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A slogan

Mirror Symmetry is a correspondence between pairs of
(families of) Calabi-Yau threefolds

X ←→ X̌

that interchanges complex and symplectic geometry.

Mirror Symmetry is motivated by physics.
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Strings

A physical theory should satisfy some natural axioms that give
it the structure of a SCFT.

SUSY is a required feauture of a SCFT. It eliminates in a very
natural way a lot of the difficulties arising in constructing a
string theory.

A mathematical realization of a SCFT is given by a sigma
model, a construction depending upon the choice of:

a Calabi-Yau threefold X ;
a complexified Kahler class ω.
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Moduli of SCFT

(X,ω)

SUSY

(X,ω)
v v

M
X constant
ω varies

M
X varies
ω constant

kah

compl

Moduli space of SCFT

SUSY suggests the existence of an involution on the moduli
space of SCFT such that:

Hq(X ,ΛpTX ) ∼= Hq(X̌ ,ΛpΩX̌ )

Hq(X ,ΛpΩX ) ∼= Hq(X̌ ,ΛpTX̌ )
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Moduli of SCFT

In particular, looking at p = q = 1

TMcompl = H1(X , TX ) ∼= H1(X̌ ,ΩX̌ ) = TMkah

TMkah = H1(X ,ΩX ) ∼= H1(X̌ , TX̌ ) = TMcompl

we obtain an identification of tangent spaces, and hence local
isomorphisms between complex and kahler moduli spaces of
the mirror pair. Such isomorphisms are called the Mirror Maps.
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Yukawa Couplings

Physics hands us two trilinear forms called Yukawa couplings:

A-model YC:
(
TMkah

)3 → C;

B-model YC:
(

TMcompl

)3
→ C.

Mirror symmetry postulates that such functions should get
identified via the mirror maps!

This is how mirror symmetry makes enumerative predictions
about rational curves in CY threefolds.
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Definition

A CY threefold X is a projective threefold (possibly with mild
singularities) such that:

KX
∼= OX .

H i(X ,OX ) = 0, for i = 1, 2.
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Hodge diamond

Combining the above definition with Serre duality and
hp,q = hq,p we obtain that the Hodge diamond of a CY threefold
is:
b6 : 1
b5 : 0 0
b4 : 0 h1,1 0
b3 : 1 h2,1 h2,1 1
b2 : 0 h1,1 0
b1 : 0 0
b0 : 1
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Kahler forms

A kahler form ω is a closed (1, 1) (real) form such that ω3 is
non-degenerate.

The kahler cone
K(X )

is the space of all possible kahler forms. It is an open subset of
H1,1(X , R).
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Complexified kahler moduli space

The complexified kahler moduli space of X is

Mkah := H2(X , R)/H2(X , Z) + iK(X ).

A basis {Cβ} of H2(X , Z) gives coordinates (called kahler
parameters) on Mkah,

zi =

∫
Cβ

B + iω

only defined up to periods.
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The one-dimensional case

If Pic(X ) = Z =< H >, then

Mkah = R/Z + iR>0

is equivalent to the punctured disk ∆∗ via the exponential
coordinates

q = e2πiz

z

q
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In general

For higher Picard number, a framing is a choice of a basis for
H2(X , Z), that identifies a simplicial cone in K(X ).

An exponential transformation from the kahler parameters
identifies the corresponding portion in Mkah with a punctured
polydisc.
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The Yukawa coupling

For D1, D2, D3 ∈ H2(X , Z), define:

< D1, D2, D3 >:= D1 ·D2 ·D3 +
∑

0 6=β∈H2(X ,Z)

< D1, D2, D3 >
g=0
β qβ,

where

< D1, D2, D3 >
g=0
β =

∫
[M0,3(X ,β)]vir

ev∗1 (D1) · ev∗2 (D2) · ev∗3 (D3)

is a three pointed Gromov-Witten invariant for X .

Note: from the above formula we can extract, after correcting
for multiple cover contributions, the (virtual) number of rational
curves on the threefold in any given homology class.
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Deformation spaces

Idea: the moduli space of complex structures is too
complicated, so we study it locally.

A deformation space for X is the data illustrated in the following
universal property diagram:

X −→ U
↖ ↗

↓ X ↓
|

S −→ Def (X )
↖ ↓ ↗

x0
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Facts and observations

1 The tangent space to Def (X ) at x0 is classically identified
with H1(X , TX ).

2 For a CY threefold, the choice of a global non-vainshing
holomorphic 3-form gives an isomorphism

H1(X , TX ) ∼= H1(X ,Λ2ΩX ) = H2,1(X )

(⇒ symmetry in the Hodge diamond of a mirror pair)
3 Bogomolov-Tian-Todorov theorem: for a CY threefold, the

deformation problem is unobstructed. (i.e. any infinitesimal
deformation can be integrated).

4 A family X → S induces a map TS,s0 → TDef (X) called the
Kodaira-Spencer morphism. If we assume it to be an
isomorphism, we can work on the tangent space of a
concrete family rather than on TDef (X).
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Hodge Bundle

Given a family of CY threefolds π : X → S we can define the
Hodge bundle to be

E := R3π∗(C)⊗OS.

What is going on:

H3(Xs, C) → E
↓ ↓
s → S
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Gauss-Manin Connection

E

S

I
σ σ

1 2

A basis {σi} for H3(X , Z)
gives a local frame for E:
any local section is

σ =
∑

fi(s)σi(s).

Gauss-Manin connection:

∇ ∂
∂sj

σ =
∑ ∂fi

∂sj
σi .
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The Yukawa Coupling

We can now define a cubic form on TDef (X)

KS∼= TS,s.

Choose a family of Calabi-Yau forms Ω(s) (non-vanishing (3, 0)
forms).

〈
∂

∂s1
,

∂

∂s2
,

∂

∂s3

〉
:=

∫
X

Ω ∧∇ ∂
∂s1
∇ ∂

∂s2
∇ ∂

∂s3
Ω
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Remarks

1 third derivatives are necessary to obtain something
non-trivial, by Griffiths transversality.

2 the coupling depends on the choice of Ω(s). Any two
Calabi-Yau families differ by a non-vanishing holomorphic
function f (s), and the coupling transforms by multiplication
by f 2(s).
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The Mirror Map

Mirror Map “=” a set of canonical coordinates q on Def (X ) that
we can identify with the q’s on (part of) Mkah coming from the
choice of a framing.

Observation: on the kahler side q = 0 corresponded to a
degenerate kahler metric. This suggests that we should try and
“center” our canonical coordinates somewhere on the
“boundary” of the complex moduli space.

Simplification: from now on, let us restrict our attention to the
situation of dim(Def (X )) = 1 and look very locally around some
point. I.e., we consider families

X → ∆∗.
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Periods

For a fixed pair (X ,Ω), the period map is

PX ,Ω : H3(X , C) −→ C
β 7→

∫
β Ω.

Local torelli tells us the period map is a local coordinate for the
complex moduli space.

Problems:
1 for a family X → ∆∗ we can define a period map only on

the universal cover H of the punctured disc.

P(z) := PXz ,Ω(z)

2 This definition still depends upon the choice of a family of
Calabi-Yau forms.
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Monodromy

P(z + 1) = P(z) ◦ T ,

where T : H3(X , C)→ H3(X , C) is a linear map called
monodromy transformation.

If we were lucky enough to have a basis for H3(X , C) such that

T =


1 n ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1

 ,

we could simoultaneously solve problems (1) and (2) by setting
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Canonical coordinates

w(z) :=

∫
A1

Ω(z)∫
A0

Ω(z)

and the canonical coordinate (recall s = e2πiz):

q(s) := e2πiw

Such luck happens only around special points in the boundary
of the complex moduli space, called large complex structure
limit points.
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GKZ

The periods of a family of CY threefolds are the solutions of a
GKZ system of differential equations, called Picard-Fuchs
equations.

The technology we have developed this semester allows us to
systematically:

1 find the solutions to the Picard-Fuchs equations.
2 identify a family centered around a large complex structure

limit point.
3 extract the basis vectors necessary to define canonical

coordinates.
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The Mirror conjecture

It is possible to correspond:

X → (∆∗)s ↔ X̌
0 a large CS limit point

canonical coordinates q ↔ a framing on K(X̌ )
giving coordinates q for Mkah

(2, 1)-YC ↔ (1, 1)-YC
(Quantum Cohomology)
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Punchline

The explicit matching of the Yukawa couplings will allow us to
compute the number of rational curves on the quintic threefold
in P4.
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Stay tuned!

Renzo Cavalieri Mirror Symmetry


	Physics: the big black box
	Math
	Calabi-Yau threefolds
	The A-model
	The B-model
	The Mirror Map

	Mirror conjecture

