Please see the course syllabus for details on how to turn in your homework assignments. This one is due at the beginning of your class on Friday, November 16.

1. Suppose conservative vector field \mathbf{G} has potential function $g(x, y, z)=x^{2}+y z$. Compute the work done when moving through this vector field along any simple curve from from $(0,1,1)$ to $(2,0,1)$.
2. Find the potential function $f(x, y, z)$ for vector field

$$
\mathbf{F}=\langle\sin (y), x \cos (y)+z \cos (y), \sin (y)+2 z\rangle
$$

such that $f(9,0,1)=2$. You may assume that \mathbf{F} is conservative.
3. Use the component test ($M_{y}=N_{x}$, etc.) to show that the vector field

$$
\mathbf{H}=\left\langle z e^{x z}-\sin (x+2 y), \frac{1}{y}-2 \sin (x+2 y)+1, x e^{x z}+\frac{1}{z}\right\rangle
$$

is conservative. (Your solution should consist of three equalities.)

