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ABSTRACT

This paper describes an effective method for enumerating
all composition series of a finite group, possibly up to action
of a group of automorphisms. By building the series in an
ascending way it only requires a very easy case of comple-
ment computation and can avoid the need to fuse subspace
chains in vector spaces.

As a by-product it also enumerates all subnormal sub-
groups.

Categories and Subject Descriptors

I.1.2 [Symbolic and Algebraic Manipulation]: Alge-
braic Algorithms

General Terms

Algorithms

Keywords
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1. INTRODUCTION
A composition series, that is a series of subgroups each

normal in the previous such that subsequent factor groups
are simple, is one of the basic concepts in group theory.
The aim of this paper is to describe an effective process for
enumerating all composition series of a finite group, possibly
up to the action of a group of automorphisms.

While the Jordan-Hölder theorem states that the collec-
tion of composition factors (with multiplicity) is an invariant
of the group, groups can have a huge number of composi-
tion series (see the examples in Section 6.1 below) even when
enumerating up to automorphisms. This shows that such an
enumeration is a nontrivial task, producing useful informa-
tion.
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Subgroups that can occur in a composition series are called
subnormal, thus a list of all subnormal subgroups will be a
by-product of such an enumeration.

For solvable groups, the set of all composition series also
parameterizes the set of polycyclic presentations, up to a
choice of generators of cyclic groups. (A polycyclic presen-
tation [11, Section 8.1] is the standard way of representing
solvable groups on a computer.)

A naive approach to enumerating composition series would
be to determine the maximal normal subgroups of the whole
group and then for each such subgroup U calculate U ’s max-
imal normal subgroups in turn, iterating down. If there is a
group action one would need to form orbits on each level.

This approach will quickly run into problems. For exam-
ple consider the group G =

`
35 × GL5(3)

´
× A2

5, classify-

ing composition series up to conjugacy in G. For N = 35

there are 24 partial composition series that descend from
G and contain N . The action of GL5(3) then implies that
in each case there is one orbit of composition series through
N . The naive approach however would first enumerate max-
imal subspaces and then fuse them back into one orbit each
time, causing much redundancy and making this approach
infeasible.

The approach we use instead will only determine the pos-
sible composition series in each chief factor once, and then
combine these in all possible ways to series for the whole
group. Furthermore, the combination step involves calcula-
tions that are far easier than the determination of maximal
normal subgroups.

2. REDUCTION TO CHIEF FACTORS
We assume globally that G is a finite group, given in a rep-

resentation that allows us to test membership in subgroups,
compute subgroup orders (and their prime number factoriza-
tions), as well as compute a chief series for G. This certainly
holds for permutation groups and groups given by a PC pre-
sentation, which are the cases for which the algorithm has
been implemented. Using matrix group recognition [1] there
is no fundamental obstacle to apply it also to matrix groups,
though implementation would be harder.

This model allows for the test of subgroup membership
and computation of subgroup orders in factor groups of G.
In that it is nominally stronger than the model of a black-
box group (in which it is only possible to test for element
equality) that is sometimes used to describe computations
in factor groups; however it models the main classes of rep-
resentations of finite groups on a computer as used today,
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Figure 1: Relation to normal subgroup.

and avoids technical assumptions (such as the existence of
discrete logarithm or element order oracles, or the use of
quantum algorithms) that are otherwise sometimes needed
in the black-box model.

We identify a series of subgroups G = C0 ≥ C1 ≥ · · · ≥
Cl = 〈1〉 with the set {Ci}, inclusion providing a natural
ordering. (We shall assume that indices are always chosen
compatible with inclusion.)

Such a series {Ci} is called a subnormal series if each
subgroup is normal in the previous one, Ci�Ci−1. It is called
a composition series if furthermore each factor Ci−1/Ci is
simple, that is the series is as fine as possible.

If we consider instead the case that all subgroups are nor-
mal in G, such a series {Ci} is called a normal series; if
it is maximally refined it is called a chief series. In a chief
series the subsequent factors Ci−1/Ci do not have to be sim-
ple, but must be a isomorphic to a direct power of a simple
group, that is Ci−1/Ci

∼= Ti × · · · × Ti with Ti simple. (We
say that Ci−1/Ci is characteristically simple.)

The standard reduction of algorithmic problems in group
theory is to consider a normal subgroup N � G and recurse
to N and G/N , combining the results in the end.

We now assume that {Ci} is a composition series of G and
that N � G.

A standard exercise in abstract algebra shows that {Ci ∩
N} forms a composition series for N . (Note that there will
be duplication of subgroups, i.e. for some i we have that
Ci ∩N = Ci+1 ∩N , though Ci 6= Ci+1. Considering a series
as a set eliminates such duplicates.) Similarly, {NCi/N}i
is a composition series for G/N . As the concatenation of
the series NCi with the series N ∩ Ci yields a composition
series for G, we easily see that for each i we have that either
NCi = NCi+1, or N ∩ Ci = N ∩ Ci+1. (See Figure 1)
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Figure 2: Extension to a single step in the factor
group

To see how the enumeration problem reduces, assume that
we have classified all composition series for N and for G/N .
(The base case of the reduction is that of a characteristically
simple group, section 5 describes how to find composition
series for these.)

Also assume that we have chosen a particular composition
series N = N0 � N1 � · · ·� 〈1〉 for N , as well as a particular
series of subgroups G = D0�Di�· · ·�Dk = N that induces
a composition series for G/N . Our goal now is to determine
all composition series {Ci} of G such that {N ∩Ci} = {Ni}
and {NCi} = {Di}.

We shall construct all these series {Ci} in a process of
ascending over the series {Di}. In each step we assume that
the composition series for Di are known; the base case being
the series {Ni} for N = Dk.

To describe a single step, assume that we have a particular
composition series {Ej} for Di and want to find all series
{Cj}j for Di−1 such that {Cj∩Di}j = {Ej}j . (Figure 2) As
Di−1 �Di, the description above shows that there is exactly
one step j such that Cj ∩ Di = Cj+1 ∩ Di. We therefore
have that Cm+1 = Em for m ≥ j.

For m ≤ j we have that Em = Di ∩ Cm and Cm =
〈Em, Cj〉, implying that Em�Cm and thus Em�〈Em−1, Cm〉 =
Cm−1. Thus in the factor Cm−1/Em, the subgroup Cm/Em

is a normal (as Cm � Cm−1) complement to Em−1/Em.
We thus can construct all possible series {Ci} in a suc-

cessive calculation of normal complements, in each step m
constructing those series for which Cm ∩Di = Cm+1 ∩Di.

We describe this construction in more detail:
Let C0 = Di−1 and take (this will be the series for j = 0)

the concatenation C0 = Di−1 � E0 � E1 � · · · � 〈1〉. Next,
test whether E1 � C0, if not there are no series for j >
0. Otherwise determine all normal complements C1/E1 to
E0/E1 in C0/E1. For each such subgroup C1 we get a series



C0 � C1 � E1 � · · · � 〈1〉; all series for j = 1 are obtained
this way.

Next, for each of these series, test whether E2 � C1 and
if so determine normal complements C2/E2 to E1/E2. This
yields the series C0 � C1 � C2 � E2 � · · ·� 〈1〉 for j = 2.

We continue in the same way for increasing j as long as
Ej � Cj−1, building series that coincide with {Em} for m ≥
j.

All composition series for Di−1 that intersect with Di in
{Ej} are obtained this way, iterating over all series for Di

thus yields all composition series for Di−1.

The only task required for combining these series is the
construction of normal complements in a factor group that
has composition length two. We describe how to do this in
section 3.

If we want to determine composition series only up to the
action of some group ≤ Aut(G) a further fusion becomes
necessary. We shall describe how to do this in section 4.

3. NORMAL COMPLEMENTS
In this section we describe the required computation of

normal complements. While this can be done by cohomo-
logical methods from [7], these become overly costly given
the frequency of calculations required. Instead we shall de-
scribe direct methods for the required case of factor groups
of composition length two.

For ease of description we denote this factor group by H
and the normal subgroup to be complemented by A � H
though in practice both are factors of subgroups of G and as
described in [14] we work with representatives of elements
and pre-images of subgroups.

Theorem 1. Let H be a finite group and A � H such
that A and H/A are both nontrivial simple groups. Then
normal complements to A in H are given by the following
classification:

a) If A is not abelian there is at most one complement,
namely CH(A) if this group is nontrivial. If H/A also
is not abelian, such a complement always exists.

b) If A is abelian but H/A not, there is at most one com-
plement, namely H ′, this group is a complement if and
only if H ′ 6= H.

(The remaining two cases now assume that both A and
H/A are abelian, that is cyclic of prime order.)

c) If |A| 6= |H/A| there is exactly one complement and
this is the case if and only if [H, A] = 〈1〉.

d) Otherwise there are either 0, or q, normal complements
(where q = |A|). The case of no complements occur-
ring exactly when |x| = q2 for one (and thus for all)
x 6∈ A.

Proof. The existence of a normal complement B is equiv-
alent to H = A×B (with B ∼= H/A).
a) If A is not abelian we have that CH(A) ∩ A = 〈1〉. If
CH(A) is not trivial it thus is a complement (since A 6=
ACH(A) � H and H/A is simple). Vice versa, if a normal
complement B exists, we must have that B = CH(A). By
the proof of Schreier’s conjecture (see [9]) the outer auto-
morphism group Out(A) is solvable for a simple nonabelian

A. Thus if H/A is nonsolvable, every element of H must in-
duce an inner automorphism which shows that in this case
CH(A) is not trivial.
In all other cases A is abelian, |A| = q prime, and thus it is
a necessary condition for the existence of a normal comple-
ment that A ≤ Z(H).

b) If H/A is simple nonabelian, then AH ′ = H. Thus
if H ′ 6= H we must have that A ∩ H ′ = 〈1〉 and H ′ is
a normal complement to A. Vice versa if B ∼= H/A is a
normal complement we have that H ′ = (A×B)′ = B′ = B.
In the remaining cases we have that both A and H/A are
abelian. Thus a necessary condition for the existence of
normal complements is that A ≤ Z(H), that is [H, A] = 〈1〉.
But then H/Z(H) is cyclic and thus H is abelian. We shall
assume this now.
c) If |A| 6= |H/A| the complements to A are simply p-Sylow
subgroups for p = |H/A|. As H is abelian there is only one
such subgroup.
d) Otherwise |H| = q2 for q prime. If H ∼= Cq2 there is no
complement, if H ∼= Cq × Cq there are q complements, all
normal.

We give more details on how to find these complements
in practice:

3.1 Nonabelian normal subgroup
In this section we assume that A is simple nonabelian.

We may assume that we know the isomorphism type of A,
for example from recognition performed when setting up the
initial data structure for G, following [3, 16].

Assume initially that H is a direct product. Our task is
to find a nontrivial element c ∈ CH(A). (One such element
is sufficient, as CH(A) ∼= H/A is assumed to be simple and
thus minimally normal. Therefore CH(A) = 〈c〉H will be
the normal closure in H of 〈c〉.)

The basic process of decomposing a group into direct fac-
tors in a black-box context is already described in [2]. As
we do not know whether the group is a direct product we
describe a variant that also can prove the non-existence of a
direct product decomposition. (Note that in some cases we
know a priori that H must be a direct product, for example
if [H:A] is not prime, or if it does not divide |Out(A)|.)

To find centralizing elements we set up the following prob-
abilistic process: Choose one x ∈ H, x 6∈ A. By taking a
suitable power of x we may assume without loss of generality
that xp ∈ A for a prime p| [H:A].

Now repeatedly choose (pseudo-)random elements r ∈ A
(using for example [6]) and test whether |rx| = pq with
gcd(p, q) = 1. In this case, form c = (rx)q and test whether
the nontrivial element c centralizes A. If so, it is a central-
izing element as desired.

To see that this process is likely to succeed, write x =
(a, b) with a ∈ A, b ∈ CH(A). We know that |b| = |Ax| = p.
If r ∈ A is chosen randomly, then rx = (ra, b) with ra
ranging randomly over A.

But by [4] there is a fair probability w that a random
element of A is of order coprime to p. (Concretely, [4] prove
that w ≥ 2/29 for a sporadic A; w ≥ 26/(27

√
n) for A ∼= An;

w ≥ 1/(2n) if A is classical with a natural projective action
in dimension n− 1; and w ≥ 1/15 for sporadic A.)

Thus with probability w we have that |ra| = q is co-
prime to p. In this case |rx| = pq with gcd(p, q) = 1 and



c = (rx)q =
`
(ra)q, bb

´
= (1, bq) is a nontrivial element of

CH(A).
If CG(H) is not trivial, this test will succeed with proba-

bility 1− (1− w)k after k iterations.

If this test fails, however, we need to prove that A has
no normal complement in H. We may assume here that
[H:A] = p is prime, as otherwise the existence of a normal
complement is guaranteed. What we have to show is that
H ∼= A.Cp ≤ Aut(A).

Generically, this amounts to recognizing the structure of
H: For example one could consider the conjugation action
of H on A, and use black-box recognition to test whether
the group is isomorphic to A. In practice one often can do
much better:

The process of searching for a centralizing element de-
scribed above produces elements rx that are chosen ran-
domly over one coset of A. As we assume that H/A is of
prime order, the orders of rx thus sample the element orders
of H outside A.

If |rx| is an order that does not arise in A, and the power
(rx)q used above does not centralize A we can deduce that
H is not a direct product. This is because (a, b) ∈ A×Cp has
element order |(a, b)| = lcm(|a| , |b|). This differs from the
order of a only if |b| = p is coprime to |a|, but this is exactly
the case in which the order-p power is (1, b) and centralizes
A.

An inspection of nonabelian simple groups up to order 2 ·
1013 (i.e. groups smaller than G2(9)) reveals that (excluding
groups of the form L2(q) which always have such elements)
104 of the 117 simple groups A have such elements in every
extension in Aut(A), all with ratio at least 1/200. The only
exceptions are (all for p = 2): U3(3), L3(5), U3(7), S4(8),
L3(17), U3(19), U5(3), L3(29), U3(31), L3(41), O−8 (3), and
PSU(3, 43).

Even if element orders do not allow to recognize the case
of not being a direct product, the group H arises in our
situation not on its own, but as a subfactor of the larger
group G. As part of the initial setup (section 6) we might
have set up already (e.g. as in [12]) an epimorphism from G
onto G/Rad(G) with the image that lies in (a direct product)
of groups of type Aut(T )oSm for T simple nonabelian. Then
H is not to be a direct product if and only if the image of
H under this homomorphism has order |A| · p and does not
lie in the subgroup T o Sm. This is readily tested.

3.2 Abelian normal subgroup
If A ∼= Cp is abelian and H/A is simple nonabelian then

A must be central, as H/A has no nontrivial representation
in dimension 1. The two possible extensions thus are either
the direct product, or (a quotient of) a covering group of
H/A. The latter can only happen if |A| divides the mul-
tiplier order |M(H/A)|. (Again we may assume we know
the isomorphism type of H/A, thus we know this multiplier
order.)

By theorem 1, we know that H = A×H ′ if it is a direct
product. To find this decomposition (and test the condition)
we form one nontrivial random commutator c and let C =
〈c〉H ≤ H ′ be the normal closure of this commutator. If
A ≤ C then no normal complement to A exists (as every
commutator would have trivial A-part and thus lie in such a

complement). Otherwise C � H with AC = H and A∩C =
〈1〉, thus it is a normal complement.

To avoid calculating normal closures unnecessarily, we ob-
serve that many cases of not being a direct product can be
deduced by element orders alone:

Definition 2. Let A ≤ Z(H). We call x ∈ H order-
increasing if |Ax| is a multiple of |A| and |x| 6= |Ax|.

Many covers of simple groups contain such elements, for ex-

ample in SL2(p) (cover of PSL2(p)) the element

„
0 1
−1 0

«
is order-increasing.

Lemma 3. If H = A × B then H contains no order-
increasing element.

Proof. Assume that if x = (a, b) ∈ H fulfills that |Ax| =
|b| is a multiple of |A|. Then |x| = |Ax|, since x|Ax| = x|b| =

(a|b|, b|b|) = 1, as by assumption |b| is a multiple of |a|).

We thus initially test the generators of H (and a couple of
random elements) whether they are order-increasing. If such
an element is found, H cannot be a direct product, and we
do not need to calculate a normal closure of a commutator.

If both A and H/A are abelian but |A| 6= [H:A] we first
test that A is central in H (if not, H is not a direct product).
If so, we obtain a complement by choosing x ∈ H, x 6∈ A
and forming C = 〈x|A|〉.

Finally, if A and H/A are abelian and |A| = [H:A] we take
x ∈ H, x 6∈ A. If |x| = p = |A| we have that H is a vector
space with basis {x, a} (where A = 〈a〉), The elements x ·ak,
0 ≤ k < p then are generators for the normal complements.

If on the other hand |x| 6= p, then H ∼= Cp2 is not a direct
product.

3.3 Cost
The required computations for finding all normal comple-

ments are (in a Las Vegas model, i.e the calculation might
fail with bounded probability, in which case it can be re-
peated with new random selections) one of the following:

• A constant number of element order computations in
a factor group.

• Computation of a derived subgroup.

• Constructive recognition of black-box simple groups
(in the fall-back case for identifying outer automor-
phism actions).

The first two are known to be polynomial time in the size
of the input. The third is (possibly Monte-Carlo, possibly
assuming a discrete logarithm oracle) polynomial time for
most classes of simple groups groups [8, 15, 13], with the
exception of composition factors of type 2G2(q). One can of
course dispense with these qualifiers if the size of nonabelian
composition factors is bounded.



4. ACTION ON SERIES
If we want to construct series only up to the action of a

group A (for example the full, or the inner automorphism
group) we associate with every (partial) series a stabilizer
(namely the intersection of the A-normalizers of the sub-
groups in the series). We also replace chief factors by A-
invariant normal factors. These still must be characteristi-
cally simple.

If the normal subgroup N � G is chosen to be invariant
under A, then the stabilizer of a subgroup X also stabilizes
NX and N ∩X, thus in the above construction process we
may assume that the acting group is stabilizing the series
{Ni} in N and {Di} in the factor group. The construction
process described above is thus compatible with maintaining
series stabilizers.

Now consider the effect of a group action on the combina-
tion process. Its basic step is that, for a given j, we have a
series (figure 2) Di−1, C1, C2, . . . , Cj , Ej = Cj+1, Ej+1, . . .,
with an associated stabilizer S, and we are looking for series
that differ in the group Ej by classifying (normal) comple-
ments to Ej/Ej+1 in Cj/Ej+1. The series stabilizer S will
act on these complements. (In cases a,b,c) of Theorem 1
there is at most one complement, which automatically is
stabilized if it exists. In case d) the action is a projective
action on the vector space Cj/Ej+1.)

Representatives of the S-orbits then correspond to A-
classes of series that arose from the prior series, with com-
plement stabilizers becoming stabilizers for the new series.

5. ELEMENTARY FACTORS
To utilize the reduction of Section 2 we need to obtain the

composition series of the chief factors of G (or, in the case
of an A-action, A-invariant normal factors, up to A action).
Such factors are characteristically simple, i.e. they are direct
powers of simple groups of one isomorphism type.

Again for ease of description we describe the construction
in a factor group, that is we consider H ∼= T × · · · ×T for T
simple, possibly with a (possibly trivial) action of a group
A on H.

5.1 Abelian Case
If T (and thus H) is abelian, a composition series for H

is equivalent to a flag, i.e. a sequence of increasing sub-
spaces of dimensions 1, 2, 3 . . .. We construct these flags in
increasing dimension: First determine the A-orbits on 1-
dimensional subspaces of H. For each such subspace U we
consider recursively the factor space H/U with action of
S = StabA(U) and determine S-representatives of the flags
on H/U . For each such flag U2/U, U3/U, . . . for H/U we
have that U, U2, U3, . . . is a flag for H. Collecting these flags
for all representatives U produces representatives of the A-
orbits on flags and thus of the A-orbits of composition series.

5.2 Nonabelian Case
If T is nonabelian then the only normal subgroups of H =

T m are the obvious direct products of subsets of the copies of
T . Applying the same statement to these normal subgroups
we find that any subnormal subgroup of H must be one
of these normal subgroups. Thus the composition series of
H are parameterized (indicating in each step which direct
factor is added to the subgroup) by the permutations of
{1, . . . , m}.

The action of A permutes the m direct factors, and thus
their indices. Let ϕ : A → Sm be the corresponding homo-
morphism. On permutations, representing subnormal series,
this action is by right multiplication by Aϕ. Representa-
tives of the orbits are obtained as representatives for the
left cosets of Aϕ in Sm, in each case the stabilizer of the
series is the kernel of ϕ.

6. COMBINING THE STEPS
Assume that a group G as well as a group A ≤ Aut(G) are

given. To describe the A-orbits on composition series for G
we adapt the standard “Trivial-Fitting” (or “Solvable Radi-
cal”) method [2, 5]: Consider the series G�Pker�S∗�R〈1〉
of characteristic subgroups, where R is the solvable radical
(the largest solvable normal subgroup), S∗/R = Soc(G/R)
and Pker is the kernel of the permutation action of G on the
direct factors of S∗/R. We refine this series to a series of A-
invariant normal subgroups G = N0 > N1 > · · · > Nk−1 >
Nk = 〈1〉 with Ni/Ni+1 elementary. As most calculations in-
volving the action of A happen in elementary abelian factors,
and as the composition process itself extends up, it seems to
be most plausible to work ascending along this series with
decreasing k, starting with Nk−1/〈1〉.

In each step we assume we have all A-classes of composi-
tion series of Ni. For each such class we have a representative
and a series stabilizer.

For each different Ni-series stabilizer S, we determine the
S-classes of series through the elementary factor Ni−1/Ni.
We then use the process from section 2 to form all combina-
tions of these series with those Ni-series for which S is the
stabilizer.

As the examples below show, the number of composition
series can be easily exponential (or worse) in the size of
the input. The algorithm therefore cannot be in polynomial
time. However each new series is the result of one com-
plement computation, and the total number of complement
computations (including those that do not lead to new se-
ries) for each series is the number of composition steps. Since
each complement calculation is (with qualifiers as given in
section 3.3) polynomial time, the algorithm is therefore over-
all of polynomial delay.

6.1 Implementation and Examples
The algorithm has been implemented by the author in the

system GAP [10].
Table 1 gives examples of calculations of series. Series

were calculated under the action of the group itself (column
G-Orbits), respectively under the full automorphism group
(column Aut(G)). Timings are in seconds on a 3.7 GHz
Quad-Core Intel Xeon E5 Mac Pro (Late 2013). Groups
were represented by a PC presentation or as permutation
group. Names tdnx or sdnx are from the transitive, respec-
tively the small groups library. Using the indices of the
stabilizers in the acting group, the total number of series
NrSeries was computed. An arrow → indicates that the
automorphism group provides no further fusion.

One notes that runtime is roughly proportional to the
number of composition series representatives (which is as
good as one might hope for). Calculations under the auto-
morphism group take longer for the need to work with sta-
bilizers that were represented as groups of automorphisms.



Group Order NrSeries G-Orbits time Aut(G)-Orb. time

t30n3000 2103453 318 53 0.5 49 3.2
35 × GL5(3) 2103155·11213 503360 2 1.3 →
35 × GL5(3)×A2

5 2143175311213 36241920 144 54 72 50
36 × SP6(3) 2103155·7·13 91611520 15 6.5 →
Weyl(F4) 2732 13482 377 0.25 204 0.5
s1152n157000 2732 116802 24998 13.5 12000 17
24+1+1 × A5 283·5 645435 12339 41 2214 15
(35.2) : S5 = t30n1254 24365 1015040 13296 34 7816 34
GL2(5) o S2 2113252 2314 928 4 794 9
SL2(5) oD8 2153454 143160 17895 96 17641 504
GU3(3) o S2 2153672 890 388 7 257 75
PGU3(3) oD8 22331274 200 25 3.6 →
s256n100 28 22287 4124 3.5 3451 11
s256n6000 28 90651 17763 16 10042 37
s256n10000 28 429219 212661 226 94964 478
s256n20000 28 124875 57017 50 49749 147
s256n56000 28 14252283 5345253 42433a 621047 3216

a identifying duplicate subgroups, at extra cost, for memory reasons.

Table 1: Examples and Runtimes
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Black-box recognition of finite simple groups of Lie
type by statistics of element orders. J. Group Theory,
5(4):383–401, 2002.

[4] L. Babai, P. P. Pálfy, and J. Saxl. On the number of
p-regular elements in finite simple groups. LMS J.
Comput. Math., 12:82–119, 2009.

[5] J. Cannon, B. Cox, and D. Holt. Computing the
subgroup lattice of a permutation group. J. Symbolic
Comput., 31(1/2):149–161, 2001.

[6] F. Celler, C. R. Leedham-Green, S. H. Murray, A. C.
Niemeyer, and E. A. O’Brien. Generating random
elements of a finite group. Comm. Algebra,
23(13):4931–4948, 1995.
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