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Abstract

This paper presents a new algorithm to classify all transitive subgroups
of the symmetric group up to conjugacy. It has been used to determine
the transitive groups of degree up to 30.

1. Introduction

This article describes a method to construct the transitive groups of a given
degree n, that is to classify the transitive subgroups of Sn up to conjugacy. Its
prerequisites are the transitive groups of all degrees dividing n as well as the
primitive groups of degree n. Given the primitive groups this permits a recursive
construction of all groups.

The algorithm has been used successfully to verify the lists of groups of degree
up to 15 and to construct the hitherto unclassified groups of degree 16-30. These
calculations were done in the computer algebra system GAP 4 [GAP, 2002],
which provides methods for all the underlying calculations which we shall use as
building blocks.

An extended description of the construction process has been given in the
the author’s dissertation [Hulpke, 1996]. This article aims to give a description
of this process of reasonable length, leaving out some technical details, such as
an explicit description of backtrack searches. (For these we will refer to Hulpke
[1996].) It also corrects (in section 12.1) several errors in preliminary results
reported in this thesis.

The long delay between the publication of the thesis and this paper is due to
extensive reruns and checks for potential errors.
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2. History

The problem of classifying subgroups of the symmetric group is easily one of
the oldest problems in group theory, it is in fact the subject of the 1858 prize
question of the Académie des Sciences: [Academie des sciences, 1857]:

Quels peuvent être les nombres de valeurs des fonctions bien définies
qui contiennent un nombre donné de lettres, et comment peut-on for-
mer les fonctions pour lesquelles il existe un nombre donné de valeurs?

This question is formulated in the language of invariants – at this time there was
no formal definition of a permutation group – and what it asks for are possible
orbit lengths (“nombre de valeurs”) for the action of Sn on polynomials in n
invariants by permuting the invariants. In other words, it asks for the indices
of all subgroups of Sn. (There were three submissions in 1860, however no prize
was awarded.)

It is easily seen that intransitive groups can be constructed as subdirect prod-
ucts of transitive groups of smaller degree, so the main task is to classify tran-
sitive groups.

By the beginning of the 20th century, a series of articles had appeared, which
classified the transitive groups up to degree 15. The classification for the higher
degrees culminates in the papers of Cole [1895], Miller [1896, 1898], Kuhn [1904].
A fuller history of this endeavour can be found in [Short, 1992, Appendix A, pp.
122–124]. All these classifications relied more or less on ad-hoc arguments, the
long sequel of papers correcting previous classifications does not encourage trust
is the results.

With the advent of computers, starting in the early 1980s the classifications
up to degree 15 were redone by Butler and McKay [1983], Royle [1987], Butler
[1993]. A complete list of these groups with names and properties can be found
in Conway et al. [1998]. Apart from a few errors in degree 12 they confirm
the results of the hand classifications. Still, the methods used rely on ad-hoc
arguments and are unlikely to permit classifications for degrees beyond 15.

2.1. Classification of primitive groups

For primitive groups the situation is much better. The primitive groups up to
degree 17 were already classified in by Jordan [1872]. Sims [1970] published a
list up to degree 20 and later extended it up to degree 50. Solvable primitive
groups of degree < 256 were classified by Short [1992], Eick and Höfling [2003]
extend this classification to degree 6560. Finally, Roney-Dougal and Unger [2003]
classify all affine groups of degree up to 1000.

The O’Nan-Scott theorem [Scott, 1980] and the classification of finite simple
groups [Gorenstein, 1982] essentially reduce the problem of classifying primitive
groups to the classification of maximal subgroups of simple groups and to the
problem of classifying irreducible matrix groups.
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Dixon and Mortimer [1988] classify the non-affine primitive groups up to de-
gree 999. This classification was made explicit by Theißen [1997], which also
gives the non-solvable affine groups up to degree 255.

These primitive permutation groups are accessible in GAP via the command
PrimitiveGroup.

We can sum these results up by saying that primitive groups have been classi-
fied up to degree 999. The techniques used do not stop at this degree but should
be able to classify groups of degree up to several thousands if such a classification
was desired.

In particular, a classification of transitive groups only needs to classify the
imprimitive groups.

3. The structure of an imprimitive group

Assume that G is an imprimitive group of degree n with a block system whose
blocks are minimal proper blocks with respect to inclusion. This block system is
denoted by B = {B1, . . . ,Bm}, so the block size is l = |Bi| = n

m
. Without loss of

generality we may assume that 1 ∈ B1.
Let V = StabG(1) and U = StabG(B1) (set-wise), then V ≤ U and [U :V ] = l.

The action ϕ of G on B yields a transitive permutation representation T := Gϕ
of G of degree m. Its kernel is

M := kerϕ =
⋂
g∈G

U g.

In analogy to wreath products, we call M the base group of G (with respect to
B). Because B was chosen to have minimal blocks, V is a maximal subgroup
of U . Thus we have either M ≤ V or 〈M,V 〉 = U . We shall treat both cases
separately

3.1. Faithful block action

In this case we assume thatM ≤ V . As the action on the cosets of V is faithful (G
is a transitive permutation group), this implies that M = 〈1〉 and T = Gϕ ∼= G.

The subgroup Ṽ := V ϕ ≤ T is a maximal subgroup of index l of the point
stabilizer Ũ = Uϕ in T . The permutation action of G can be obtained from the
action of T on the cosets of Ṽ . We call G an inflation of T .

Vice versa if T is a transitive group of degree m, every maximal subgroup of
index l of its point stabilizer defines a inflation that is a transitive subgroup of
Sn. (In practice, inflations only are a minority among the transitive groups of
degree n.)

To examine conjugacy among inflations, we now assume that G1 and G2 are
both inflations of the transitive group T ≤ Sm, corresponding to the maximal
subgroups Ṽ1 and Ṽ2 of the point stabilizer of T . We denote the corresponding
permutation representations by φ1 : T → G1 and φ2 : T → G2. If G1 and G2 are
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Figure 1: Structure of proper extensions of T

conjugate under Sn via the inner automorphism σ of Sn, then α = φ1σφ
−1
2 : T →

T is an automorphism of T . As σ is induced by a conjugating permutation, it
must map the point stabilizer of G1 onto a point stabilizer of G2, thus Ṽ1α = Ṽ t

2

for a suitable t ∈ T . That is, the subgroups Ṽ1 and Ṽ2 are conjugate under the
automorphism group of T . Vice versa an automorphism of T that maps Ṽ1 to
Ṽ2 induces a bijection of the cosets Ṽ1\T onto the cosets Ṽ2\T and thereby a
permutation in Sn that conjugates G1 into G2. In other words:

Lemma 3.1: The Aut(T )-classes of maximal subgroups of the point stabilizer of
T are in bijection with the Sn-classes of inflations of T .

3.2. Proper extensions

In the sequel we assume that M is not trivial and thus 〈M,V 〉 = U . We denote
the restriction of the natural permutation action of U to B1 by ψ : U → Sl.
Its image Uψ is primitive because V is maximal in U . In addition, M contains
representatives for all cosets of V in U and thus acts transitively on B1. Therefore
A := Mψ is a transitive normal subgroup of the primitive group Uψ, and we get
the inequality

[Uψ:A] = [Uψ:Mψ]

∣∣∣∣ [U :M ] = |StabT (1)| , (1)

which will be used to limit the possibilities for A.
Figure 1 illustrates the situation.

Considering the relation between G and the constituents Uψ and Gϕ, we shall
frequently use the embedding theorem for wreath products in the following form

Theorem 3.1: (Krasner and Kaloujnine [1951]) G can be embedded as a per-
mutation group into the wreath product (Uψ)oT in its natural imprimitive action,
this embedding maps the block system B onto the block system of the wreath prod-
uct.

Vice versa, if G can be embedded in this way into a wreath product X oY , then
Gϕ is permutation isomorphic to a subgroup of Y and Uψ to a subgroup of X.
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Figure 2: Supergroups of the subpower M .

The kernel M of the block action ϕ will fix all blocks in B set-wise, on the
other hand G acts transitively on the set of these blocks. Thus the action of
M on every block is permutation isomorphic to A. Therefore M is an iterated
subdirect product of m copies of A and thus a subgroup of the m-fold direct
product A×m of copies of A. We call such a group a subpower of A of length m
and write length(M) = m.

Definition 3.2: A transitive subgroup T ≤ Sm is called minimally transitive,
if no proper subgroup of T is transitive on {1, . . .m}. This is the case if and only
if all maximal subgroups of T are intransitive.

Remark 3.3: If T is not a minimally transitive group, the full preimage H ≤ G
under ϕ of a minimally transitive subgroup of T will contain M . H also acts
transitively on the set of blocks and thus is a transitive group of degree n as well.
The base group of H is M .

For any analysis which does not require particular properties of the block sys-
tem (for example B is not necessarily pertinent — see Definition 4.1 — to H),
we may therefore assume the factor group T to be minimally transitive.

Now consider the normalizer N := NSn(M). It contains G. We extend the
block action ϕ to N and denote its kernel and image by K := kerϕ and R :=
Imageϕ. By definition K ∩ G = M and T = Gϕ ≤ R is a transitive group of
degreem. Denote the full preimage of T by S = GK. Then G/M is a complement
to K/M in S/M . Figure 2 serves as an illustration.

Vice versa, if T ≤ R is a transitive subgroup, and S = T
−1
ϕ its full preimage,

every subgroup M ≤ H ≤ S such that H/M complements K/M in S/M has
transitive image T = Gϕ and contains M . H therefore is a transitive subgroup
of Sn. Thus:

Lemma 3.2: The imprimitive groups, which are not inflations, are preimages of
complements to kerϕ/M in S/M , where M is a subpower of a transitive group
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A ≤ Sl with transitive normalizer N = NSn(M), and Sϕ ≤ Nϕ is a transitive
subgroup.

To construct all transitive groups which are proper extensions it is thus suffi-
cient to construct first all possible base groups M , and then to get for each base
group M the corresponding transitive groups as preimages of complements in a
factor group of the normalizer of M .

4. Eliminating Duplicates

We now want to use the structure analysis of the previous section to describe
transitive subgroups of Sn up to conjugacy in Sn. For this we will have to analyze
the influence of conjugation on the construction via base groups. One further
complication is that we fixed one block system B in the preceding analysis, while
a transitive group typically has several block systems. To overcome this problem
we will try for a transitive imprimitive group G to mark one block system as
“special”. For this we shall assume that the classes [T ] of transitive groups of
smaller degree are ordered (in an arbitrary way, for example by comparing index
numbers in a classification of groups of that degree, see section 13) and denote
by Tm the set of classes of degree m.

Definition 4.1: Let G ≤ SΩ be transitive and imprimitive, preserving the par-
tition B of Ω as a block system. Then B is called pertinent to G if:

P1 G affords no (proper) block system with blocks of smaller size.

P2 Among all block systems with blocks of this size, the order of the kernel of
the action on the set of blocks (the group M in the last section) is minimal.

P3 Among those block systems the class [(StabG(B1))
B1 ] of a block stabilizer’s

action on one block (unless it is trivial) is minimal in Tl (l = |B1|) .

P4 Among those block systems the class [T ] of the block action is minimal in
Tm (m = |B|).

The criteria for pertinence have been chosen to permit a quick test whether a
given block system is pertinent to a group. Obviously every imprimitive group
has a pertinent block system, but there may be several ones (for example the
Klein four group 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 has three pertinent block systems). The
conditions are however sufficiently restrictive that the case of several pertinent
block systems usually corresponds to automorphisms of the group that are in-
duced by its normalizer in the symmetric group.

To test for pertinence, we will have to compute all block systems [Schönert and
Seress, 1994]. We also need to identify and compare the classes [T ] of transitive
groups of smaller degree. The easiest way to do this seems to be to use the
identification process described in section 13 and to compare the indices of the
classes of groups in Tm.
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When constructing imprimitive groups, we will construct groups with respect
to a pertinent block system. If a group has been constructed from a block system
which turns out to be not pertinent, we can immediately discard it (as it will be
constructed also with respect to a pertinent block system).

We also note that pertinence is invariant under conjugation by elements of
the symmetric group: if B is pertinent to G then Bg is pertinent to Gg. Tests
for conjugacy therefore can assume that the pertinent block system of one group
must be mapped to a pertinent block system of the other group. This greatly
reduces the difficulty of conjugacy tests and eventually will lead us to a kind of
parameterization of the imprimitive groups that we shall use for the construction.

4.1. Total ordering of groups

In eliminating conjugates we will also need a “tie-break” rule that tells us which
of two conjugate groups to pick. The easiest way to do this is to pick the “small-
est” group with respect to some total order.

We shall therefore assume that we have a total order � defined on the set
of all permutation groups. We also assume (as this will be useful) that this
order is invariant under translation, i.e. if we replace for a fixed integer j each
point i by i + j (for example for j = 5 the permutation (1, 2, 3) would become
(6, 7, 8) then the ordering of groups remains invariant). The comparison of the
lexicographically smallest generating systems of Hulpke and Linton [2003] for
example fulfills these conditions.

In the following description we will refer to choices such as “the minimal group
in the list”, implying comparison with respect to this ordering �.

4.2. Inflations up to Conjugacy

Because of condition P2, we can separate the case of inflations completely from
the case of faithful action and we will deal with them separately:

Let G,H ≤ Sn be inflations with respect to pertinent block systems B and C.
We assume that G and H are conjugate via the inner automorphism σ of Sn.
Because of pertinence condition P4, G and H must be inflations of the same
transitive group T ≤ Sm. Lemma 3.1 parameterizes these up to conjugation.

The process to construct representatives of all classes of inflations now pro-
ceeds as follows for each representative T of the classes of transitive groups of de-
gree m

∣∣ n: Compute representatives of the Aut(T )-classes of maximal subgroups
U of the point stabilizer StabT (1) for which the index is

[
StabT (1):U

]
= l = n/m.

For each representative compute the corresponding inflation.
In most cases this point stabilizer is so small that it is easy to get the maximal

subgroups by computing all subgroups or using the method for solvable groups
of Eick [1993]. If the groups get bigger the methods of Eick and Hulpke [2001]
and Cannon and Holt [in preparation] could be used. Since the computation of
Aut(T ) can be difficult, the following criterion can be helpful to determine the
cases, in which Aut(T ) can be replaced by the normalizer NSm(T ).



A. Hulpke: Transitive Permutation Groups 8

Remark 4.2: Let V1, V2 be maximal subgroups of the point stabilizer U =
StabT (1) and α ∈ Aut(T ) with V α

1 = V2. Thus V2 ≤ U and V2 = V α
1 ≤ Uα.

If α is not induced by NSm(T ) then Uα is not a point stabilizer ([Dixon and
Mortimer, 1988, Lemma 1.6B]). Thus the inflation of T via V2 has two maximal
block systems (corresponding to U and to Uα) such that the image of the action
on the set of blocks is permutation isomorphic to T .
Instead of computing Aut(T ) it is therefore worth to check first whether any of
the inflations (for classes fused under NSm(T )) has this property; if not, then no
extra fusion under Aut(T ) will take place.

4.3. Conjugacy of Proper Extensions

We now want to examine conditions for conjugacy under Sn. Let G,H ≤ Sn

be both imprimitive groups that arise from the pertinent block systems B and
C respectively with base groups M C G and M̂ C H. We assume that neither
group is an inflation, so M 6= 〈1〉 6= M̂ .

Suppose that there is an element g ∈ Sn such that H = Gg. Then Bg is a
block system pertinent to H = Gg, the kernel of the corresponding block action
is M g C H.

Assume first that M g = M̂ : Since conjugate base groups M will yield conju-
gate classes of transitive groups we need to construct the base groups M only up
to conjugacy. In this case we thus have that M = M̂ . The conjugating element
g then normalizes M and is thus contained in N = NSn(M). It thus induces an
inner automorphism of N/M which maps G/M to H/M and GK/K to HK/K
and Gϕ ≤ Nϕ to Hϕ.

Vice versa conjugate subgroups Xϕ, Y ϕ ≤ Nϕ lead to conjugate preimages
X, Y ≤ N and conjugate classes of complements to K/M .

Representatives up to conjugacy by Nϕ can be obtained as follows: First
classify the transitive subgroups of Nϕ up to conjugacy; then compute for each
preimage S representatives of the classes of complements to K/M , and finally
compute representatives for the further fusion under the action of N/M . (In
fact, since S must be stabilized, only the action of the preimage of NNϕ(Sϕ)
is relevant.) The transitive groups then are obtained as preimages under the
natural homomorphism N → N/M .

The second case is that of M g 6= M̂ . Then Bg 6= C is a second block system
pertinent to H. This case therefore can only occur if the resulting groups have
at least two pertinent block systems. If this is the case, we have to check for each
block system pertinent to the group (except for the one with respect to which it
has been constructed) whether the group has also been constructed in another
way.

To do so for a group G, we compute conjugating elements gi such that the
different pertinent base groups Mi ≤ G are brought into their “normal” form
(i.e. the normal form used in the construction of the possible base groups, see
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section 7.1). We can do this with the same algorithms as will be used in the
process to construct all possible M .

We shall now assume that all conjugates M gi

i are in normal form. Next, we
introduce an arbitrary total order on all base groups. We discard G, if any M gi

i

is smaller (in this order) than the M with respect to which G was constructed.
(One could have made this an extra condition for pertinence.)

The only remaining case is that M is equal to some M gi

i . In this case we have
to keep the affected groups in a separate list and finally test them via a backtrack
search for conjugacy in Sn, discarding conjugates. (This situation happens rarely.
It also is the only place in the construction where we have to test for conjugacy
of transitive groups in Sn.)

5. The construction algorithm

Based on the preceding structure analysis, we obtain the following construction
algorithm for (representatives of) the transitive groups of degree n.

1) For each divisor l
∣∣ n construct representatives of the imprimitive groups

with pertinent block system with m blocks of size l as follows (Steps 2-11):

2) Compute representatives of all groups that are obtained as inflations (see
section 4.2).

3) Compute representatives of all possible base groups M with m blocks (see
section 6). For each such M ≤ A×m

4) Compute the normalizer N = NSn(M). (By Theorem 3.1 we have that
N ≤ W = C o Sm where C = NSm(A).)

5) Compute the action ϕ of N on the blocks. In the image group R
compute representatives of the classes of transitive subgroups (see sec-
tion 10.1). For each preimage S of such a subgroup

6) Compute representatives of the conjugacy classes of complements
to kerϕ/M in S/M . Obtain representatives of the NN(S)-classes of
these (see section 10.2). Every preimage G of such a complement
under ϕ is an imprimitive group with base group M .

7) For every such G, compute all block systems.

8) Eliminate G if the construction block system is not pertinent.

9) If G has more than one pertinent block system, compute for each
pertinent base group Mi a conjugating element gi such that M gi

i is
in normal form. Discard G if M is not minimal among these.

10) If several conjugates M gi

i are equal to M , store M in a special list
of groups that have to be filtered for Sn conjugacy. Otherwise add
G to the list of all imprimitive groups (see section 4.3).

11) Eliminate conjugates from the list of groups with several pertinent base
groups conjugate to M . Add the remaining representatives to the list
of groups.
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12) Add representatives of the primitive groups of degree n (see section 2.1).

6. Construction of all possible base groups

The first (and most time consuming) part of the algorithm is to construct all
possible base groups M . We remember that each M is a subpower of m copies of
a group A, where A ≤ Sl is a normal subgroup of a primitive group P = Uψ of
degree l and index [P :A] bounded according to (1). For each group A that fulfills
these conditions, we have to compute subpowers of length m up to conjugacy.

The general process for this is a recursive construction that will be described
in section 7. However, since we are only interested in subpowers that have a
transitive normalizer in Sn, the construction tree can be pruned substantially.
Methods for this will be described in section 8.

In many cases we can also show, that a transitive group of degree n must not
only permute the blocks, but also permute the points in the blocks in a nice
way. In this situation the potential subpowers of length m are subgroups of A×m

which are invariant under an automorphism action. We shall study this situation
in section 9.

From now on, assume that A ≤ Sl is fixed and let C = NSl
(A). We shall

regard a subpower M of length m as a subgroup of A×m C C×m which is given
in a natural way as an intransitive subgroup of Sn (n = lm). The list of orbits
of C×m is denoted by

B = {{1, . . . , l}, . . . , {n− l + 1, . . . , n}},

we call the subsets of B components. Thus the constituent projections

πi :
C×m → C

(c1, . . . , cm) 7→ ci

can be considered as restrictions to the blocks Bi ∈ B. We also define projections

µi :
C×m → C×i

(c1, . . . , cm) 7→ (c1, . . . , ci)

Definition 6.1: We call M←−
i

:= Mµi the i-th initial part of M ; we also call M

a completion of its initial parts.

We finally set W = C o Sm. Then if M is a subpower of A of length m we have
(by Theorem 3.1) that NSn(M) ≤ W .

7. Construction of Subpowers

A subpower M of length m is a subdirect product of its initial part M←−
m−1

with

A. Since the initial part is a subpower again, we can construct subpowers of
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increasing length recursively, starting with A. On the i+1-th level we then have

to construct all subdirect products of all initial parts M←−
i

with A.

According to Remak [1930] the subdirect products of an initial part M←−
i

with A

are parameterized by pairs of normal subgroups of M←−
i

and of A with isomorphic

factor groups, as well as by the isomorphisms between these factor groups:

In a subdirect product M←−
i ̂A with projections µi → M←−

i
and πi+1 → A

these normal subgroups are the projection kernel images (kerµi)πi+1 C A and

(kerπi+1)µi C M←−
i

.

7.1. Canonical Representatives

This recursive process would construct all subdirect products. Reducing the list
to representatives up to conjugacy then would become very expensive. We shall
therefore – as far as possible – try to construct only representatives and to weed
out as early as possible in the construction process those partially constructed
products that will only lead to conjugate subdirect products. The key to this aim
will be to designate “canonical” representatives, such that each product is con-
jugate to exactly one canonical representative, and to restrict the construction
as far as possible towards constructing only canonical products.

Definition 7.1: If X and Y are permutation groups, we say that Y is small
under X, if Y is minimal in the orbit Y X = {Y x | x ∈ X} (with respect to the
total ordering � on groups defined in section 4.1).

We denote by Ci the copy of C in C×m acting on the i-th component of B. A

subpower M is considered as a subdirect product of its initial part M←−
m−1

with A,

the constituent projections yield normal subgroups F C M←−
m−1

and E C A. In the

subdirect product the A-part then acts on the m-th orbit, so we consider A as
a subgroup of Cm.

Definition 7.2: A subpower M is called canonical if the following conditions
hold:

K1 The initial part M←−
m−1

is canonical (and so — by induction — are all other

initial parts).

K2 F is small under NCoSm−1

(
M←−

m−1

)
. (We consider C o Sm−1 to be acting on

the first m− 1 orbits in B.)
K3 E is small under Cm.

K4 Under the remaining W -conjugates of M , fulfilling conditions K1 to K3,
M is minimal with respect to the total ordering on all groups.
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At the first view, this definition might look very complex. Its parts however
fit a recursive construction: Condition K1 ensures that we only need to extend
canonical representatives, conditions K2 and K3 restrict the number of products
to construct.

Lemma 7.1: For each subpower M there is exactly one canonical representative
in the class [M ] of M under the action of W .

Proof: Condition K4 ensures there is at most one canonical representative. By
conjugating with C o Sm−1 we can ensure condition K1. This condition will not

be affected by further conjugation with NCoSm−1

(
M←−

m−1

)
×Cm. We can thus fulfill

conditions K2 and K3 so that the set of canonical representatives is not empty.
2

If a subpower M is given, we can find the canonical representative of [M ]
in a backtrack search, in which we construct all conjugates of M which fulfill
conditions K1 to K3 and then take the minimal one among them.

The conjugating elements correspond to the leafs of a tree, given by the decom-
position of the acting wreath productW = C oSm of the formW = T1C1T2C2·· · ··
TmCm with Ti a transversal for the left cosets StabSm(1, . . . , i− 1)/StabSm(1, . . . , i)
in the factor Sm. (This transversal consists of representatives for each j ∈
{i, . . .m} that map the j-th block to the i-th block.) We traverse this tree,
selecting first all possible t1, then all possible c1, then all t2 and so forth and
computing the corresponding conjugates.

As a partial product t1c1t2c2 · · · · · tici defines the initial part
(M g)
←−−−

i
, we only

need to consider those branches of the tree, for which this initial part is canonical
(by condition K1). Condition K2 then serves as a restriction on the possible ti,
condition K3 as a restriction on ci.

An explicit description of the backtrack algorithm used to construct for a given
M its canonical conjugate can be found in [Hulpke, 1996, IV.2].

7.2. Construction of subpower representatives

Since we only want to construct subpowers in canonical form, the construction
process can be trimmed down as well: To construct representatives of all subpow-
ers of length m we inductively construct canonical representatives of subpowers
of length 1, length 2, and so on up to length m. In each step, we construct

the subpowers of length i + 1 as subdirect products of an initial part B = M←−
i

(which is a subpower of A of length i) with the group A. For each pair (B,A), we
compute all pairs of normal subgroups F C B and E C A such that the factor
groups B/F and A/E are isomorphic.

To compute the normal subgroups, the algorithm of Hulpke [1998] can be used.
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We once precompute the normal subgroups of A and then only need to consider

normal subgroups of B = M←−
i

of suitable index.

However, as B often possesses many normal subgroups, and we are only in-
terested in normal subgroups whose factor is isomorphic to a factor of A, the
following two shortcuts are used in the case of a solvable A: If the derived length
of A is j, we only need to find normal subgroups above the j-th derived subgroup
of B.

The second shortcut involves iterated maximal subgroups:

Definition 7.3: Let G be a group, U ≤ G and j ∈ N. We say that U is a j-ply
maximal subgroup of G is there is a chain of subgroups G = M0 ≥ M1 ≥ · · · ≥
Mj = U such that Mi ≤Mi−1 is a maximal subgroup. (We do not require a chain
of minimal length.)

Now suppose that every normal subgroup in A is the core of a j-ply maximal
subgroup of A (in practice often j ≤ 2). In this case we compute (by the method
of Eick [1993]) the kernels of all j-ply maximal subgroups of B.

Because of conditions K2 and K3 we only need to consider the case that F
is small under NCoSi−1

(B) and E is small under C. We can therefore reduce the
choice of E and F to suitable orbit representatives.

For each such pair (F,E) we consider all isomorphisms χ : B/F → A/E.
These isomorphisms are given by one isomorphism, and the automorphisms of
the factor group (again precomputed once for all factor groups of A).

Furthermore we only need to consider these automorphisms of the factor group
up to automorphisms induced by NNCoSi−1

(B)(F ), respectively by NC(E).
For each isomorphism obtained this way, we form the corresponding subdirect

product M . We finally compute the canonical representative of this M and check
by comparison whether M is canonical and collect all canonical representatives
found in a list.

Remark 7.4: In practice it is worth to delay the – expensive – canonicity test
to situations in which two subpowers have been constructed which are not known
to be non-conjugate due to invariants such as the orders of the groups, orders
of the derived subgroups, cycle structures of elements and – for small groups –
even isomorphism type.

Only in the case that two groups with the same set of invariants arise, both
groups are tested for canonicity and those groups that are non-canonical repre-
sentatives (it could be either group or both or none) are discarded.

The algorithm thus keeps a list of verified canonical representatives and a sec-
ond list of “presumably canonical” representatives. At the end of the construction
process the groups remaining in this list (i.e. each of the groups is uniquely deter-
mined by its invariants among all constructed groups) are automatically proven
to be canonical as they could not be conjugate to any other group.

Again, for explicit pseudo-code and an example construction the reader is
referred to [Hulpke, 1996, IV.3].
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8. Transitivity Conditions

As described so far, the algorithm constructs all W -classes of subdirect products.
Once m gets larger (usually beyond 6 or 7), however, their number gets in the
range of a few hundred and construction can become exceedingly tiresome. On
the other hand, we are only interested in subpowers that can be the base group
of a transitive group. So all subpowers that cannot lead to such a base group can
be discarded immediately, reducing the number of objects to be investigated.

The first reduction of this kind is straightforward: Once a subpower of (full)
length m has been constructed, we compute its normalizer in W = C o Sm

and check whether it acts transitively and whether the normalizer admits block
systems of smaller block size (in which case the block system used for the con-
struction is not pertinent to the resulting transitive groups due to property P1).
If either of these is the case, the group is immediately discarded before checking
for canonicity.

Much more desirable, however, is a criterion that will prune the construction
tree at higher level branches, if they cannot lead to a subpower with transitive
normalizer action. For this we study the interaction of the different projections
of a subdirect product:

8.1. Component Projections and Signatures

Definition 8.1: Let Mi := ker(πi) ∩M = {(a1, . . . , am) ∈ M | ai = 1} and let
M→ j

i := Miπj.

We now fix two components 1 ≤ i < j ≤ m and define

$ := (πi, πj) :
C×m → C × C

(c1, . . . , ci) 7→ (ci, cj)

Then M$ is a subdirect product of Ai with Aj induced by the normal subgroups
M j

i C Aj and M i
j C Ai. The corresponding factor groups must be isomorphic,

thus
A/M→ j

i
∼= A/M→ i

j . (2)

If we identify C×i with C×mµi we have that µjπi = πi for i ≤ j. We therefore
can compare the projections of M with those of an initial part of M :

Lemma 8.1: For i, j ≤ k ≤ m we have M→ j
i =

(
M←−
k

)→ j

i

Proof:

M→ j
i = {mπj | m ∈M,mπi = 1} = {mµkπj | mµk ∈Mµk = M←−

k
,mµkπi = 1}

= {mπj | m ∈ M←−
k
,mπi = 1} =

(
M←−
k

)→ j

i

2
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Again, let W := C o Sm = C×m o Sm and N := NW (M). Then N permutes
the blocks in B via the action ϕ : N → R ≤ Sm. We now shall define an action
of R on the set of the Mi:

Lemma 8.2: Let g ∈ N with jgϕ = i. The automorphism of M induced by g is
called θ. Then there is an α ∈ Aut(A), induced by some element c ∈ C such that

θπi = πjα = π(i(g
−1ϕ))α, (3)

Proof: Let g = rc be a decomposition according to the semidirect product struc-
ture of W with c = (c1, . . . , cm) ∈ C×m and r permuting the components as gϕ.
For m ∈M we have

mθπi = (c−1r−1mrc)πi = ((mr)c)πi = ((mr)πi)
(cπi) = (mπj)

ci = mπjα,

with α denoting the inner automorphism of C induced by ci. 2

Lemma 8.3: For g ∈ N we have (Mi)
g = M(i(gϕ)).

Proof: We have

(Mi)
g = {mg | m ∈M,mπi = 1} = {m ∈M | (mg−1

)πi = 1}.

Inverting (3) yields mg−1
πi = mπ(i(gϕ))α

−1 with α induced by an element of C.
Therefore

(Mi)
g = {m ∈M | m(π(i(gϕ))) = 1α = 1} = M(i(gϕ)).

2

Thus for r ∈ R the action

(Mi)
r := (Mi)

g = Mir (4)

with gϕ = r is well defined and acts as a group isomorphism. Consequentially a
transitive action of N implies a transitive action of R ≤ Sm on the set {Mi}.

We now examine the influence of this action on the M→ j
i . By Lemma 8.2 the

action of g ∈ N may introduce automorphisms α induced by an element of C.
Therefore we consider classes [E] of normal subgroups E C A defined by

[E] = [F ] :⇔ A/E ∼= A/F.

These classes obviously encompass classes given by conjugacy with C, however
they are much easier to compute as they do not requitre a conjugacy test.

Remark 8.2: The following analysis does not use the particular definition of
these classes. In practice one can replace [·] by a weaker equivalence, for example
comparison of the groups orders, which is cheaper to check.
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By (2) we have
[
M→ j

i

]
=

[
M→ i

j

]
. Furthermore, Lemma 8.2 and 8.3 imply

for r ∈ R with gϕ = r that M→ j
ir = M→

ir πj = (M→
i )gπj = M→ j(r−1)

i α for

α ∈ Aut(A). This implies that A/M→ j
ir
∼= A/M→ j(r−1)

i . Setting j = kr we get
that [

M→ k
i

]
=

[
M→ kr

ir

]
. (5)

Thus the values of
[
M→ j

i

]
are constant on R-orbits.

Theorem 8.3 (Transitivity criterion): If the normalizer of M acts tran-
sitively on the m blocks (and thus R acts transitively on the points {1, . . . ,m}),
we have for all 1 ≤ i, j ≤ m:{[

M→ k
i

]
| k 6= i

}
=

{[
M→ k

j

]
| k 6= j

}
(counting multiplicities).

In other words: a subpower M may only afford a transitive normalizing action
if the symmetric matrix

([
M→ j

i

])
i,j

possesses the entries [E] in all rows with

equal frequencies:

∀E C A ∃e ∈ N0 : ∀1 ≤ i ≤ m :
∣∣{j |M→ j

i = [E]}
∣∣ = e

Now let Okl(M) := {[M→ j
i ] | 1 ≤ i, j ≤ m} be the set of the occurring kernel

classes.

Definition 8.4: For K ∈ Okl(M) we define a Relation ∼K on {1, . . . ,m} by

i ∼K j :⇔ [M→ j
i ] = K.

By (2) this relation is symmetric, it is trivially reflexive. The transitive closure
(also denoted by ∼K) thus is an equivalence relation.

By (5) this relation is R-invariant:

Lemma 8.4: The ∼K-classes form a block system for the action of R on {1, . . . ,m}.
We can use this relation (see section 11) to give an improved upper bound for
the normalizer of M . We also note immediately:

Corollary 8.1: If R is transitive, all ∼K-classes must be of equal order.

To simplify counting arguments needed when applying Theorem (8.3) we now
define objects which count frequencies:

Definition 8.5: Let N be the set of [·]-classes of normal subgroups of A:

N = {[E] | A/E ∼= A/E ′ for all E ′ ∈ [E]}

and let S be the free abelian group on N (written multiplicatively). For

s =
∏

[E]∈N

[E]aE ∈ S

we call deg(s) =
∑
aE the degree of s. We call such an element s a signature if

aE ≥ 0 for all [E] ∈ N .
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If s, t ∈ S are signatures such that s/t is a signature, we say that t divides s,
written t

∣∣ s. Furthermore we define for s =
∏

[E]sE and t =
∏

[E]tE the least
common multiple

lcm(s, t) =
∏

[E]∈N

[E]max(sE ,tE).

(It is easily seen that it behaves in the same way as the lcm of positive integers.)

Definition 8.6: If M is a subpower of A of length m and [E] ∈ N let

aE(i) :=
∣∣{1 ≤ j ≤ m |

[
M→ j

i

]
= [E]}

∣∣
We call signi(M) =

∏
[E]∈N [E]aE(i) the i-th signature of M . If signi(M) = s ∈ S

for all 1 ≤ i ≤ m, we say that M is in parity and simply call sign(M) := s the
signature of M .

We collect some easy consequences of these definitions:

1. deg(signi(M)) = length(M) (every component adds one to the degree).

2. For all j ≤ i ≤ m we have signj

(
M←−
i

) ∣∣ signj(M) by Lemma 8.1.

3. If N = NSn(M) is transitive, M is in parity by Theorem 8.3.

Additionally we obtain a criterion whether an initial part may be completed to
a subpower which is a base group of a transitive group:

Theorem 8.7 (Initial part criterion): Take a subpower M of length i. If

there is a transitive, imprimitive G with base group M̃ such that M = M̃←−
i

we

have that
lcm1≤j≤i(signj(M))

∣∣ sign(M̃).

In particular, we have

length(M̃) ≥ deg(lcm1≤j≤i(signj(M)).

Proof: As a base group M̃ is in parity. On the other hand the signatures of the
initial part (and thus their lcm) must divide the signature of M̃ . The last claim

follows as length(M̃) = deg(sign(M̃)). 2

8.2. Application to the construction process

Assume we have constructed a subpower M of length i < m and we want to see
whether extendingM can lead to a subpower M̃ of lengthm with transitive block
action. (If it cannot, we can discard M and do not need to construct subpowers
arising from M . This cuts off a whole branch in the recursive construction tree.)

By Theorem 8.7, we need that length(lcm1≤j≤i(signj(M))) ≤ m. If this is not
the case, M can be discarded.
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Even better pruning can be obtained by using the fact that M̃ must be in
parity. We consider the matrix of block kernel projections, whose x, y entry

is the class
[
M̃→ y

x

]
. By Lemma 8.1, the matrix [M→ y

x ], consisting of the kernel

projection classes of M , gives the minor consisting of the first i rows and columns
of this matrix. We can try to complete this minor to a full matrix (potential

projections for M̃) by adding (pairs of) entries that keep the matrix symmetric,
with diagonal 1 and compatible with the lcm of the signatures. If this turns out
to be impossible, M cannot extend to a subpower in parity and can be discarded.

For example, suppose a subpower of length 4 gives the projection matrix (the
numbers can be considered as arbitrary names of factor groups):

1 1 6 6
1 1 6 6
6 6 1 3
6 6 3 1

 .

Then the lcm of the signatures is 12 + 3 + 62 of length 5. However trying to
complete the matrix to a 5×5 matrix (adding the only possible row and column
entries to get the desired signature) yields

1 1 6 6 3
1 1 6 6 3
6 6 1 3 1
6 6 3 1 1
3 3 1 1 1

 ,

in which the last row does not have the required signature. So this subpower of
length 4 cannot lead to extension of length 5 in parity.

For a larger m there often is a potential choice for certain extending entries.
Without loss of generality (this amounts to renumbering the components by
which we extend) we can set for each new row one value arbitrarily (as far as
compatible with the lcm of the signatures) to reduce the number of choices.

9. Bases as invariant subgroups

By Theorem 3.1, we can embed a transitive group G into C oT with C = NSl
(A)

and T = Gϕ = G/M . In this embedding the base group M C G becomes a
subgroup of A×m C C o T . Conjugation with coset representatives in G induces
a homomorphism α : T → Aut(A×m). Conjugation with the complement in the
wreath product induces another homomorphism β : T → Aut(A×m). While α
depends on the group G, β is given by the wreath product structure.

Now suppose, that α is induced by β (for a choice of an isomorphism between
G/M and a complement to C×m in C o T ), i.e.

atα = atβ for all a ∈ A×m, t ∈ T. (6)



A. Hulpke: Transitive Permutation Groups 19

Then M is a subgroup of A×m which is invariant under the (known) action of
T via β. Furthermore T contains a minimal transitive subgroup T̂ , and M is
invariant under T̂ as well.

If we know a priori, that condition (6) is always fulfilled for a given A and all
minimally transitive T of a given degree (by remark 3.3 these are sufficient to
find the possible M), we can therefore obtain all possible base groups as those
subgroups of A×m, which are invariant under the action of a complement to C×m

in C o T .
Let us examine therefore, in which cases condition (6) is fulfilled. We first

note, that this is not always the case:

Remark 9.1: Let

G = 〈(1, 4, 7)(2, 5, 8)(3, 6, 9)(10, 11, 18)(12, 13, 14)(15, 16, 17),

(1, 10, 2, 11, 3, 12, 5, 14)(4, 13, 6, 15, 9, 18, 7, 16)(8, 17)〉

which is transitive of degree 18 and of order 72. The partition

B =

{
{1, 2, . . . , 9}, {10, 11, . . . , 18}

}
is a minimal block system of G. The action on the blocks has image T = 〈(1, 2)〉.
Its kernel is

M = 〈(2, 5, 9, 6)(3, 4, 8, 7)(10, 15, 16, 11)(12, 18, 14, 17),

(1, 2, 9)(3, 4, 5)(6, 7, 8)(10, 12, 17)(11, 13, 15)(14, 16, 18)〉

of order 36. The stabilizer of the block {1, . . . , 9} acts on this block as

C = 〈(2, 9)(3, 8)(4, 7)(5, 6), (1, 3, 6, 4)(2, 7, 8, 9)〉

which is isomorphic to E(9):4, the 9th transitive group of degree 9. Thus G
embeds in W = C oT . In this wreath product, the (only) class of complements to
its base group is

T ∼= K = 〈(1, 10)(2, 11)(3, 12)(4, 13)(5, 14)(6, 15)(7, 16)(8, 17)(9, 18)〉

which has 36 conjugates. However M is not invariant under either of these con-
jugates (its normalizer in each of them is trivial).

Lemma 9.1: Condition (6) is fulfilled when at least one of the following holds:

a) l = 2.

b) A is abelian and for all minimal transitive groups T̂ of degree m the condi-
tion gcd(

∣∣StabT̂ (1)
∣∣ , [C:A]) = 1 holds.

c) A is abelian and m is prime.
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d) For all minimal transitive groups T̂ of degree m: gcd
(∣∣∣T̂ ∣∣∣ , |A|) = 1 holds.

Proof: a) S2 is abelian, thus Cm does not act on itself and the action of G on
C o T is induced by the action of the natural complement T .

In the other cases we assume by remark 3.3 that G/M is minimal transitive
and T = T̂ :

b) By (1) the index of A in the image Uψ of the action of StabG(B1) on B1

divides |StabT (1)|. On the other hand, Uψ ≤ C. If gcd(|StabT (1)| , [C:A]) = 1,
we have that [Uψ:A] = 1. By Theorem 3.1, G thus embeds in A o T and each
element of G acts on A×m as a complement does.

c) Minimal transitive groups of prime degree are cyclic. So |StabT (1)| = 1 in
b).

d) The gcd criterion means that there must be a complement in G to M by
the Schur-Zassenhaus theorem [Zassenhaus, 1958, Thm.IV.27]. This complement
also is a complement to C×m in C o T . 2

In each of these cases, we compute representatives of the classes of complements
(there might be several complement classes) to C×m in C o T , where T runs
through the minimal transitive groups of degree m, and compute the subgroups
of A×m invariant under either of these complements. All possible base groups M
must be among these invariant subgroups.

If A is abelian, the invariant subgroups are submodules one can obtain via the
algorithm of Lux et al. [1994]; if A is a solvable group, the invariant subgroups
algorithm of Hulpke [1999] can be used.

Not all resulting invariant subgroups of A×m will project surjectively onto A
in each component. Again, these have to be filtered out. (This surjectivity also
can be used directly as a criterion in the algorithm of Hulpke [1999] to avoid
constructing some unsuitable groups in the first place.)

There are further variants of Lemma 9.1: Instead of using the full transitive
action, we can take the preimage H ≤ G of an intransitive subgroup Hϕ ≤ Gϕ.
If gcd(|A| , [H:M ]) = 1, there exists a complement to M in H. This complement
is a complement to C×m in the (probably intransitive) wreath product C o (Hϕ).
If every minimal transitive group of degree m contains such a subgroup Hϕ of
order coprime to |A|, we can consider subgroups invariant under the respective
complements. (Some of the resulting invariant subgroups may not afford a tran-
sitive normalizing action. These can be discarded immediately.) However if Hϕ
is chosen too small (in particular, if it is the trivial group), there will be too
many invariant subgroups to make this approach practical.

Another variant is the case that there is a normal subgroup L C A that is tran-
sitive (on m points) and for which with gcd(|L| , [A:L]) = 1. So for each subpower

M ≤ A×m, the intersection M̃ := L×m ∩M C M is a characteristic subgroup
of M , so M̃ C G. Furthermore, assume that for all minimal transitive groups T
of degree m we have that gcd(|T | , [A:L]) = 1 (but not gcd(|T | , |L|) = 1). Then

(assuming again without loss of generality that Gϕ is minimal transitive) G/M̃
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splits over M/M̃ , a complement yields a subgroup H ≤ G with Hϕ = Gϕ and

M̃ ≤ H. Thus H is transitive as well, but the base group of H is a subpower of
L. Obviously M is invariant under H.

In this situation, if we have already constructed all transitive groups H whose
base groups are subpowers of L (as we would have when constructing all tran-
sitive groups) the subgroups of A×m invariant under any of those H yield the
subpowers of A that can be base groups. We can apply this for example in the
case of l = 3, m = 9, n = 27, A = S3 and L = A3: All minimal transitive groups
of degree 9 are regular, and thus of order coprime to [S3:A3]. (In this particular
situation this reduces the total runtime from several months to two days.)

Remark 9.2: The construction of transitive groups of degree 14 and 15 by But-
ler [1993] assumes an even stronger criterion: If m is prime, there always is an
element of prime order acting by pure block permutation (i.e. a subgroup of the
factor of order p has a complement). Unfortunately this condition is too strong
even for these degrees: The 22nd group of degree 14,[

1
6−F42(7)2

]
22 = 〈(1, 11, 9)(2, 4, 8)(3, 5, 13)(6, 12, 10),

(1, 12, 7, 2)(3, 4, 5, 10)(6, 9, 8, 13)(11, 14)〉 ,

has only one block system with two blocks of order 7, and only two conjugacy
classes of elements outside the kernel. These classes both contain elements of
order 4 (and not order 2).

(Luckily, despite this wrong assertion, the lists of Butler [1993] turn out to be
correct.)

9.1. Removal of conjugates

Many of the resulting subgroups of A×m will be conjugate under the action
of C o Sm. We remove conjugacy duplicates by computing for each subgroup
V ≤ A×m a “standard” (defined by the following procedure) conjugate:

A permutation of V with the “smallest” (using an arbitrary total order) cycle
structure and the smallest class size in V is to be mapped under C o Sm to its
lexicographically smallest (comparing permutations by their images of 1, 2, 3, . . .)
C o Sm conjugate (as V ≤ C o Sm the choice of class elements is unimportant).
We find a suitable conjugating element g1 and conjugate V with it. To preserve
the condition, we then restrict conjugation to the centralizer of this smallest
element’s image (which will be in the class of “smallest” elements in V g1). We
pick the next smallest class of elements in V g1 and map one of its elements to
the smallest possible conjugate and so forth.

Sometimes the choice of a “smallest” permutation is not unique. In this case
we consider all possibilities and eventually take the smallest resulting group. This
leads to a backtrack algorithm whose performance turns out to be reasonably
fast for the groups of order at most a few thousand, which occur here. For further
details see [Hulpke, 1996, IV.5.4].
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The reason for using this process for groups of small order is, that that it
turns out to be computationally cheaper than to compute the “canonical” form
used for the construction of subpowers in each case. (However it is restricted to
small order groups as it quickly becomes memory intensive.) If base groups are
constructed as invariant subgroups we will therefore use this “smallest” conjugate
as the definition of the “canonical” conjugate.

10. Construction of transitive groups from the base groups

We now describe the second part of the construction: Given a base group M ,
construct all transitive groups with base group M so that the block system of
the construction is pertinent.

Following section 3.2, we compute N = NCoSm(M) as well as the kernel K of
the action ofN on the set B of orbits ofM . The transitive groups with base group
M arise as preimages of complements in S/M to K/M for transitive subgroups
Sϕ ≤ Nϕ.

10.1. Transitive subgroups of the block action

The first sub-task is therefore to compute the classes of transitive subgroups of
R := Nϕ. If R is small, this can be done by a straightforward subgroup lattice
computation, using the methods of Neubüser [1960], Hulpke [1999], Cannon et al.
[2001]. If R is the full symmetric group, we can take the lists of transitive groups
of degree m (which are assumed to be known a priori). The classes of subgroups
of Am are easily obtained from this list as well: We have to consider only those
groups, whose sign is even; the Sm class of a group will split in two Am classes
if and only if the normalizer in Sm is a subgroup of Am.

If R is the wreath product of symmetric groups, the following theorem classifies
its transitive subgroups:

Theorem 10.1: Let T ≤ Sm be transitive and R = SxoSy in natural imprimitive
action (m = x · y). The R-classes of subgroups of R which are permutation
isomorphic to T are in bijection to the orbits of NSm(T ) on the block systems of
T with blocks of size x.

Proof: By Theorem 3.1 R has a subgroup which is permutation equivalent to
T , if and only if T has a block system with blocks of size x. Each block system
yields an embedding of T , vice versa, each embedding imposes the natural block
system B of R as a block system on T .

Suppose that T, T ′ ≤ R are two embeddings of T , belonging (without loss of
generality) to the block systems B and C of T . The embedding T ′ = T h is given
by an element h ∈ Sm that will map the block system C onto B. If there is r ∈ R
with T r = T ′, then r · h−1 ∈ NSm(T ). Since R fixes B, the embedded groups
T, T ′ are thus R-conjugate, if and only if B and C are in the same orbit under
NSm(T ). 2
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Again, in the case that R C Sx oSy is of small index, classes of subgroups of this
normal subgroup can be deduced easily from those of the wreath product.

Remark 10.2: Using the condition given in Theorem 3.1 for T ≤ X o Y in the
natural action, one can strengthen Theorem 10.1 to describe for transitive groups
X, Y the classes of transitive subgroups of X o Y , based on the NSx(X)-classes
of transitive subgroups of X (and similar for Y ). The resulting parameterization
[Hulpke, 1996, Lemma 150] is quite technical and probably by now no longer
needed thanks to progress in the calculation of subgroup lattices and maximal
subgroups due to Cannon et al. [2001], Eick and Hulpke [2001], Cannon and
Holt [in preparation].

If we consider the groups R which arise when computing the transitive groups
of small degree (up to 30), we observe that R is either relatively small (and thus
the calculation of the subgroup lattice does not cause problems) or of relatively
small index in Sm or a wreath product (and thus one can use one of the parame-
terizations of subgroups just described). For our purposes the problem of finding
the classes of subgroups of R can therefore be considered to have been resolved.

Remark 10.3: In general, the question which block action types R are possible
for the normalizer of a subpower M remains open. It is not only of theoreti-
cal interest, but might become useful in the design of normalizer algorithms. In
particular, one can ask:

Given R ≤ Sm and a positive integer l. Is there a group A ≤ Sl and
a subpower M ≤ A×m, such that the action of NSl·m(M) on the m
blocks is permutation isomorphic to R? Can this always be achieved
(for given R) by making l big enough?

The observations from the construction process show that this is not true for
an arbitrary small l. Certainly a necessary condition is to stabilize the subdirect
product structure of M (so for example the block projections M→ j

i ).
On the other hand it is relatively easy to construct (for a big enough l) groups

M (diagonals in direct products and their direct products) such that the image
of the normalizer action is a wreath product of symmetric groups.

10.2. Complements

The next step in the construction is to take the preimage S of a transitive
subgroup of R and to compute complements to K/M in S/M and to fuse these
under NN/M(S/M). We perform these calculations in the factor group N/M
(though it also would be possible to work with preimages and thus compute
only with subgroups of Sn). The actual transitive groups then are obtained as
preimages.

If the factor group N/M is solvable, we can use the approach of Sims [1990]
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(see [Theißen, 1997, chapter 6] for adaption to factor groups) to compute a
polycyclic presentation for the factor.

Otherwise, we compute a faithful permutation representation of N/M . It is
well known [Neumann, 1986, Easdown and Praeger, 1988] that in general this
can lead to exponential growth in the permutation degree. However, for the
groups arising in this context, it turns out that a battery of heuristics (action
on orbits or elements of the normal subgroup, cosets of stabilizers of fixed points
or cosets of random subgroups – see [Hulpke, 1996, V.2]) produced permutation
representations of workable degree.

In the degree range considered, the factor K/M turned out to be always
solvable. (This is due to Schreier’s conjecture, as for these small degrees the
non-solvable primitive groups are almost simple, and for these groups K/M is a
subgroup of Out(A)×m.) We can therefore use the method of Celler et al. [1990]
(using a presentation for the factor S/K which we get from the permutation
representation of this group for example by the method of Babai et al. [1997])
to compute complements and fuse these under the action of NN(S)/M .

11. Upper bounds for the normalizer

An essential part of the algorithm is the calculation of normalizers of subpowers
in the full symmetric group. The general method used for this is a backtrack
algorithm of Theißen [1997], Leon [1991]. Since the runtime of such calculations
grows exponentially with the order of the group the normalizer is computed in,
it can be beneficial to reduce the order of this group a priori.

The strategies given in this section were used by the author for the purpose
of constructing transitive groups and worked well there. Other strategies for a
similar purpose are given for example by Miyamoto [2000].

In our situation we have an intransitive subgroup M ≤ Sn whose orbits on
1, . . . , n form the set B = {B1, . . . ,Bm} with |B1| = |B2| = · · · = |Bm| = l. We
denote the orbit actions by πi : M → Sl and assume that all projections have
the same image Mπ = A ≤ Sl. We want to compute N = NSn(M).

Let C = NSl
(A). We have seen already that N ≤ C o Sm in its natural im-

primitive action with the blocks of Sl o Sm arranged to coincide with B.
We now consider the equivalence classes ∼K (see definition 8.4). By Lemma 8.4

they must form a block system for the action of N . Then the ∼K-induced im-
primitivity of the action of N permits us to replace the factor group Sm by a
wreath product Sa o Sb. We thus know that N ≤ C o (Sa o Sb) and can perform
the backtrack calculation in this this (smaller) group.

11.1. General Normalizer calculations

The methods described so far generalize to the computation of the normalizer
of an arbitrary G ≤ Sn in Sn (such calculations are not required for the con-
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struction of transitive groups, but they might be of interest independent of the
construction).

What we will do is to follow the process outlined above. However, when certain
criteria for the transitivity of the normalizer fail, we know that the normalizer
will be contained in intransitive subgroups of Sn and we can use these again to
reduce the group in which the final backtrack computation will take place. For
the remainder of this section let G ≤ Sn and N = NSn(G).

The first reduction now concerns orbits. Let O1, . . . , Ok be the orbits of G
on {1, . . . , n} and let Pi be the image of the permutation action of G on Oi.
Then the normalizer N may map Oi to Oj only if |Oi| = |Oj| and if Pi and Pj

are permutation isomorphic. We therefore group the Oi into equivalence classes
according to their orders as well (in the case that |Oi| is small enough that
a cheap permutation isomorphism test is available, for example following the
results of section 13) as permutation isomorphism type of the Pi. Suppose the
index sets I1, . . . , Im give these orbits.

For one index set I let GI be image the of the action of G on the points in⋃
i∈Ij

Oi. If |I| > 1 we can consider the kernel projections
[
GI

→ j
i

]
. We apply the

transitivity test of Theorem 8.3 to these. If this test fails to ensure transitivity,
the orbits in I can be collected into smaller classes that must remain invariant
under the normalizer. If this is the case, we replace the Ij by smaller index sets
that reflect this refinement.

For the index set Ij we also set lj = |Oi| for one i ∈ Ij as well as Qj = Pi for
such an i. Then

N ≤
((
×
j∈I1

NSl1
(Pj)

)
o S|I1|

)
× · · · ×

((
×
j∈Im

NSlm
(Pj)

)
o S|Im|

)
∼=

(
NSl1

(Q1) o S|I1|
)
× · · · ×

(
NSlm

(Qm) o S|Im|
)

= N1 × · · · ×Nm

Normalisation must take place separately in each component of this direct prod-
uct. We therefore again consider the images Gj = GIj

of the action on the unions
of orbits and get that

N ≤ NN1(G1)× · · ·NNm(Gm)

In the computation of NNj
(Gj) we cannot do further reductions to intransitive

groups, but we might be able to reduce the wreath product Ni:
If Gj acts intransitively on

⋃
i∈Ij

Oi (this is the situation examined above in

the construction process), we proceed as above and compute the equivalence
classes ∼K . If these give (by Lemma 8.4) the existence of block systems, we can
replace the factor group S|Ij | by a wreath product Sa o Sb and replace Nj by
NSlj

(Qj) o (Sa o Sb).

If Gj acts transitively we consider instead block systems of Gj on
⋃

i∈Ij
Oi. If

a block system is uniquely determined among all block systems of G by its block
size a (or the image of the action on the blocks or the image of a block stabilizers
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action on its blocks) this block system must be preserved by the normalizer. Thus
we can again replace Nj by an iterated wreath product NSlj

(Qj) o (Sa o Sb). the

same refinement is possible if a block system becomes unique by other properties,
for example the order of the corresponding base group or the permutation type
of the image of the action on the blocks.

Taken together these reductions can substantially enhance the computation
of normalizers in the symmetric group.

12. Results

The algorithm described in the preceding sections has been used to verify the
classification of the transitive groups of degree up to 15 and to classify the
(hitherto unclassified) transitive groups of (non-prime) degrees between 16 and
30. Table 1 gives the numbers of groups of these degrees. (Degree 30 seems to
be a reasonable choice to stop a classification. A partial run of the construction
program for degree 32 produced over 150 000 groups in one subcase, before the
program had to be stopped for lack of memory.) On a 933MHz Pentium III,

Degree 2 3 4 5 6 7 8 9 10 11
primitive 1 2 2 5 4 7 7 11 9 8
transitive 1 2 5 5 16 7 50 34 45 8

Degree 12 13 14 15 16 17 18 19 20 21
primitive 6 9 4 6 22 10 4 8 4 9
transitive 301 9 63 104 1954 10 983 8 1117 164

Degree 22 23 24 25 26 27 28 29 30 31
primitive 4 7 5 28 7 15 14 8 4 12
transitive 59 7 25000 211 96 2392 1854 8 5712 12

Bold numbers indicate a hitherto unknown result.

Table 1: Transitive groups of degree up to 31

degrees up to 15 take a few minutes each, degrees 16-22 a few hours, degrees
24-30 are done in one or two days each.

Naturally, the large number of groups makes it unsuitable to list them in
printed form. The groups will therefore be made available in electronic form as
a data library for the systems GAP [GAP, 2002] (starting with release 4.3).
The groups will also be available (indexed in the same way) in the system
MAGMA [Bosma et al., 1997].
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12.1. Comparison with preliminary results

In comparison to preliminary results reported in Hulpke [1996], Conway et al.
[1998], the counts for degrees 24,27 and 28 have been amended. Due to limitations
in time and the computers available to the author, these calculations had to be
done originally in parts, could be done only once, and some of the code had not
yet been extensively tested. This caused a couple of errors which gave way to
changed counts:

The now smaller number of groups in degree 24 could be traced back to a
duplication of a base group which got introduced when pasting together results
of partial runs.

In degree 27 one base group (a subpower of S3 which was obtained as an in-
variant group using the special degree 27 argument described before remark 9.2)
was initially missing due to an error in the routine that computes invariant sub-
groups. The construction has been redone also without using this shortcut to
verify that the problem has been resolved

In degree 28 the conjugacy test for complements failed twice, while two inflated
groups were not detected to be conjugate. Again, this was traced back to the
conjugacy test.

In all cases the methods described in the following section have been used to
ensure correctness of the numbers given in Table 1.

12.2. Correctness of the results

For a classification of this magnitude (and in view of the history of the problem
reported in section 2 and in the previous section) correctness of the result is a
principal concern. Errors can be twofold:

1) Two representatives are in fact conjugate.

2) Class representatives are missing.

To eliminate errors of type 1 the obtained groups were checked for conjugates,
using the methods of section 13. In all cases the groups could either be dis-
tinguished by invariants, or an explicit conjugacy test in the symmetric group
proved them non-conjugate. This gives high confidence that errors of type 1 have
been eliminated.

Errors of type 2 are much more difficult to assess. Potential error sources
include

a) Theoretical errors in the construction process.

b) Clerical errors.

c) Implementation errors for the construction algorithm.

d) Errors in the underlying software, computer hardware etc.

The description of the construction process in this paper aims to convince the
reader that type a) errors can be excluded. Errors of type b) were eliminated
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as far as possible by automatic handling of the lists of groups (see also subsec-
tion 12.1).

Errors of type c) or d) are harder to eliminate. To minimize their impact,
the calculation was repeated several times over a period of several years and on
different machines. Also, while the initial classification was done in a development
version of GAP 3.4.4, the construction program has been converted to GAP 4
(which often provides slightly different implementations of the algorithms used)
and the classification been redone there.

Finally, for an independent check, the following test was performed: For every
transitive group in the catalog, a list of representatives of its maximal subgroups
was computed, using the method of Eick and Hulpke [2001].

From those, the transitive subgroups were selected. For every group in this list,
its representative in the catalog was determined (using the methods of section 13)
and conjugacy to it established by an explicit conjugacy test. (Similarly to the
methods in section 11, this conjugacy test needs only be performed in a wreath
product instead of the full symmetric group.)

In the few cases that maximal subgroups of twisted wreath type might arise in
degree 30 the following approach was used: Every maximal subgroup of twisted
wreath type would be a complement to the socle S C G and would be isomorphic
to G/S. Instead of computing complements, the faithful transitive representa-
tions of G/S of degree 30 were determined from the subgroup lattice of G/S.
(This works well, since |G/S| < 50000.) This produced S30-conjugates of all
relevant transitive maximal subgroups of this type.

This test also succeeded and gives an independent confirmation of the results.
It is hard to imagine a combination of program or hardware errors that would
omit a transitive group in both processes.

Remark 12.1: This test could be considered as a more simple-minded construc-
tion of transitive groups. What makes it unsuitable in practice to be used as a
construction method on its own is the problem of eliminating duplicates: Since
we have already a list of transitive groups, we can use this list to identify each
transitive maximal subgroup and only have to perform one conjugacy test (which
furthermore is bound to succeed and thus usually does not have to exhaust all
possibilities to prove non-conjugacy) for each new group.

Without such an identification feature, many more conjugacy tests would have
to be performed which renders this approach useless for an independent construc-
tion.

12.3. Minimally Transitive Groups

Of particular interest are the minimally transitive groups of a given degree. For
the considered degrees, these groups have been identified as well:

Following Royle [1987] we first form for each transitive group G (about 30)
random proper subgroups and check whether any of these act transitively (if
they do, G is not minimally transitive).
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Furthermore, if G is imprimitive with block action ϕ, and Gϕ is not minimally
transitive, then G cannot be minimally transitive (remark 3.3). We also check
subgroups of G generated by a subgroup of kerϕ (for example the derived sub-
group or one generated by random elements) and suitable transversal elements
of kerϕ on whether they act transitively.

These tests provide good filters to eliminate almost all non-minimal groups,
in particular most of the remaining groups are small. To finally prove/disprove
minimality, we have to compute their maximal subgroups [Eick, 1993, Eick and
Hulpke, 2001, Cannon and Holt, in preparation] and check whether any of these
acts transitively.

Table 2 gives the orders and indices (corresponding to the indices as used
by the transitive groups library in GAP and for degree up to 15 in agreement
with Conway et al. [1998]) of the non-regular minimal transitive permutation
groups for those degrees up to 30 which are not prime or p2 (by [Dixon and
Mortimer, 1996, Exercise 1.6.21] the minimal transitive groups of degree p2 are
regular). Every regular group is obviously minimally transitive as well, they can
be obtained from a list of all groups up to isomorphism, as given for example
by Besche and Eick [1999].

An extended list of minimally transitive groups that also gives group genera-
tors is not given here for reasons of space; it can be found at http://www.math.
colostate.edu/~hulpke/paper/transgp.html.

13. Identification of Transitive Groups

Given a group that acts transitively on a domain, it can be useful to identify the
image of this action in a library of all possible permutation isomorphism types.
Such an identification is also used in various parts of the construction process,
for example to distinguish isomorphism classes in pertinence criterion P4.

The easiest way to do this seems to be to check properties of the groups that
are invariant under conjugacy. For a first quick elimination of candidates, we
use the order of a group, orbit lengths (and action parities) for the action on
2,3 and 4-sets as well as 2-sequences and occurring cycle structures of elements.
(This data does not take much storage space and is precomputed once and stored
with the groups.) Eliminating all group types which do not agree on all of these
invariants usually leaves only a handful or even just one candidate.

The next class of tests has a substantially bigger identification “fingerprint”
which therefore is not stored a priori. Instead it is computed for the group to
be identified as well as for representatives of the possible remaining classes: We
check not only cycle structures, but also the orders of the corresponding classes.
Also isomorphism invariants, such as normal subgroups or (if the group is not
too big) subgroup lattice are compared.

Finally, if even this test does not lead to a unique identification, an explicit
conjugacy test in Sn is performed. (This is necessary on average for two or three
classes in each thousand classes of groups.)
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Degree Groups
6 12: 4 36: 10

10 20: 4 60: 7 80: 8 200: 18
12 24: 7, 9 36: 17 48: 31 72: 34, 40, 46, 47 96: 57 576: 162, 166 2592: 246
14 56: 6 168: 10 196: 12 1092:30
15 60: 5 75: 9 405: 26
16 32: 33, 36, 40, 42, 49, 53 64: 77, 88, 90, 91, 92, 101, 108, 123, 127, 140, 160, 167, 170, 171,

173, 174 128: 212, 295, 323, 335, 343, 358, 363, 372, 375, 377 256: 555, 556, 559, 575, 585,
587, 589, 598, 609, 612, 620, 637, 643, 651, 682, 684, 695, 703 1024: 1118, 1133, 1146, 1187,
1196, 1207, 1210, 1212, 1229, 1232 2048: 1418

18 36: 7, 8, 10 72: 28 108: 44, 49, 54 324: 130, 141, 142, 143 576: 177 972: 246, 259 1296:
280 2448: 377 34992: 688 69984: 753

20 40: 13 60: 15 80: 17, 23 120: 31, 32 160: 43, 44 200: 47, 50, 55, 56 320: 79, 83 360:
89 400: 107, 110, 115 720: 146, 148 800: 161 960: 172 1280: 188, 193 2560: 239, 245,
247 10000: 385, 392, 399, 402 20000: 473, 478, 496, 501 40000: 596, 621, 628 51200:
651 160000: 818, 820 518400: 939

21 3087: 35 5103: 39 20160: 67
22 484: 8 7920: 22 11264: 23 443520: 38
24 48: 47, 50, 51, 55, 56, 57, 58, 59 72: 63, 72, 76, 81, 82 96: 93, 94, 96, 122, 174, 179,

180, 181, 184, 187, 191, 194, 198 144: 213, 214, 215, 216, 238, 239, 240, 241, 255, 257,
258, 259, 263, 267, 268, 273, 278 192: 307, 308, 309, 310, 311, 312, 315, 316, 317, 378,
379, 389, 424, 460, 468, 470, 481, 483, 496, 506 288: 596, 597, 598, 620, 622 384: 731,
945, 992, 998, 1027 576: 1371, 1392, 1410, 1489, 1491, 1505, 1506, 1508 768: 1633, 1634,
2128, 2129, 2130 1152: 2788, 2801, 2808, 2814 1296: 2898, 2901, 2902, 2928, 2937, 2939,
2941, 2943, 2944, 2946 1536: 3075, 3098 2304: 5077, 5078 2592: 5268, 5275, 5276, 5277,
5278, 5279, 5280, 5281, 5289, 5295, 5299 3072: 5509, 5535, 5693, 5872, 5873 4608: 7443,
7444, 7445, 7446, 7447, 7448 5184: 7688, 7690, 7692, 7694, 7695, 7696, 7697, 7729, 7731,
7737, 7754 6144: 7882, 7905 6912: 9630 9216: 9853, 9860, 9865, 9867 10368: 10036,
10162, 10163 12288: 10283 18432: 12266, 12269 419904: 20212, 20218, 20224, 20227,
20230, 20235, 20237, 20244 663552: 20656 839808: 21163, 21167, 21168, 21177, 21178,
21180, 21183 1327104: 21809 1679616: 21987, 21988, 21989, 21990, 21991, 22004, 22005,
22006, 22007, 22010, 22012, 22238, 22240, 22241, 22242, 22243, 22244, 22245 3981312:
23148, 23149 6718464: 23500, 23502, 23504, 23506, 23508, 23510, 23649, 23651, 23654,
23655 13436928: 23990

26 52: 4 1352: 20 5616: 39 7800: 42 53248: 64
27 81: 19, 24, 25, 26 729: 234, 235, 240, 242, 246, 247, 252, 253, 254 19683: 981, 988
28 56: 11 112: 20 168: 32 196: 35 336: 42, 43 392: 48, 55, 56, 57, 58 448: 61, 66 896:

98, 105 1092: 120 1344: 152, 153 2184: 200, 201 3584: 262, 263 10752: 371 76832: 630
172032: 795 802816: 1169

30 60: 6, 7, 9, 11 120: 25, 30 150: 35, 37, 38, 40 180: 45, 46, 48, 49 240: 50, 52 300: 70, 71,
78 600: 126, 131, 142, 143, 158 720: 162, 171 810: 190, 191, 192, 193 960: 216, 217 1500:
271, 277, 279, 281 1620: 293, 295, 296, 298, 299, 300, 302 1800: 321 4860: 549, 558 6000:
588, 589 6480: 629 14400: 817 15000: 866 19440: 908, 909, 911, 912, 920, 924 22500:
933, 935 43740: 1168 45000: 1180 307200: 1705 414720: 1801 1312200: 2104,
2107 1500000: 2165, 2191 3000000: 2420 6000000: 2763 12000000: 3141 75582720:
4096, 4105 151165440: 4370, 4376, 4378

Groups are listed by their index number (as given by GAP), bold numbers give orders. An
underlined index indicates the group is not solvable.

Table 2: Indices of non-regular minimally transitive groups
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Such a test, that returns the index number of the class of a transitive group,
is available in GAP via the command TransitiveIdentification.

In most cases these tests work very quickly. There are however two pairs
of groups in degree 30, with indices 2230, 2231 (structure 56.A5.2) as well as
indices 4335, 4339 (structure 56.26.A5.2), in which both groups have very similar
structure and are therefore hard to distinguish. For these two pairs the fastest
identification is to do an explicit isomorphism test.

In fact it turns out that the second pair of groups (indices 4335/4339) is a
Brauer pair (that is both groups have the same character table, including power
maps, see Lux and Pahlings [1999]). To the author’s knowledge this is the first
example of a Brauer pair of non-solvable groups for which no proper factor groups
form a Brauer pair.

14. Acknowledgment

Much of the initial work in this article was done for the author’s dissertation at
RWTH Aachen under the supervision of J. Neubüser.
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XLIV:793–795, 1857.
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