
Neues über Systeme

Translating MAGMA code to GAP

Alexander Hulpke
(Colorado State University)

hulpke@math.colostate.edu

Introduction
In a pattern that is common to mathematical softwa-

re, programs for computational group theory have gone
through several generations of design. Starting over 50
years ago with single-purpose software that might even
require recompilation to work on a different problem,
programs evolved to accept general input, became parts
of program packages in which one program could work
on the output of another, and finally became routines in
a larger system such as Cayley [6] or GAP 2 [9] that pro-
vided a general environment both in the form of a pro-
gramming language and in the provision of many basic
mathematical routines. Based on experienced shortco-
mings in the initial designs, these systems evolved to
their current incarnations MAGMA [4] and (via the in-
termediate GAP 3 [11]) the system GAP 4 [8].

Each of these design steps often led to a fundamen-
tal re-implementation of most algorithms. Doing so not
only permitted these algorithms to work on more gene-
ral input (say, going from rationals to finite fields and
algebraic extensions), but also often incorporated newer
programming paradigms and thus resulted in better co-
de.

This iterative process seems to have reached a pla-
teau, as witnessed by the fact that the current systems,
having seen first versions in the late ’90s, are now re-
aching an age where a human would be considered as
“grown up.” This stabilization is a reflection of the ma-
turity of software design in general (and thus the dimi-
nishing return of changes), as well as of the enormous
cost that a re-implementation would impose. It therefore
seems likely that the fundamental engines of the current
systems will be with us for the foreseeable future.

Sophisticated algorithm packages

The availability of a broad set of functions for
groups in multiple representations made it possible to
implement more sophisticated construction and classifi-
cation algorithms. For example, consider the following

results of the last two decades:

• Construction of groups of small (or innocuous)
order following [2].

• Constructions of groups of order p7 based on [10].

• Lists of maximal subgroups of classical groups
based on [5].

• Composition tree for matrix groups as described
in [1].

These algorithms build on the classical routines of com-
putational group theory and share many characteristics
that distinguish them from more basic routines:

• The algorithms work inherently with groups in
different representations and thus cannot be im-
plemented stand-alone, but only in a system.

• They need to distinguish many cases, and when
re-implementing from scratch or translating ad-
hoc it would be easy to make accidental mistakes.
Indeed this has happened in the past.

• The time-critical parts of the calculation sit most-
ly – far beyond even the traditional 80/20% flip of
code size versus time spent – in library routines
called by the algorithm.

• The functionality provided would be useful to ha-
ve (say to check other results) in multiple systems,
even if it was based on the same code.

• The time required for a re-implementation is pro-
hibitive, in particular considering that such work
currently would not be judged as an “original” re-
sult in a CV.

Because of these obstacles to a re-implementation,
C. LEEDHAM-GREEN encouraged [7] the community
to work on a translation of the matrix group composition
tree routines of [1] to GAP. This has been the motivation
for the work described here.

15

mailto:hulpke@math.colostate.edu

The purpose of this note is to introduce a translation
tool, the converter, that aids in the translation of code
from MAGMA to GAP. Besides its immediate use for
conversion of code, it might be of interest more gene-
rally to indicate possibilities and obstacles to such an
approach.

The program is available from github.com/
hulpke/mgmconvert. It consists of a single GAP fi-
le and provides the command

MagmaConvert(infile[,outfile])

(with default output to the screen) that reads in a MAG-
MA file and outputs the translation.

The Code Conversion
The purpose of the converter is as a tool to ease the

translation of code. It produces output in valid GAP syn-
tax that a human can modify with moderate effort in-
to actual runnable code, but it does not aim to produ-
ce output that will run immediately. Attempting to do
so would need to deal with different argument require-
ments or return value conventions in library functions
(or the unavailability of some functions), different para-
digms for constructing objects (for example, a permu-
tation in MAGMA has to belong to a particular group,
while in GAP it happily exists on its own), and different
paradigms for doing certain tasks (e.g. in MAGMA one
can test a matrix group for irreducibility, in GAP this
would be the property of its natural module).

In this setup the converter is fundamentally different
from “classical” compilers (such as FORTRAN to C). It
also is a reflection of the fact that it would be futile to
translate a highly optimized time-critical implementati-
on (such as lattice reduction) one-to-one.

Instead, it still will be necessary for a competent
(in GAP as well as with understanding of the underly-
ing algorithm) programmer to go through and edit the
produced code. In examples tried between 5 and 40%
of lines required such an edit. Crucially, however, these
edits do not involve the control structure or actual cal-
culations, but easily identified and isolated instances of
calling e.g. library or constructor functions. Compared
with re-implementing the routine from a theoretical de-
scription, this will be a magnitude faster. (The examples
below indicate the amount of work required.)

An underlying assumption is that the code to be con-
verted is itself not time-critical (but that all criticality is
in fact in the operations called by the code). It therefo-
re is plausible to translate control structures one-to-one
without considerations that were made to satisfy condi-
tions of internal data structures (e.g. the internal way a
matrix is stored implies the proper way to nest row/co-
lumn loops), or of particular functions being available.
If this was the case a more substantial rewrite of the re-
sulting code would become necessary.

The conversion process also only translates functi-
ons to functions and will not try to install methods or
even declare operations – such actions require global

system knowledge and are left to the human program-
mer.

The converter itself is written in GAP, a choice as
as a high-level language (providing e.g. string and list
functions) the author is most familiar with. Clearly a
language such as Python would have been equally ap-
propriate, but neither would there have been a substan-
tial benefit in choosing an inherently third language for
this purpose.

Running the converter is a one-time task and there-
fore not time critical, nor is memory use an issue.

Basic Setup

While the syntax of GAP and MAGMA seems to be
sufficiently similar on first view to allow for translation
by simple string replacement, a look at more complica-
ted code quickly indicates that such a strategy will only
go so far. Instead, similar to what a compiler would do,
the converter reads in the MAGMA code, and translates
it.

Following standard compilation techniques, in the
first step the MAGMA program is read in and fed to
a tokenizer that recognizes keywords and separates the
text of comments (which are translated into special com-
ment tokens).

The resulting token sequence then is read by a par-
ser and translated into a parse tree. This is the most
complicated part of the process as the MAGMA lan-
guage seems to allow the programmer a certain amount
of latitude. (Examples: declaring functions alterna-
tely as myfct:=function(...) or function
myfct(...); An error if construct that duplica-
tes a normal if-not condition-then error; Using the key-
word rec also as an identifier name; A where con-
struct that assigns temporary variables within another
construction.) Indeed, the author has been unable to find
a description of the MAGMA language in BNF or a si-
milar format; this also prevented an approach using stan-
dard compiler generators.

The current version of the parser can still be stum-
ped by very complicated constructs (such as a list se-
lection with two simultaneous variables). In such cases
some lines need to be treated separately by hand. This
however is only a minor issue in practice.

Every node in the parse tree is stored simply as a
GAP record with components indicating type, parame-
ters, and links to children nodes. While this is a gratui-
tous use of memory for the benefit of easy processing,
this is on modern computers not a concern for any plau-
sible input. (Similar design decisions of trading memory
for ease of coding were made e.g. when parsing expres-
sions by order of precedence.)

Finally a further routine takes this parse tree and
creates functionally equivalent GAP code from it. This
routine can use the whole tree (or even multiple trees
for files in a packages) to identify, for example, local
variables for declaration (MAGMA seems to declare
these variables implicitly, but GAP will by default treat

16

github.com/hulpke/mgmconvert
github.com/hulpke/mgmconvert

them as global), or identify package-local variables. The
MAGMA language constructs are translated to equi-
valent (combinations of) GAP constructs, in some ca-
ses with added comment warnings indicating that this is
not an exact equivalent. Calls to functions are translated
straightforwardly to a function call with the same argu-
ments, with only certain library function names being
replaced (such as Modexp to PowerMod). It remains
the human operator’s responsibility to either change ar-
guments and return values appropriately, or to provide
(see below) syntactic equivalents in GAP for particular
MAGMA functions.

We now describe a number of common issues and
their treatment in the following sections:

Lists-based data types

While GAP presents to the user a uniform syntax of
list-based objects that can represent homogeneous and
inhomogeneous lists, sets, ranges, as well as vectors and
matrices, MAGMA utilizes different constructs for dif-
ferent categories of objects. (Translating in the other di-
rection thus would be substantially harder as the compi-
ler would need to deduce the appropriate list type.) This
is easily translated (namely all to the same type of GAP-
list), but it can be necessary to inform GAP, by a sepa-
rate function call, about particular properties or storage
formats such an object is supposed to possess (such as
being a set, or a finite field matrix being stored in com-
pact form). The general format of a list data type also
requires in GAP to make certain objects immutable (for
example lists within a larger list so that being sorted can
be stored) for efficiency reasons. In either of these cases
appropriate conversion commands (either to make im-
mutable or to replace an object with a copy that can be
changed) will need to be added by hand.

Object constructors and attributes

The biggest difference between systems occurs
when building new internal objects, or accessing attri-
butes of internal objects, as internal data types, access
to such information, and the parameters of constructors
tend to differ. In some frequent situations – for example
the construction of matrices from a description of entries
or by composing blocks – this merits the addition of uti-
lity functions that provide a GAP constructor using the
MAGMA syntax. (Here again the assumption is used
that the code is not time-critical, as such a constructor
emulation will take time.)

Since MAGMA requires every object to lie in a par-
ticular domain, a frequent construct is a cast D!obj.
This is translated to obj*FORCEOne(D) – the FORCE
indicating that it is a cast that requires editing, while
a multiplication with an appropriate one would be the
GAP way of accomplishing such a cast.

A dual issue arises with substructures, whose cate-
gory (group, ring, vector space, . . .) MAGMA will de-
duce from the parent structure. It also will allow genera-
tion from any collection of structures and elements, whi-

le GAP distinguishes e.g. Ring, Group, Subgroup
and ClosureSubgroup. GAP also is less flexible in
combining, say, 3 subgroups and 5 elements as genera-
ting entities, but requires different functions for different
constructions. The <...> construct therefore is trans-
lated into a generic SubStructure with a comment
TODO CLOSURE indicating that this might need to be
converted to a generation or a closure operation.

Language-specific constructs

MAGMA has a number of language constructs that
have no direct equivalent in GAP and therefore are dif-
ficult to translate:

where allows to implicitly declare variables, as in:

[x,xˆ2] where x:=SquareRoot(y)
where y=PrimitiveElement(GF(q));

The parser simply puts such implicit assignment
after the command with an comment indicating
that it should be placed before.

select has a value depending on a condition:

a:= x=5 select 1 else 2;

This currently gets translated to a function call

a:=SELECT(x=5,1,2);

(an appropriate SELECT function would be easily
written). Such a construct requires the evaluation
of the if and the else branch in every case which
could potentially come at significant cost, howe-
ver. It therefore is best replaced by hand with a
proper if...then construct.

Infix operators: Infix operators in MAGMA (such as
cat, diff, or meet) are translated to appropria-
te function calls in GAP. This can lead to paren-
theses becoming obsolete.

Multi-argument returns: A MAGMA function may
return multiple objects, while GAP code always
returns only one object. This is translated into the
convention that a multi-object return happens in
form of a record with components val1 etc. (Re-
turned objects to be ignored would be assigned to
the _ variable, such assignments then simply can
be deleted.)

In some cases (such as IsSquare, which returns
a truth value and a square root) equivalent functio-
nality in GAP is implemented by treating fail
as an exceptional return value. This needs to be
translated by hand.

Implicit Assignments: The MAGMA exists con-
struct returns a truth value, thus is equivalent
to ForAny in GAP. But at the same time it

17

can also assign the existing value to a variable.
This is translated by making the boolean condi-
tion become an assignment to the variable: if
x:=ForAny(...), indicating the need for ma-
nual intervention.

Call-by-reference: GAP holds any composite object
(an object that is neither a small integer, a finite
field element, or a boolean value) only in form of
a pointer to the actual object, i.e. universally uses
call-by-reference. In MAGMA instead, a functi-
on that is to change a list needs to be handed a
pointer to the list, in the form of the ‘∼’ opera-
tor. This operator is translated (to be cautious with
translating paradigm changes) by prepending the
word TILDE, resulting in translated constructs
such as Append(TILDElist,a) that can be
quickly processed (e.g. in this example be chan-
ged to Add(list,a)) by a text editor’s search-
and-replace facilities.

Function Declarations: A function in MAGMA may
be declared with typed input and output. This is
not required in GAP and the type part is igno-
red (actually the output type is moved into a com-
ment). Likewise, GAP does not require a declara-
tion of a record format, hence such a declaration
is replaced by a dummy string.

Similarly, forward declarations or particular func-
tion installations (such as intrinsic) are igno-
red, respectively translated to simple identifier as-
signments.

Package translation

When translating a package of files, often one fi-
le defines a function that is used within another fi-
le, but still is only local to the package. The com-
mand Project(directory) assumes that a subfol-
der magma contains source code that is to be transla-
ted. It reads in all files that end in a suffix .m, uses
the information to identify which functions are provi-
ded by the package for use within other package files,
and writes translated versions of output into a subfolder
translation. Global identifiers get a symbol @ ap-
pended to allow for use of GAP’s name space functiona-
lity. The routine also provides a list of file-dependencies
that makes it easier to determine which (of many) files
would be required for a particular functionality.

A library of basic utility functions

In some cases (for example when creating objects
or accessing their attributes) the data structures used by
both systems are so different that existing code would
need to be completely rewritten from scratch. A typical
case is MAGMA’s construction of matrices that allows,
for example, to provide a list of entry positions and va-
lues. If such constructions are used frequently is makes
sense to provide GAP wrapper functions that essentially

provide an argument/data structure conversion. Included
with the MAGMA converter is a growing file util.g
that provides such routines, if function names differ this
is translated automatically by the converter.

Examples and Results
As with any utility program, the proof is in the pud-

ding: The author has so far used the converter to produce
raw-translates for several contributed MAGMA packa-
ges, containing in total about 80 source files and 50000
lines of code. It turned out that in about 1 in 1000 li-
nes of source code constructs existed that were not par-
seable (typical reasons were complicated constructions
with iterated where; exists statements or list con-
structors indexed over multiple variables simultaneous-
ly; or abuse of keywords such as rec as a variable). All
of these could be handled by minor edits of the source
code, or by an immediate hand translation. While not
(yet) universal, this shows that the parsing process is
good enough to be used in practice.

As for the GAP code produced, Example 1 shows a
straightforward case where only minor human rearran-
gement is needed, while Example 2 shows the case whe-
re more substantial programmer interaction is necessa-
ry, and displays both the auto-translated and hand-edited
results.

Further Developments

It is expected that practical use of the converter will
indicate further areas that merit improvements.

The step that would buy most impact in reducing
the amount of final hand-translation work would be to
offer more and better substitutes for MAGMA function
calls, for example allowing as well for different argu-
ments or by providing more utility functions. Doing so
would however increase the risk of accidentally overloo-
king subtle differences in the declarations, respectively
add much wrapper code for the sake of avoiding minor
reformatting of a handful of source code lines.

The author would be interested in any feedback on
using the converter and observed shortcomings.

This work was supported by the Simons’ Foundati-
on under Collaboration Grant 244502, whose support is
gratefully acknowledged.

Literatur

[1] H. Bäärnhielm, D. Holt, C.R. Leedham-Green,
E.A. O’Brien. A practical model for computation
with matrix groups. J. Symbolic Comput., 68(part
1):27–60, 2015.

[2] H.U. Besche, B. Eick, E.A. O’Brien. A millennium
project: constructing small groups. Internat. J.
Algebra Comput., 12(5):623–644, 2002.

[3] W. Bosma, J. Cannon. Discovering Mathematics
with Magma. Springer, 2006.

18

MAGMA code:
intrinsic CSOPlus(d:: RngIntElt, q:: RngIntElt) -> GrpMat
{Conformal special orthogonal group of plus type}
local W, X, Y, Z, gens, hd;
require IsEven(d) : "Argument 1 must be even";
require IsPrimePower(q) : "Argument 2 is not a prime power";
if IsEven(q) then
if GCD(d,q-1) ne 1 then
return S where S := sub< SL(d,q) | SOPlus(d,q),
ScalarMatrix(d,wˆp) >

where w := PrimitiveElement(GF(q))
where p := (q-1) div GCD(d,q-1);
else return S where S := SOPlus(d,q);

end if;
end if;

Z := ScalarMatrix(GF(q),d,w) where w:=PrimitiveElement(GF(q));
hd := d div 2;
X := GOMinusSO(d,q,1);
Y := NormGOMinusGO(d,q,1);
//Normaliser in SL is generated by SO together with elements
//Xˆx Yˆy Zˆz with x(q-1)/2 + yd/2 + zd = 0 mod q-1
W := Matrix(Integers(),4,1,[(q-1) div 2, hd, d, q-1]);
N := Nullspace(W);
gens := [Xˆn[1] * Yˆn[2] * Zˆn[3] : n in Generators(N)];
return sub< SL(d,q) | SOPlus(d,q), gens >;

end intrinsic;

Translated GAP code, converter result:
CSOPlus:=function(d,q)
-> ,GrpMat Conformal special orthogonal group of plus type
local N,S,W,varX,Y,varZ,gens,hd,p,w;
if not IsEvenInt(d) then Error("Argument 1 must be even"); fi;
if not IsPrimePower(q) then Error("Argument 2 is not a prime power"); fi;
if IsEvenInt(q) then
if Gcd(d,q-1)<>1 then
return S;
#T WHERE -- MOVE BEFORE PREVIOUS LINE
S:=SubStructure(SL(d,q),SOPlus(d,q),#TODO CLOSURE
ScalarMatrix(d,wˆp));

#T WHERE -- MOVE BEFORE PREVIOUS LINE
w:=PrimitiveElement(GF(q));
#T WHERE -- MOVE BEFORE PREVIOUS LINE
p:=QuoInt((q-1),Gcd(d,q-1));

else
return S;
#T WHERE -- MOVE BEFORE PREVIOUS LINE
S:=SOPlus(d,q);

fi;
fi;
varZ:=ScalarMatrix(GF(q),d,w);
#T WHERE -- MOVE BEFORE PREVIOUS LINE
w:=PrimitiveElement(GF(q));
hd:=QuoInt(d,2);
varX:=GOMinusSO(d,q,1);
Y:=NormGOMinusGO(d,q,1);
Normaliser in SL is generated by SO together with elements
Xˆx Yˆy Zˆz with x(q-1)/2 + yd/2 + zd = 0 mod q-1
W:=MatrixByEntries(Integers(),4,1,[QuoInt((q-1),2),hd,d,q-1]);
N:=Nullspace(W);
gens:=List(Generators(N),n->varXˆn[1]*Yˆn[2]*varZˆn[3]);
return SubStructure(SL(d,q),SOPlus(d,q),#TODO CLOSURE
gens);

end;

Example 1: A MAGMA function from the Group/GrpMat/Classical package, file conformal.m (code
attributed to Don Taylor) and the result of the automatic translation. The only human work needed is to re-arrange the
(iterated) where constructs and to replace SubStructure by an appropriate ClosureGroup call (and to delete
the corresponding comment warnings). MatrixByEntries is a utility function that emulates the MAGMA syntax
for matrix construction in GAP. The identifier names X and Z have a special function in GAP and thus got replaced.
The translation from the infix div to the function QuoInt caused superfluous parentheses.

[4] W. Bosma, J. Cannon, C. Playoust. The MAGMA
algebra system I: The user language. J. Symbolic
Comput., 24(3/4):235–265, 1997.

[5] J.N. Bray, D.F. Holt, C.M. Roney-Dougal. The
maximal subgroups of the low-dimensional finite
classical groups, volume 407 of London
Mathematical Society Lecture Note Series.
Cambridge University Press, Cambridge, 2013.
With a foreword by Martin Liebeck.

[6] J.J. Cannon. An introduction to the group theory
language, Cayley. In Michael D. Atkinson, editor,
Computational group theory (Durham, 1982),
pages 145–183. Academic press, 1984.

[7] J. Carlson, B. Eick, A. Hulpke, E. O’Brien.
Algorithms for linear groups. final report of the
2014 workshop.

http://www.birs.ca/workshops/2014/
14w5031/report14w5031.pdf, 2014.

[8] The GAP Group,
http://www.gap-system.org. GAP –
Groups, Algorithms, and Programming, Version
4.7.4, 2014.

[9] A. Niemeyer, W. Nickel, M. Schönert, GAP -
Getting started and Reference Manual. RWTH
Aachen, 1988

[10] E.A. O’Brien, M.R. Vaughan-Lee. The groups
with order p7 for odd prime p. J. Algebra,
292(1):243–258, 2005.

[11] M. Schönert et al. GAP 3.4, patchlevel 4.
Lehrstuhl D für Mathematik,
Rheinisch-Westfälische Technische Hochschule,
Aachen, 1997.

19

http://www.birs.ca/workshops/2014/14w5031/report14w5031.pdf
http://www.birs.ca/workshops/2014/14w5031/report14w5031.pdf
http://www.gap-system.org

MAGMA code:
EulerPhiInverse:=function(m)
mfact := Factorization(m);
if IsEven(m) then
twopows := {@ 2ˆi : i in [0..mfact[1][2]] @};

else
if m gt 1 then return []; end if;
twopows := {@ 1 @};

end if;
D := Divisors(mfact); P := [];
for d in D do
if d eq 1 then
continue ;

end if;
if IsPrime(d+1) then
Append(˜P, d+1);

end if;
end for;

S := [<SeqFact([]), m>];
for p in Reverse(P) do
for s in S do
if s[2] eq 1 then
continue;

end if;
k := 1;
d, mmod := Quotrem(s[2], p-1);
while mmod eq 0 do
if IsEven(d) or d eq 1 then
Append(˜S, <SeqFact([<p, k>])*s[1], d>);

end if;
k +:= 1;
d, mmod := Quotrem(d, p);

end while;
end for;

end for;

R := { };
for s in S do
j := Index(twopows, s[2]);
if j gt 0 then
Include(˜R, SeqFact([<2, j>] cat s[1]));
if j eq 1 then
Include(˜R, s[1]);

end if;
end if;

end for;
return Sort([Facint(nf) : nf in R]);

end function;

Example 2: A function to determine the inverse of the
Euler function, φ−1(m), for any m ≥ 1. This function is
given as an example on p. 16 of [3]. Since a more
substantial programmer interaction is needed in this
case, also the final resulting code after human
intervention is shown, with hand-edited changes in red.
Most of these changes – apart from the translation of the
“factor sequence” data type – are almost mechanical
and can be done in seconds.
The example demonstrates the translation of different list
types (though the translation of the “indexed set” into a
plain list could cause a performance penalty with huge
numbers); the case of multi-argument return values
(which in this particular case is in form of a list; and the
treatment of the ‘∼’ operation. As GAP has no “factor
sequence” data type, this was hand-translated to a list of
base/exponent pairs. The function Index has different
meanings in other contexts and is therefore not
auto-translated to Position. (Also the “failure” value
returned is not 0, but fail.)

Translated GAP code, converter result:
EulerPhiInverse:=function(m)
local D,P,R,S,d,j,k,mfact,mmod,p,s,twopows;
mfact:=Factorization(m);
if IsEvenInt(m) then
twopows:=List(# {@-list:
[0..mfact[1][2]],i->2ˆi);

else
if m > 1 then
return [];

fi;
twopows:=# {@-list:
[1];

fi;
D:=DivisorsInt(mfact);
P:=[];
for d in D do
if d=1 then continue; fi;
if IsPrime(d+1) then
Append(TILDEP,d+1);

fi;
od;
S:=[[SeqFact([]),m]];
for p in Reversed(P) do
for s in S do
if s[2]=1 then continue; fi;
k:=1;
=v= MULTIASSIGN =v=
mmod:=QuotientRemainder(s[2],p-1);
d:=mmod.val1;
mmod:=mmod.val2;
=ˆ= MULTIASSIGN =ˆ=
while mmod=0 do
if IsEvenInt(d) or d=1 then
Append(TILDES,[SeqFact([[p,k]])*s[1],d]);

fi;
k:=k+1;
=v= MULTIASSIGN =v=
mmod:=QuotientRemainder(d,p);
d:=mmod.val1;
mmod:=mmod.val2;
=ˆ= MULTIASSIGN =ˆ=

od;
od;

od;
R:=Set([]);
for s in S do
j:=Index(twopows,s[2]);
if j > 0 then
UniteSet(TILDER,SeqFact(Concatenation([[2,j]],s[1])));
if j=1 then
UniteSet(TILDER,s[1]);

fi;
fi;

od;
return Sort(List(R,nf->Facint(nf)));

end;

Resulting working GAP code:
EulerPhiInverse:=function(m)
local D,P,R,S,d,j,k,mfact,mmod,p,s,twopows;
mfact:=Collected(Factors(m));
if IsEvenInt(m) then
twopows:=List([0..mfact[1][2]],i->2ˆi);

else
if m > 1 then return []; fi;
twopows:=[1];

fi;
D:=DivisorsInt(m);
P:=[];
for d in D do
if d=1 then continue; fi;
if IsPrime(d+1) then

Add(P,d+1);
fi;

od;
S:=[[[],m]];
for p in Reversed(P) do
for s in S do
if s[2]=1 then continue; fi;
k:=1;
d:=QuotientRemainder(s[2],p-1);
mmod:=d[2]; d:=d[1];
while mmod=0 do

if IsEvenInt(d) or d=1 then
Add(S,[Concatenation([[p,k]],s[1]),d]);

fi;
k:=k+1;
d:=QuotientRemainder(d,p);
mmod:=d[2]; d:=d[1];

od;
od;

od;
R:=Set([]);
for s in S do
j:=Position(twopows,s[2]);
if j <> fail then
UniteSet(R,[Concatenation([[2,j]],s[1])]);
if j=1 then

UniteSet(R,[s[1]]);
fi;

fi;
od;
R:=List(R,nf->Product(List(nf,x->x[1]ˆx[2])));
Sort(R);
return R;

end;

20

