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Abstract

In this paper we describe explicit generating functions for a large class
of Hurwitz-Hodge integrals. These are integrals of tautological classes on
moduli spaces of admissible covers, a (stackily) smooth compactification
of the Hurwitz schemes.

Admissible covers and their tautological classes are interesting mathe-
matical objects on their own, but recently they have proved to be a useful
tool for the study of the tautological ring of the moduli space of curves,
and the orbifold Gromov-Witten theory of DM stacks.

Our main tool is Atiyah-Bott localization: its underlying philosophy is
to translate an interesting geometric problem into a purely combinatorial
one.

Introduction

0.1 Informal Overview

The goal of this paper is to evaluate, for all pairs of integers (j, g), the tauto-
logical classes (see Section 1.3):
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on the moduli space A,. For a fixed integer d,

=A
Ag dmgiov(tlx~~~7t2g7(d)2g+17(d)2g+2)
is the moduli space of genus g admissible covers of a rational curve, with two
fully ramified points (see Section 1.1). A, is a smooth Deligne-Mumford stack
of dimension 2g — 1.

Notation:

1. Since we are always dealing with 1 classes at the (fully ramified!) last
point, we immediately drop the subscript 2¢g 4+ 2 from our notation.



Figure 1: A sketch of our generating function convenctions.

2. To try and keep this overview more legible, we omit the integral signs in
this section. Every time we talk about a dimension 0 tautological class,
we implicitly mean its evaluation on the appropriate moduli space.

Our intention is to describe generating functions for such numbers; therefore,
we attach the formal variable u?9 to any integral computed on the space A,.

In Figure 1, we sketch the possibly non zero numbers on the (j, g)-plane. We
highlight three natural ways of grouping our numbers into generating functions:

Diagonally: add all terms that lie on lines parallel to the diagonal j = g.
We define D;(u) to be the generating function corresponding to the line
j=g—1.

Vertically: fix j and vary g. We denote by V;(u) the function obtained by
fixing j = 1.

Horizontally: fix g and vary j. In this case the power of the formal variable
remains the same. We define 7y (u)" to be u? X\ 37, Ajep9 =771

Lunfortunately H is already taken by “Hurwitz”. We choose 7 as in “Total Chern class”,
since 74(u) can be viewed as u29\gc(E)/(1 — ).



We now conclude this section by paraphrasing the main results of this paper,
referring the reader to Section 0.3 for the precise statements.

Paraphrase of Theorem 1: The generating function D; can be obtained from
1 ,dD;

Dy. In particular D; is the i-th term in the expansion in Dy of ;e
Paraphrase of Corollary: The function 1, is the degree 2g term in the series
expansion of
d—1 i d
d*~ " sin (%)
i (%)
Paraphrase of Theorem 2: The generating function V; can be reconstructed
from the values of AgAg—1, for 1 < g <i. The formula is given explicitly,
and it is a product of an exponential function with a polynomial indexed
by partitions of the integer i.

0.2 History, Connections and Applications

Hodge integrals are evaluations of certain dimension zero tautological classes on
Mgm: polynomials in A classes and 1 classes. Besides being interesting math-
ematical objects on their own, their importance lies in the fact that they seem
to create a powerful connection between three areas of mathematics: the study
of the geometry of the moduli space of curves, the combinatorial /representation
theoretic Hurwitz theory, and the Gromov-Witten theory of toric varieties.

The ELSV formula ([ELSV01] and [ELSV99]) states that Hurwitz numbers
can be expressed as Hodge integrals. This has been the springboard for inter-
esting work of Tom Graber, Ravi Vakil, and the combinatorialists Ian Goulden
and David Jackson ([GV01], [GV03a], [GV03b], [GJV03], [GIV06]), making
progress towards the understanding of the celebrated Faber conjectures on the
tautological ring of M, , and various (partial) compactifications of it.

Atiyah-Bott localization provides the link with Gromov-Witten theory: when
localizing on the spaces of stable maps to a toric variety, the fixed loci are es-
sentially? products of moduli spaces of curves. The restriction of the virtual
fundamental class to the fixed loci and the contribution of the euler class of
the normal bundle are expressed in term of A and v classes, thus giving rise to
products of Hodge integrals.

In [Fab99], Carel Faber provides an algorithm for computing any given Hodge
integral. However, we know only of very few examples of classes of Hodge
integrals that are explicitly described in generating function form. This is again
work of Faber and Pandharipande ([FP0Ob]) in the late nineties.

Yet another tessera in this mosaic is provided by moduli spaces of admis-
sible covers, a smooth compactification of the classical Hurwitz schemes, pa-
rameterizing ramified covers of curves with prescribed numerical invariants and
ramification data (degree of the cover, genus of the source and of the target

20ften one has to consider also quotients by finite groups, brought in by the presence of
automorphisms of maps.



curves, and ramification profile over all branch points). The natural forgetful
map to the moduli space of curves (remembering the source) allows one to define
Hodge-type integrals on moduli spaces of admissible covers; such integrals were
named Hurwitz-Hodge integrals by Jim Bryan, Tom Graber and Rahul Pand-
haripande. In their works ([BGP05] and[BGO05]), inspired by Kevin Costello’s
[Cos03], they pursue a systematic approach to the orbifold Gromov-Witten the-
ory of Gorenstein stacks via Hurwitz-Hodge integrals. In [BGPO05], through
the explicit evaluation of A\;_; on moduli spaces of admissible Zs-covers, they
describe the Gromov-Witten potential of the quotient stack [C2?/Zs] and show
that the Crepant Resolution Conjecture is verified in that case.

We began studying Hurwitz-Hodge integrals in [Cav06] and [Cav05]. In this
paper we make some progress in the understanding of Hurwitz-Hodge integrals
with descendants, exhibiting some surprisingly nice combinatorial structure. In
[BCTO06], we use this structure to give a purely Hurwitz-theoretic proof of some
classical computations of Faber-Pandharipande and Loojenga (see the “Impor-
tant Remark” in Section 0.3 for a short discussion of this application).

0.3 The Theorems

We fix once and for all the degree d of the maps we consider. For any positive
integer 4, define the generating function D;(u) as follows:

DY :/ AgAg—ith™™ 1,
Ag

gUQg
Di(u) = Z Dy 291 (1)
g1
Theorem 1.
dz 1 ;
Di(u) = Di(u).

Theorem 1 suggests the following definition, that fits nicely with the forth-
coming computations.

Definition 1.

Important Remark: In this paper we consider the generating function
D;(u) as an initial condition. Such generating function was explicitly computed
by Bryan-Pandaripande in [BP04], who encoded in generating function language
previous computations by Faber and Pandharipande for d = 2 ([FP00a]), and
by Looijenga ([Loo95]) for all other degrees:

Di(u) =In (dsm 5?) (2)

S (7)



In [BCTO06] with Aaron Bertram and Gueorgui Todorov, we provide a new proof
of (2) relying only on Hurwitz theory and essentially exploiting the structure
exhibited in Theorem 1.

Combining the result of Theorem 1 with formula (2), it is straightforward
to obtain the following:

Corollary:
= 1 dd*1 sin? (%)
T — = odDi(u) _ 2
2Tl =g ¢ i (%)

For any non-negative integer i, define:

Vo= / Aghigp? ™

Ag

Consistently with Definition 1, we define the “unstable term”:

Finally, the generating function:

Vi) = YV ®)

g=i

We describe the generating function V;(u) in terms of the initial conditions
VT (that are the coefficients of the generating function D;(u) defined above).
Before we do so, we establish some notation.

Notation:

1. To avoid carrying around double indices, we rename V;H =7;.

2. Partition notation: For n = n]" ...n" a partition of the integer ¢
(n ki), we denote
(&) |nf =i= 22 myny.
(b) £(n) = > my.
(c) Aut(n) =[] ms!
(d) 1" = LRSI S
Finally we are ready to state:

Theorem 2.

Vi (U _ u21 edTou Z u2€(n)dé T

e Aut( )




0.4 Plan of the Paper
The paper is organized as follows:

e Sections 1 and 2 are meant to provide background and establish notation.
In Section 1 we quickly review the basic facts about moduli spaces of
admissible covers that we subsequently use. Section 2 is a minimalistic
presentation of localization, mainly focused on showing how it is used in
this particular application.

e Section 3 presents the proof of Theorem 1.

e Section 4 gives the proof of Theorem 2. We have split the proof into two
parts: “Geometry” and “Combinatorics”.

1 Admissible Covers

1.1 Basic Definitions and Notation

Moduli spaces of admissible covers are a “natural” compactification of the Hur-
witz schemes, parameterizing ramified covers of smooth Riemann Surfaces. Let
(X,p1,---,pr) be an r-pointed nodal curve of genus g.

Definition 2. An admissible cover m : E — X of degree d is a finite
morphism satisfying the following:

1. E is a nodal curve.
2. Every node of E maps to a node of X.

3. The restriction of m : E — X to X ~ (p1, - ,pr) is étale of constant
degree d.

4. Nodes can be smoothed. This means: given an admissible cover m : E —
X, and a node of E, we can find a family of admissible covers ' : E' — X'’
such that:

o 7 : E — X is the central fiber of the family;

e locally in analytic coordinates, X', E’ and ' are described as follows,
for some positive integer n not larger than d:

E: eeq=a,
X: xae=a",
m: oz =el, Tg =€,

Notation: In this paper we are concerned with moduli spaces of admissible
covers of degree d of an unparameterized P!, satisfying the following ramification
data:



e over the first 29 marked points we have simple ramification (¢ for trans-
position - the monodromy type at each of these marked points).

e we require the profile of the cover over the last two marked points to consist
of only one point. This corresponds to full ramification, or monodromy
type given by a d-cycle (hence (d)).

The notation we adopt is maybe a little cuambersome, but it has the advantage
of containing in an unequivocal fashion all the combinatorial information we are
working with:

Adm

950, (£, t2g,(d)2g 11, (d)2g 42) "
This moduli space is a smooth DM stack of dimension 2g — 1.

Remark: In the language of [ACV01], we are selecting the connected com-
ponents of the stack of twisted stable maps Ko 24+2(BSq, 0) satisfying the above
ramification conditions.

1.2 The boundary

Admissible covers of a nodal curve can be combinatorially described in terms of
admissible covers of the irreducible components of the curve. This is extremely
useful because it opens the way to the use of degeneration techniques and induc-
tion. Crucial are the following identities ([Li02]), that take place in the Chow
ring with rational coefficients.

Let {A,B} be a two set partition of the set of 2g+2 marks on the base curve,
and denote by

D(A]B) c Adm9i07(t1,---at2ga(d)2g+1,(d)2g+2)

the divisor corresponding to the base curve splitting into a nodal rational curve
with (at least) one node, the marks in set A arranging themselves on one com-
ponent, those in B on the other.

Then:
DA B) = Y s)(Adm u, \ 1% Adm a0 ] (1)
nkd
where:
e n=((n")™,...,(n¥)™) runs over all partitions of d;

e the combinatorial factor
3(n) == [ [mal(n')™. (5)

is the order of the centralizer in Sy of any group element in the conjugacy
class of n;

e g1 and g are determined by the Riemann-Hurwitz formula and they sat-
isfy:
nt+g+in-1=g



1.3 Tautological Classes

Moduli spaces of admissible covers admit two natural forgetful maps as in the
following diagram:

Adm 5 M
giov(tl1"'7t2g7(d)2g+17(d)2g+2) g
tl
Mo2g+2-

The vertical map remembers the base of the cover as a genus 0 curve marked
by ’ge branch points of the cover. On Mg 442 the tautological class 1; €
AY (M 24+2) is the first Chern class of the cotangent line bundle L; ([Koc01]).

sy ; Adm iy
Definition 3. The tautological class 1} €A (Admgio’m7___7t297(d)2g+17(d)29+2)

1s defined to be the pull-back of the analogous class via the map t:
P = 1),

The map s forgets the cover map and only remembers the source curve. The
tautological class \; € A*(M ) is defined to be the i-th Chern class of the Hodge
bundle E.

Definition 4. The tautological class \9™ € Ai(Admth (e )) is defined
—U, (M1, 5Mn

to be the pull-back of the corresponding class on the moduli space of curves:
A= 57 ().

We immediately drop the superscripts “Adm” since we are only dealing with
admissible cover classes.

Aside: on the Hodge bundle and its useful properties.

The Hodge bundle E 2 is a natural rank g bundle on the moduli space of curves
M,. It is defined to be the pushforward via the universal family map of the
relative dualizng sheaf:

E = mows.

Over a smooth curve, we can interpret the fiber of E as h?(C, K¢), the space of
global holomorphc differentials on C'.
The following properties of E are important and useful([Mum83]):

Mumford Relation: the total Chern class of the sum of the Hodge bundle
with its dual is trivial:

c(E®E*) = 1. (6)

3we will add a subscript and denote it E4 when we want to emphasize the genus.



Top Chern Class: an immediate consequence of the previous point is that for
allg >0

Az =0. (7)

Separating nodes: denote by A; ,_; the divisor in Hg parameterizing nodal
curves C = (4 Up Cs, with C7 a curve of genus i, Cy of genus g — i.
Then the restriction of the Hodge bundle splits as the sum of the bundles
corresponding to the two components:

E |A =E; & Eg,i. (8)

i,9—1

Non-separating nodes: denote by Ag the divisor in M, parameterizing nodal
curves obtained by attaching two points of a genus g — 1 curve. Then the
restriction of the Hodge bundle splits a trivial factor:

E |ap=Eg-1 © 0. (9)

1.4 Admissible Covers of a Parametrized P!

These are a variation of the previous moduli spaces: the objects are parametrized
are the same, but the equivalence relation is stricter: we consider two covers
E, — P!, E; — P! equivalent if there is an isomorphism ¢ : E; — FE, that
makes the natural triangle commute. In other words, we are not allowed to act
on the base with an automorphism of P!.
We denote by
Adm

g—=PL (81, t2g,(d)2g41,(d)2942)
the stack of admissible covers of genus g and degree d of a parametrized pro-
jective line, with specified ramification data. This is a smooth DM stack of
dimension 2¢g + 2.

Remark: in the language of [ACV01], we are selecting the connected com-
ponents satisfying the appropriate ramification conditions in the stack of twisted
stable maps Ko 24+2([P'/S4],d!); the symmetric group acts trivially on P

When the base curve degenerates to a nodal rational curve, one component
will remain parametrized, whereas the sprouted twigs will be unparameterized
genus 0 curves. Therefore ordinary genus 0 admissible cover spaces naturally
appear in the combinatorial description of the boundary strata of parametrized
admissible cover spaces.

2 Localization

Consider the one-dimensional algebraic torus C*, and recall that the C*-equivariant
Chow ring of a point is a polynomial ring in one variable:

Ag-({pt}, C) = Cln).



Let C* act on a smooth, proper stack X, denote by iy : F, — X the irreducible
components of the fixed locus for this action and by Np, their normal bundles.
The natural map:

Az (X)®@C(h) — >, Az (Fir) ® C(h)
iy
CtO;D(NFk) .

is an isomorphism. Pushing forward equivariantly to the class of a point, we
obtain the Atiyah-Bott integration formula:

iy
o= —_—
/[X] zk: /[Fk] ctop(NF,)

2.1 Our Set-up

Let C* act on a two-dimensional vector space V via:
t- (ZQ7 2:1) = (tZQ, 2’1).

This action descends on P!, with fixed points 0 = (1 : 0) and co = (0 : 1). An
equivariant lifting of C* to a line bundle L over P! is uniquely determined by
its weights { Lo, Loo } over the fixed points.

The canonical lifting of C* to the tangent bundle of P! has weights {1, —1}.

The action on P! induces an action on the moduli spaces of admissible cov-
ers to a parametrized P! simply by post composing the cover map with the
automorphism of P! defined by ¢.

The fixed loci for the induced action on the moduli space consist of admissible
covers such that anything “interesting” (ramification, nodes, marked points)
happens over 0 or oo, or on “non special” twigs that attach to the main P! at
0 or co.

3 Theorem 1

We compute the generating functions D;(u) by evaluating via localization the
following auxiliary integrals:

Bim [ i e (0) ey, 0) eviya(o0) (10)
An;lyg
where:
¢ A]Pl’g - AdmgiP17(t17~~~,t2g7(d)2g+17(d)2g+2);
o 1< <g.

10



Remark: The integrals I vanish for g > 0 because of Mumford’s relation (7).
It is straightforward to compute

This computation is consistent with our choice of defining Dy = 1/d (Definition
1).

When we evaluate I{ via localization, the number of possibly contributing
fixed loci (identified here with their localization graphs) is reduced because of
the following considerations:

1. The full ramification condition imposed both at 0 and oo forces the preim-
ages of 0 and co to be connected.

2. The presence of the class A\, in the integrand forces no loops in the local-
ization graph (from relation (9)).

3. The additional simple transposition “sent” to 0 rules out the fixed locus
where the preimage of 0 is just a single point.

The possibly contributing fixed loci consist of boundary strata parameterizing
a single sphere, fully ramified over 0 and co, mapping with degree d to the main
P!. A rational tail must sprout from 0, and be covered by a curve of genus g;.
If g1 < g, then a rational tail sprouts from oo as well, covered by a curve of
genus g2 = g — g1. The situation is illustrated in Figure 2.

g g, g,

Fy = g Fog, = o 1

Figure 2: The possibly contributing fixed loci.

The case i=1

In this case it is easy to see, by pure dimension reasons, that the only contribut-
ing fixed locus is the only codimension three locus, that we have denoted in
Figure 2 by F,. Noting that

F, = Adm

920,(t1,e 29, (d)2g+1,(d)2g+2)

the explicit evaluation of the integral yields:

—h3
qu = /Fg mAgAg_l = Di] (11)

11



The case i > 2

For ¢ > 2 the integral I(g,) vanishes for dimension reasons: we are integrating
a (29 — ¢ + 3)-dimensional class on a (2g + 2)-dimensional space. Localization
produces inductive relations between our generating functions. The fixed locus
F, behaves differently from all the Fj,4,. For this reason we analyze their
contributions separately.

Fy:
—ns 1 ,
———— XA _iz.—/ Ag A _iw“lzDig.
/Fg h(h— ) (=h) "7 hi=t g, 0

Fy 4,: this fixed locus is isomorphic to a product of spaces, with multiplicities:

~ 29 —1\—— -
Fare = d<291 — 1) Admsh L0,(t1, t2gy (d)2g 11, (d)2g42) XAdmgziov(tlwwt?gzx(d)2g+11(d)29+2).

o The factor of d is a combination of the d? coming from gluing two
nodes ((4),(5)) and the 1/d automorphism contribution of the fully
ramified P' lying over the main P';

e The combinatorial factor keeps track of all possible combinations of
2g1 — 1 marks “going to 0” and 2g2 “going to co”.

With this in mind:

—_R3
/F h(ﬁ — wo)h(h T o) (Agl)\gz)(A.‘h*iA.‘D T Agi—it1Ag -1+ F >‘g1>‘ngi)

91,92

%

_ 1 29 -1 _1\kp9t P92
— hi_1d<291 B 1> > (-1)FDg, D (12)

k=1

Adding the contributions of all fixed loci, and remembering that the integral
I? = 0 we obtain the relation:

29— 1) «
Df=-d ). (2g _ 1) (~)*Dg, D, (13)
g1+92=g 1 k=1

Remark: Relation 13 determines D;(u), in terms of all D;(u) with j < i. After
interchanging the summation order, and dividing out by (2g—1)!, (13) expresses
the following identity of generating functions:

d_ & o (d
@Dz_—d;(—m (@Dz_k) Ds. (14)

4Note that a priori g1, g2 # 0, but we can omit this condition because Dg is 0.

12



Recalling that we defined Dy = 1/d, we obtain an even simpler expression for
(14):

zi:(—nk (%Di_k) Dy =0 (15)

Theorem 1 is proved by plugging the predicted formula in (15). The relation is
immediately verified upon recognizing the elementary combinatorial identity:

S () -0

4 Theorem 2

4.1 Geometry

The strategy for the proof of Theorem 2 is very similar. After all, we are
studying the same information, only “packaged” in a different way. With all
notation as in (10), we define and localize the auxiliary integral:

9 = / Moi €v7(0) evsy 1(0) vl 45(00). (16)
Ap1
For g > 4 + 1, this integral vanishes for dimension reasons. The discussion
of the contributing fixed loci is completely analogous to Section 3, and the
contributions are:

Fg:
—h3 1 .
— AN == ANt =V,
/Fg B — o) (—h) 0 T i /F A=V

F9192:

—h3
/F 1l — o)h(h + too) (Agi Ag2) (Al + Ximi A + ...+ 1)

91,92

i

_ 1 29 -1 _1\92—ky911/92
=] ) DO FOR L)

k=0

Adding the contributions over all fixed loci and recalling J? = 0 (for g > i+ 1),
we obtain:

29— 1\ <
Vitd Y (2; - 1) (D= VS =0, (18)

g1+9g2=g k=0

13



Remark: Note that the summation in relation (18) occurs for ¢g; and go
strictly positive integers. Hence (18) determines the value of V¢ inductively in
terms of:

e the generating functions V;, with j < 4;
e the initial condition Vf“.

Relation (18) assumes a particularly compact shape in generating function
form thanks to the introduction of the unstable term V¥ = 1/d in Vy. After
only a little bit of careful bookkeeping, we recognize (18) to be the coefficient
of u?9~1 of the identity:

)

Z(—l)ifk (%V“u)) Viow(vV—=1u) = w‘/ﬁ-ﬂu%}l (19)
k=0

4.2 Combinatorics
In this section we show that the generating functions

A > T
() — 0 2i0dTou 20(m) gtm—-1_~
Vi(u) = u”'e E u " "d Aut(n)

nki

defined in page 5, verify (19), thus concluding the proof of Theorem 2.
Plugging these expressions in the left hand side of (19), we obtain:

: 1 1
Q’E ' E {QT 2L(m)+1 gl =1 (_1¢(n2) I
u ou
wei o omTme=n Aut (1) Aut(n2)
1 1
=1 gt =2(_1)tm) (2|, | + 26(y ) ———— | (20)

Aut(m) Aut (1)

The theorem now follows immediately from these two purely combinatorial
statements.

Lemma 1.
1 1
_ 1)) —0. 21
" 1_1217:2=n( ) Aut(n1) Aut(nz) (21)
Lemma 2.
(i+1) if 5= (),
> O il + o) T
i [In2=n n 12 0 else.

14



PrOOF OF LEMMA 1: Proving this statement amounts to recognizing ex-
pression (21) as a product of binomial coefficients. If n = ni™ ...n/"", then

ﬁ(Xj —hT = H i (27)(—1)%"“])(]’?]' -

7j=1 7j=1 kj=0

o X7 1
=dut() Y (),

n [In2=n

where 171 = n}' ...nFr. Now Lemma (1) follows by setting all of the X; = 1.

PROOF OF LEMMA 2: We observe first of all that for n = (4), the statement
is easily checked. Now let n = n]"* ...nI" . Denote

~ __ . mi mMy—1
n=ny ...n._1 .

Any subdivision 77 = m; [[ 72 induces a subdivision 7 = 7; [ 7j2 simply by for-
getting the n, parts of the partition n. We now group the the terms of (22)
according to this induced subdivisions:

LHS of (22) =

1 l 1 1
Aut(m) k! Aut(nz) (m, — k)

= > D (=0 IRy [k, 4-0(i)+k)

i L =17 k=0

(o g e ) (S

i 1 72=7 k=0

a1 1 = qyme—ky L1
+(nr+]—) Z (_1)6( )Aut(ﬁl)m <Z(_1) kkgm)

i1 LI 2=7 k=0
Let us observe the summations in this expression:
mo—k L 1 . . .
Z(—l) Em this term is clearly always 0; we recognize (up to
k=0 AT ’

sign and a global factor of m,!) the binomial expansion of (1 — 1)™r.

N 1 1
N p— —: this vanishing is precisely the statement of
2 Vs )
M 1 fl2=7
Lemma 1.
This concludes the proof of the Lemma and of Theorem 2.
Remark: It is interesting to observe that also the other two factors in the
above expression vanish “almost” always:

15



_ 1 1
(=) (|77, + (7)) =————= ————" this term vanishes unless £(7}) =

5 ~ Aut(ﬁl) Aut(’ﬁg)

i [ l2=7
1. This is precisely the statement of Lemma 2 for the partition 7, and it
can be shown by induction on the size of the partition.

Mo

1 1
Z(—l)m"*kk— ——— if we multiply this summation by m,.!, we recognize
pors El (m, — k)!

the binomial expansion of

d
- —1 Mo
-1,

evaluated at = 1. The vanishing follows for m, > 1.
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