-free (a formal proof can be found in [48]).

4.1 Root Approximation

Bounds for the needed accuracy of root approximation are given in [I7, 2.1.3].
If the coefficients of f become big, however, these bounds can become infeasibly
large and thus some of the implementations work by standard with lower, non-
guaranteed bounds.

For the approximation of the roots «a; essentially two methods have been
used; numerical approximation and p-adic approximation. The main advantage
of numerical approximation is that it is probably more likely available in a pro-
gramming language and that it allows to obtain quickly results which are not
guaranteed to be correct. Its main disadvantage is that approximation is not a
ring homomorphism and thus error propagation is difficult to keep under control.
To the authors knowledge there are neither theoretical results, nor implementa-
tions (“validated numerics”) which analyze error propagation in these cases and
thus give proven results.

On the other hand p-adic approximation behaves much nicer from an alge-
braic viewpoint in that the approximation is a ring homomorphism and thus no
error propagation will happen. To compute bounds, estimates for the absolute
values |a;| are still needed. These can be obtained from general estimates as
found in [&1, section 4.3].

The approach of p-adic approximation, combined with numerical approxi-
mation to obtain better bounds for the ||, has been used in [[4] to verify
polynomials with Galois groups M7, and Mis.

The problem of approximation can be avoided completely if deferring the
evaluation ¢ as shown in [[]: If h is a U-relative invariant for V', the coefficients
of the unevaluated resolvent B = [ v\ (t—g) € Q(x)[t] are invariant under U

and therefore expressible in generators of the invariant ring Q[x]Y. On the other
hand, the elements {1,k,k?,...,hl"V]} form a Q(x)V-Basis of Q(x)" and [T
gives an algorithm to express V-invariants in this basis explicitly. This permits
the following inductive approach: We start with U := S, whose invariants are
generated by the elementary symmetric polynomials. At each step we assume
that we can express every U invariant polynomial in terms of the elementary
symmetric polynomials and known relative invariants of U and of subgroups
S, > W > U. This certainly holds for U = S,,. If we descend to a subgroup V'



there is a new invariant ring Q(x)" which is generated by Q(x)Y and the invari-
ant h. The above mentioned algorithm now permits to express every V-invariant
in terms of Q(x)V and h. By the assumption on Q(x)V this yields an expres-
sion of every V-invariant in terms of the elementary symmetric polynomials and
known invariants of subgroups S, > W > V. This however is the necessary
assumption for the induction once V' becomes itself a new U in the next step.
By using the evaluations ¢(e;) of the elementary symmetric polynomials, which
are (up to a sign) the coefficients of f, and the evaluations ¢(h) of invariants of
larger subgroups, which are the integral roots obtained in earlier steps, we can
thereby express any @p-evaluated U-invariant. One thus obtains the evaluated
resolvents [ [ ¢ v, (t — ¢(g)) needed for the algorithm.

If not p(h) but the evaluation ¢(g) of a conjugate is an integral root, of course
this conjugate g = h* (which is an invariant for the corresponding subgroup V*)
must be used.

In the process of specialization, denominators in expressions in Q(x) might
vanish. If this is the case, another invariant h(p(z1),...,p(z,)) for p € Q[t] is
chosen. It is shown in [U] that there always is a transform for which denominators
do not vanish when specializing.

There are various implementations of the descent method available [20,[8,7,19]
as standalones or in the systems PARI [d] and KANT [i3].

4.2 Variations

To overcome the problem of a large index [U : V] when evaluating invariants, J.
McKAY suggested the following approach: Suppose we know an element e € G
by its explicit action on the approximate roots. This is the case, for example, for
the complex conjugation when using numerical approximation of the roots, or
for the FROBENIUS automorphism when using p-adic approximation. If h € R
is an invariant for V' < U, an invariant image h9 (g € G) is invariant under G
only if it is invariant under e. This permits to reduce the number of images of
h9 that have to be evaluated via ¢ from [U : V] to |E| with

E = {g € Repres(V\U) | b9 = (h9)¢ = h9¢}
= {g € Repres(V\U) | Vg = Vge}.

A group theoretic argument shows that if the class of e in G is stable under
automorphisms, it is possible to choose E = Repres(Cy (e)\Cu(€)) and therefore
|E| = [Cy(e) : Cy(e)]. In the case of Mys < Aja, for example this permits to
reduce 2520 potential images to 24.

For identification purposes, of course, £ may not be chosen a priori for one
representative V', but must be selected from h and e. The reduction saves however
evaluations @. Usually the images h9 (¢ € F) do not contain full orbits of G,
therefore no resolvent is formed and the evaluated images @(h?9) must be tested
directly.

Another variant of the descending approach has been suggested in [61]: Here
the test for rationality of p(h) is replaced by testing whether (h — @(h)) is



contained in ker ¢ <1 R. This ideal is generated by the elementary symmetric
functions equating the coefficients of f. The ideal membership test is done using
p-adic approximation of idempotents in R/ ker .

In reversion of the identification process, knowledge of the Galois group can
be used to deduce relations among the roots of f [A0].

4.3 Invariants

For the determination of invariant polynomials it is of course sufficient to obtain
one V-invariant polynomial which is not U-invariant, instead of generating the
full invariant ring for V. This invariant however should be chosen in a way to
keep the necessary approximation accuracy low for deducing that p(h) € ZZ from
the value of @(h). The needed accuracy grows with the absolute value |¢(h)|. A
good heuristic to keep this value low is to select h to be of lowest possible degree.
Therefore the trivial possibility h =Y, oy (z123 - a')? is usually unsuitable.
An algorithm to compute a better h is given in [22].

If numerical approximation of the roots is used, the evaluation order in ¢
can become crucial. In this situation it might be necessary to use the invariant
h in factorized form or to select other invariants to avoid exaggerated error
propagation.

A main problem of this approach is in the first steps down from the sym-
metric group. It is known [B7] that almost all transitive maximal subgroups of
Sy, or A, have large index. Thus for almost all possible Galois groups G every
descendant chain from S, down to G will contain a step with large index. A
large index however implies a large resolvent degree and in turn the need for a
high approximation accuracy.

5 Subfields

Subfields of Q(«) form an important Galois invariant. Over the past years a cou-
ple of algorithms for their computation have been suggested [33,16,34,5,23,28,27],
the last probably being the most effective at the moment. By the Galois corre-
spondence subfields correspond to subgroups of G which properly contain the
point stabilizer Stabg («r). They therefore correspond to block systems of G as
permutation group. Suppose that @ < Q(8) < Q(«) is a subfield with 8 = k(«)
and that m is the minimal polynomial of . Then by the embedding theorem for
imprimitive groups [29], G is a subgroup of the wreath product W := S, 1 M,
where M is the Galois group of m. This embedding information can be used
to start the descent for the determination of G not with S,, but with W. To
this end, one has to determine the arrangement of the roots corresponding to
this wreath product: The arrangement of the blocks is determined by the ar-
rangement of the roots 8; of m corresponding to M, the root «; is in the block
corresponding to 3; if k(a;) = (3;. This arrangement of the roots to the blocks



determines a conjugate W’ of W such that the descent process can be started
with U = W. If several block systems exist one can embed simultaneously in
different wreath products and thus start with U being the intersection of all
these wreath products.

For imprimitive groups, this approach permits to avoid the large steps down
to maximal subgroups (which are in most cases wreath products and thus con-
tain W) of S, respectively A,,. It has been used successfully in the KANT
implementation [I9].

6 Orbits of the Galois Group

As the computation of resolvents can be hard any information they convey should
be used. The descent method just checks for linear factors, that is orbits of G of
length one. As the roots of an irreducible polynomial form an orbit of the Galois
group, a complete factorization of a resolvent however exhibits also other orbits
of G and therefore may give further information about the Galois group. For
example [[0] obtains an invariant for a subgroup of U containing G' by complete
factorization of a resolvent for another subgroup V' < U which not necessarily
contains G.

Let H C R be a set of polynomials which is invariant under G. Then
R = R(H, f) = [hen(x — ¢(h)) has rational coefficients. If condition ([]) is
fulfilled (that is if R is square-free, again this can be ensured by a Tschirn-
haus transformation on f) the irreducible factors of R correspond to the orbits
of G on H in the following way: Every orbit K C H corresponds to a factor
[Trcic(x — (k) and all factors of R arise this way. Furthermore, the image of
the operation of G on the orbit K is the Galois group of the corresponding poly-
nomial factors. So for example the factor discriminant is a square if and only if
the image group is a subgroup of the alternating group.

Similarly, by the Galois correspondence, orbits of a subgroup U < G corre-
spond to factors over a subfield @ < Q(8) < L which is the field of elements
fixed by U. Such subfields of the splitting field can be obtained for example from
factors of (other) resolvents.

For a given degree and certain resolvents this information (mainly orbit
lengths) can be tabulated for all transitive subgroups of S, a priori by sim-
ple group theoretic calculations. By considering sufficiently many resolvents to
distinguish all groups this permits to eliminate all but one conjugacy class of
transitive groups (all properties are conjugacy invariant as no roots are labelled),
which in turn has to contain the Galois group. This approach has been suggested
in [44,45]. In this form no arrangement of (approximate) roots will be obtained.

Because usually no subgroup U < S,, with corresponding root arrangement
is known a priori, the sets H are typically full orbits of S,. We shall write
R(h, f) for R(hS~, f). In [25] it is suggested to use linear polynomials for h.
Forh=z1+ -4+ xy, or h =21z, the set H correspond to the family
of m-subsets of {1,...,n}, similarly h = 21 + 222 + - -- + ma,, corresponds to
m-tuples. In [G] formulae for both types of set resolvents are given which require



only rational arithmetic. Resolvents arising from more general h are considered
in [B] and [B5] which use techniques from commutative algebra like resultants for
the computation.

Again shapes are used as a first filter. The existence of subfields, respectively
block systems, can be used as a further restriction.

A possible advantage of this method is that the resolvents considered do not
necessarily have to be “fitted” to subgroups containing the Galois group: The
resolvent R(h, f) can be considered as an resolvent for the pair Stabg, (h) < S,
but if G £ Stabg, (k) (up to conjugacy) this resolvent has no linear factor,
nevertheless the factor degrees will restrict the possibilities for G. This some-
times permits to use resolvents of smaller degree than used in the pure descent
approach. Also for groups G for which the chain G < U,, < --- < Uy < 5,
contains many steps, not for every step a new resolvent has to be evaluated.

In this approach the approximation of roots takes place in the polynomial
factorizing algorithm and can therefore be considered to be under control. The
factorization of resolvents however can become a major obstacle: Because it is
an orbit length of S, the set sizes |h°"| — and thus the resolvent degrees — soon
become big. In addition, the resolvent polynomials are essentially of the worst
possible kind for the traditionally used Hensel-lifting based factorizing approach
[62]: By Lemma [] they will split modulo each prime in factors whose degrees
are orders of elements of G while they factorize in characteristic zero in fac-
tors whose degrees are orbit lengths of G. Unless G is in regular representation
both measures can differ substantially and therefore many potential combina-
tions of the lifted factors have to be tried before the true factorization is found.
The most extreme are elementary abelian 2-groups, for which the resolvents are
Swinnerton-Dyer polynomials.

On the other hand the coefficients of the resolvents become that big, that the
break-even point for a polynomial time factoring algorithm [36] is yet beyond
the runtime for the classical approach.

The algorithm of [@5] is implemented in Maple [@] up to degree 7. An ex-
tension to degree 8 for polynomials over Q(t) is described in [B%]. It is again
implemented in Maple. Tabulating further data for linear resolvents and using
also factorization over algebraic extensions to determine orbits of subgroups, this
approach has been implemented by the author in GAP 3 [&3] up to degree 15, but
for some groups calculations in degrees 12 and beyond become infeasibly slow.
The factorizations of various resolvents not arising from the symmetric group is
tabulated for degree up to 11 in [2].

7 Relation Stabilizers

Evaluation of ¢(h) (h € H) and a test, of which resolvent factor the result is an
approximate root, permits to obtain the orbits of G on H from the factorized
resolvent. If approximation modulo p is used the additional computing time for
this is neglectable. This permits to compute the set-wise stabilizer Stabg, (H)
of the orbit in the symmetric group. This stabilizer certainly must contain the



Galois group G. Thus subgroups containing G can be obtained without requiring
precomputed subgroup lattices and invariants or factorization tables [25]. Such
stabilizers can be different even if all orbit lengths are the same. Therefore they
yield a better distinction of groups.

For the linear resolvents which correspond to the action on sets and tuples,
these stabilizers are the m-closure G("™)| respectively the m-set closure G}
of the Galois group G. These closures have been studied in permutation group
literature [60]. The problem of identifying G uniquely then can be interpreted as
a permutation group theoretic problem about groups having the same closure.
A result that some closures (obviously G(™ = G, but then |H| = n! which is
infeasible) determine G uniquely would lead to an effective algorithm that does
not rely on precomputed information. This is of importance as the number of
transitive groups grows substantially for higher n (there are 301 classes of degree
12, 1954 classes of degree 16 and 26813 classes of degree 24) and therefore such
a preparation will not be reasonable beyond degree 15.

As this approach does not only filter the group abstractly from a list of
candidates but also obtains an (partial) arrangement of the approximate roots,
it is possible to use not only resolvents arising from full orbits of S, but also
resolvents from orbits of the current approximation U > G. The resolvents used
in the descent method are exactly of this type and the methods described in
Sect. @l can be used for their computation.

An additional advantage of this approach is that the partial root arrangement
obtained from the factors of previous resolvents can be used to pre-sort the
resolvent factors modulo p when factoring which in turn can help to ease the
exponential factor combination step.

The use of block stabilizers is of course also possible here. However as the
2-set closure G2} already determines all block systems this will not necessarily
improve the discrimination of potential Galois groups.

8 Capabilities of the Algorithms

As mentioned before current implementations are all still degree-dependent.
They work in theory (that is information is precomputed) for degrees up to
9 [zm], 11 [IR], 12 [09] or 15 [A3], but sometimes for higher degrees the actual
computations required to identify the group (using proven bounds) are too hard
to make them feasible. In general for degrees up to 10 the algorithms should
always finish in reasonable time, for the higher degrees they will work for some
cases but for some groups it will not finish in reasonable time. Concretely, cal-
culations for degree 8 will usually finish in under a minute, degree 10 may take
a few minutes, but degree 12 (and some particular groups in lower degrees) may
take an hour or even much more.

The worst case for the identification are (for all algorithms likewise) highly
transitive groups which do not contain the alternating group. Such groups are
usually maximal of high index in the alternating group and because of their
high transitivity require resolvents of high degree to distinguish them from .S,



or A, by their orbits. Fortunately, as a corollary of the classification of finite
simple groups it is known that beyond triply transitivity the only offenders are
the Mathieu groups.

9 Final Remarks

Many of the implementations mentioned are available on the internet:

- The implementation of Y. Eichenlaub and M. Olivier can be found at
ftp://megrez.math.u-bordeaux.fr/pub/galois

- KANT (containing the routines by K. Geissler) is obtainable from
ftp://ftp.math.tu-berlin.de/pub/algebra/Kant/Kash/

- GAP (which contains the authors implementation) can be found under
http://www-gap.dcs.st-and.ac.uk/~“gap/Info/distrib.html

This article benefitted implicitly from explanations by and discussions with
J. Kliiners, J. McKay, and L. Soicher, whom I would like to thank. The authors
implementation would have been impossible without many example polynomials
constructed by G. Malle, whom I would also like to thank for extensive tests of
the algorithms. Last, but not least, I would like to thank DFG, EPSRC and the
EU HCM program for their financial support.
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