Evaluating tautological classes using only Hurwitz numbers

Renzo Cavalieri

University of Michigan

Algebraic Geometry Seminar, Columbia University

イロト イポト イヨト イヨト

A talk answering a question posed by Ravi Vakil, to whom goes my gratitude for multiple reasons.

Outline

2 The Characters

- The Hodge Bundle
- Simple Hurwitz Numbers
- Admissible Covers

3 The task

- The Theorems
- The Proof

э

ъ

Motivation 1

Faber Conjecture

 $R^*(\mathcal{M}_g)$ is a Poincaré duality ring with socle in degree g - 2.

The class $\lambda_g \lambda_{g-1}$ vanishes on the boundary $\overline{\mathcal{M}}_g \setminus \mathcal{M}_g$, and hence is an evaluation class for $R^*(M_g)$.

 $\lambda_g \lambda_{q-1}$

・ロン・西方・ ・ ヨン・ ヨン・

3

Renzo Cavalieri

Motivation 1

Faber Conjecture

 $R^*(\mathcal{M}_g)$ is a Poincaré duality ring with socle in degree g - 2.

The class $\lambda_g \lambda_{g-1}$ vanishes on the boundary $\overline{\mathcal{M}}_g \setminus \mathcal{M}_g$, and hence is an evaluation class for $R^*(M_g)$.

 $\lambda_g \lambda_{q-1}$

・ロン・西方・ ・ ヨン・ ヨン・

3

Renzo Cavalieri

Motivation 1

Faber Conjecture

 $R^*(\mathcal{M}_g)$ is a Poincaré duality ring with socle in degree g - 2.

The class $\lambda_g \lambda_{g-1}$ vanishes on the boundary $\overline{\mathcal{M}}_g \setminus \mathcal{M}_g$, and hence is an evaluation class for $R^*(M_g)$.

イロン イボン イヨン イヨン

ъ

 $\lambda_g \lambda_{q-1}$

Motivation 1

The hyperelliptic locus H_g is a 2g - 1 dimensional tautological class. Our computation shows in particular that it is a non-trivial class in $R^{g-2}(\mathcal{M}_g)$.

イロト イポト イヨト イヨト

э

Motivation 2

The evaluation of $\lambda_g \lambda_{g-1}$ on the hyperelliptic locus determines completely the degree 2 (level (0, 0)) *local Gromov-Witten theory of curves* of Bryan and Pandharipande.

Can show this in two steps:

Local invariants of curves can be organized to be the structure constants of a Topological Quantum Field Theory.

 $\lambda_q \lambda_{q-1}$

ヘロト ヘ戸ト ヘヨト ヘヨト

2 The generators of the TQFT can be reduced via localization to the evaluation of $\lambda_g \lambda_{g-1}$ on H_g .

Motivation 2

The evaluation of $\lambda_g \lambda_{g-1}$ on the hyperelliptic locus determines completely the degree 2 (level (0, 0)) *local Gromov-Witten theory of curves* of Bryan and Pandharipande.

Can show this in two steps:

Local invariants of curves can be organized to be the structure constants of a Topological Quantum Field Theory.

 $\lambda_q \lambda_{q-1}$

< □ > < 同 > < 三 > <

2 The generators of the TQFT can be reduced via localization to the evaluation of $\lambda_g \lambda_{g-1}$ on H_g .

...TQFT in a picture

æ –

...TQFT in a picture

æ

...TQFT in a picture

Motivation 3

.

The evaluation of $\lambda_g \lambda_{g-1}$ on H_g controls the orbifold Gromov-Witten theory of the orbifold quotient

$$\mathfrak{X} = [\mathbb{C}^2/\mathbb{Z}_2]$$

イロン 不得 とくほ とくほとう

3

Motivation and Philosophy ... in a picture

▲口 → ▲圖 → ▲ 国 → ▲ 国 →

... in a picture

▲口 → ▲圖 → ▲ 国 → ▲ 国 →

æ

Philosophy

In the late '90s Faber and Pandharipande computed the evaluation of the (closure of the) hyperelliptic locus in $R^{g-2}(\mathcal{M}_g)$ using a GRR computation by Mumford.

Our philosophy is to understand this geometric problem via purely combinatorial instruments - and give a new proof of such computation.

 $\lambda_g \lambda_{q-1}$

ヘロト ヘ戸ト ヘヨト ヘヨト

Tools:

- Hurwitz Theory;
- Localization.

In the late '90s Faber and Pandharipande computed the evaluation of the (closure of the) hyperelliptic locus in $R^{g-2}(\mathcal{M}_g)$ using a GRR computation by Mumford.

Our philosophy is to understand this geometric problem via purely combinatorial instruments - and give a new proof of such computation.

- ⊒ →

Tools:

• Hurwitz Theory;

• Localization.

In the late '90s Faber and Pandharipande computed the evaluation of the (closure of the) hyperelliptic locus in $R^{g-2}(\mathcal{M}_g)$ using a GRR computation by Mumford.

Our philosophy is to understand this geometric problem via purely combinatorial instruments - and give a new proof of such computation.

 $\lambda_q \lambda_{q-1}$

Tools:

- Hurwitz Theory;
- Localization.

Definitions:

The Hodge bundle

$$\mathbb{E}_g o \overline{\mathcal{M}_g}$$

is a rank g vector bundle, whose fiber over a curve C is:

- the holomorphic differential 1-forms on C (if C is smooth).
- the global sections of the relative dualizing sheaf (*K_C* if *C* smooth).
- the dual to $H^1(C, \mathcal{O}_C)$.

The *i-th Hodge class* is

$$\lambda_i := c_i(\mathbb{E}_g).$$

 $\lambda_g \lambda_{q-1}$

イロト イヨト イヨト イ

.≣⇒

Definitions:

The Hodge bundle

$$\mathbb{E}_g o \overline{\mathcal{M}_g}$$

is a rank g vector bundle, whose fiber over a curve C is:

- the holomorphic differential 1-forms on C (if C is smooth).
- the global sections of the relative dualizing sheaf (*K_C* if *C* smooth).
- the dual to $H^1(C, \mathcal{O}_C)$.

The *i-th Hodge class* is

$$\lambda_i := c_i(\mathbb{E}_g).$$

 $\lambda_q \lambda_{q-1}$

< ロ > < 同 > < 三 > .

.⊒...>

Definitions:

The Hodge bundle

$$\mathbb{E}_g o \overline{\mathcal{M}_g}$$

is a rank g vector bundle, whose fiber over a curve C is:

- the holomorphic differential 1-forms on C (if C is smooth).
- the global sections of the relative dualizing sheaf (*K_C* if *C* smooth).
- the dual to $H^1(\mathcal{C}, \mathcal{O}_{\mathcal{C}})$.

The *i-th Hodge class* is

$$\lambda_i := c_i(\mathbb{E}_g).$$

 $\lambda_q \lambda_{q-1}$

< ロ > < 同 > < 三 >

Definitions:

The Hodge bundle

$$\mathbb{E}_g o \overline{\mathcal{M}_g}$$

is a rank g vector bundle, whose fiber over a curve C is:

- the holomorphic differential 1-forms on C (if C is smooth).
- the global sections of the relative dualizing sheaf (*K_C* if *C* smooth).
- the dual to $H^1(\mathcal{C}, \mathcal{O}_{\mathcal{C}})$.

The *i-th Hodge class* is

$$\lambda_i := c_i(\mathbb{E}_g).$$

 $\lambda_q \lambda_{q-1}$

< ロ > < 同 > < 三 >

Definitions:

The Hodge bundle

$$\mathbb{E}_g o \overline{\mathcal{M}_g}$$

is a rank g vector bundle, whose fiber over a curve C is:

- the holomorphic differential 1-forms on C (if C is smooth).
- the global sections of the relative dualizing sheaf (*K_C* if *C* smooth).
- the dual to $H^1(\mathcal{C}, \mathcal{O}_{\mathcal{C}})$.

The *i-th Hodge class* is

$$\lambda_i := c_i(\mathbb{E}_g).$$

 $\lambda_q \lambda_{q-1}$

The Hodge Bundle

<u>What you need to know about \mathbb{E}_q :</u>

How it splits on the boundary.

э

The Hodge Bundle Simple Hurwitz Numbers Admissible Covers

イロト イポト イヨト イヨト

ъ

What you need to know about \mathbb{E}_g :

- How it splits on the boundary.
- Mumford relation:

$$c(\mathbb{E}_g\oplus\mathbb{E}_g^
u)=1$$

The Hodge Bundle Simple Hurwitz Numbers Admissible Covers

イロト イヨト イヨト イ

Simple Hurwitz numbers

The Simple Hurwitz number H_{η}^{g} :

"number" of degree *d* covers $E \xrightarrow{\pi} \mathbb{P}^1$ such that:

• E is a (connected) curve of genus g.

- π is unramified over $\mathbb{P}^1 \setminus \{p_1, \ldots, p_r, \infty\};$
- π ramifies with profile η over ∞ .
- π has simple ramification over the other p_i 's.

The Hodge Bundle Simple Hurwitz Numbers Admissible Covers

イロト イポト イヨト イヨト

Simple Hurwitz numbers

- The Simple Hurwitz number H^g_{η} :
- "number" of degree *d* covers $E \xrightarrow{\pi} \mathbb{P}^1$ such that:
 - E is a (connected) curve of genus g.
 - π is unramified over $\mathbb{P}^1 \setminus \{p_1, \ldots, p_r, \infty\};$
 - π ramifies with profile η over ∞ .
 - π has simple ramification over the other p_i 's.
- The above number is weighted by the number of automorphisms of such covers.

The Hodge Bundle Simple Hurwitz Numbers Admissible Covers

イロト イポト イヨト イヨト

Simple Hurwitz numbers

The Simple Hurwitz number H_{η}^{g} :

"number" of degree *d* covers $E \xrightarrow{\pi} \mathbb{P}^1$ such that:

- E is a (connected) curve of genus g.
- π is unramified over $\mathbb{P}^1 \setminus \{p_1, \ldots, p_r, \infty\};$
- π ramifies with profile η over ∞ .
- π has simple ramification over the other p_i 's.

The Hodge Bundle Simple Hurwitz Numbers Admissible Covers

イロト イポト イヨト イヨト

Simple Hurwitz numbers

The Simple Hurwitz number H_{η}^{g} :

"number" of degree *d* covers $E \xrightarrow{\pi} \mathbb{P}^1$ such that:

- E is a (connected) curve of genus g.
- π is unramified over $\mathbb{P}^1 \setminus \{p_1, \ldots, p_r, \infty\};$
- π ramifies with profile η over ∞ .
- π has simple ramification over the other p_i 's.

The Hodge Bundle Simple Hurwitz Numbers Admissible Covers

イロト イヨト イヨト イ

Simple Hurwitz numbers

The Simple Hurwitz number H_{η}^{g} :

"number" of degree *d* covers $E \xrightarrow{\pi} \mathbb{P}^1$ such that:

- E is a (connected) curve of genus g.
- π is unramified over $\mathbb{P}^1 \setminus \{p_1, \ldots, p_r, \infty\};$
- π ramifies with profile η over ∞ .
- π has simple ramification over the other p_i 's.

The Hodge Bundle Simple Hurwitz Numbers Admissible Covers

Simple Hurwitz numbers

The Simple Hurwitz number H_{η}^{g} :

"number" of degree *d* covers $E \xrightarrow{\pi} \mathbb{P}^1$ such that:

- *E* is a (connected) curve of genus *g*.
- π is unramified over $\mathbb{P}^1 \setminus \{p_1, \ldots, p_r, \infty\};$
- π ramifies with profile η over ∞ .
- π has simple ramification over the other p_i 's.

The Hodge Bundle Simple Hurwitz Numbers Admissible Covers

Simple Hurwitz numbers

The Simple Hurwitz number H_{η}^{g} :

"number" of degree *d* covers $E \xrightarrow{\pi} \mathbb{P}^1$ such that:

- *E* is a (connected) curve of genus *g*.
- π is unramified over $\mathbb{P}^1 \setminus \{p_1, \ldots, p_r, \infty\};$
- π ramifies with profile η over ∞ .
- π has simple ramification over the other p_i 's.

The Hodge Bundle Simple Hurwitz Numbers Admissible Covers

<ロト < 回 > < 回 > <

Simple Hurwitz numbers

The Simple Hurwitz number H_{η}^{g} :

"number" of degree *d* covers $E \xrightarrow{\pi} \mathbb{P}^1$ such that:

- E is a (connected) curve of genus g.
- π is unramified over $\mathbb{P}^1 \setminus \{p_1, \ldots, p_r, \infty\};$
- π ramifies with profile η over ∞ .
- π has simple ramification over the other p_i 's.

The above number is weighted by the number of automorphisms of such covers.

 $\lambda_q \lambda_{q-1}$

Hurwitz Numbers are Combinatorial

By "identifying" a ramified cover with its monodromy representation, we obtain the following purely combinatorial expressions for simple Hurwitz numbers:

$H^g_{\eta} = \frac{\mid Hom^{\eta}(\pi_1(\mathbb{P}^1 \setminus \{p_1, \dots, p_r, \infty\}), S_d) \mid}{d!}$

 $\lambda_q \lambda_{q-1}$

イロト イポト イヨト イヨト 一臣

Hurwitz Numbers are Combinatorial

By "identifying" a ramified cover with its monodromy representation, we obtain the following purely combinatorial expressions for simple Hurwitz numbers:

$$H_{\eta}^{g} = \frac{\mid Hom^{\eta}(\pi_{1}(\mathbb{P}^{1} \setminus \{p_{1}, \ldots, p_{r}, \infty\}), S_{d}) \mid}{d!}$$

 $\lambda_q \lambda_{q-1}$

イロン 不得 とくほ とくほとう

æ

Hyperelliptic Hurwitz Numbers

POP QUIZ: What are all hyperelliptic Hurwitz numbers?

 $\lambda_g \lambda_{q-1}$

ヘロト ヘアト ヘヨト ヘ

.≣⇒

Caution! Not all $\frac{1}{2}$'s are equal...
Hyperelliptic Hurwitz Numbers

POP QUIZ: What are all hyperelliptic Hurwitz numbers?

• $H^g_{(2)} = \frac{1}{2};$ • $H^g_{(1,1)} = \frac{1}{2}$

Caution! Not all $\frac{1}{2}$'s are equal...

 $\lambda_g \lambda_{q-1}$

Hyperelliptic Hurwitz Numbers

POP QUIZ: What are all hyperelliptic Hurwitz numbers?

•
$$H^g_{(2)} = \frac{1}{2};$$

• $H^g_{(1,1)} = \frac{1}{2}.$

Caution! Not all $\frac{1}{2}$'s are equal...

 $\lambda_g \lambda_{q-1}$

・ロト ・ 一下・ ・ ヨト・

.≣⇒

Hyperelliptic Hurwitz Numbers

POP QUIZ: What are all hyperelliptic Hurwitz numbers?

•
$$H^g_{(2)} = \frac{1}{2};$$

• $H^g_{(1,1)} = \frac{1}{2}.$

Caution! Not all $\frac{1}{2}$'s are equal...

 $\lambda_g \lambda_{q-1}$

・ロト ・ 一下・ ・ ヨト・

.≣⇒

Hyperelliptic Hurwitz Numbers

POP QUIZ: What are all hyperelliptic Hurwitz numbers?

$$H^g_{(2)} = rac{1}{2};$$

 $H^g_{(1,1)} = rac{1}{2}.$

Caution! Not all $\frac{1}{2}$'s are equal...

 $\lambda_g \lambda_{q-1}$

 Motivation and Philosophy
 The Hodge Bundle

 The Characters
 Simple Hurwitz Numbers

 The task
 Admissible Covers

Generating Functions for Simple Hurwitz Numbers

It's often useful to package Hurwitz numbers for all genera in formal power series form:

$$\mathcal{H}_{\eta}(\boldsymbol{u}) := \sum H_{\eta}^{\boldsymbol{g}} rac{\boldsymbol{u}^{\varphi(\boldsymbol{g})}}{\varphi(\boldsymbol{g})!}.$$

 $\lambda_q \lambda_{q-1}$

・ロト ・聞 と ・ ヨ と ・ ヨ と …

 $\varphi(g) = 2g + d + \ell(\eta) - 2 =$ number of simple ramification points not including ∞ .

The Characters

Simple Hurwitz Numbers

Back to Hyperelliptic numbers

$$\mathcal{H}_{(2)}(u) := \sum H_{(2)}^g \frac{u^{2g+1}}{(2g+1)!} = \frac{1}{2}\sinh(u).$$
$$\mathcal{H}_{(1,1)}(u) := \sum H_{(1,1)}^g \frac{u^{2g+2}}{(2g+2)!} = \frac{1}{2}(\cosh(u) - 1).$$

▲口 > ▲圖 > ▲ 三 > ▲ 三 > -

2

Moduli Spaces of Admissible Covers

Let X be a nodal curve of genus h.

An admissible cover of X of degree d is a finite morphism $\pi: E \longrightarrow X'$ satisfying the following:

- $X' = X \cup T_1 \cup \ldots \cup T_n$ is a nodal curve obtained by attaching rational tails to X.
- E is a nodal curve.
- Nodes of *E* "correspond" to nodes of *X*'.
- π is étale of constant degree d away from a finite set of points S.

イロン イボン イヨン イヨン

Moduli Spaces of Admissible Covers

Let X be a nodal curve of genus h.

An admissible cover of X of degree d is a finite morphism $\pi: E \longrightarrow X'$ satisfying the following:

- $X' = X \cup T_1 \cup \ldots \cup T_n$ is a nodal curve obtained by attaching rational tails to X.
- E is a nodal curve.
- Nodes of *E* "correspond" to nodes of *X*'.
- π is étale of constant degree d away from a finite set of points S.

イロト 不得 トイヨト イヨト

Moduli Spaces of Admissible Covers

Let X be a nodal curve of genus h.

An admissible cover of X of degree d is a finite morphism $\pi: E \longrightarrow X'$ satisfying the following:

- $X' = X \cup T_1 \cup \ldots \cup T_n$ is a nodal curve obtained by attaching rational tails to *X*.
- E is a nodal curve.
- Nodes of *E* "correspond" to nodes of X'.
- π is étale of constant degree *d* away from a finite set of points *S*.

Moduli Spaces of Admissible Covers

Let *X* be a nodal curve of genus *h*.

An admissible cover of X of degree d is a finite morphism $\pi: E \longrightarrow X'$ satisfying the following:

- $X' = X \cup T_1 \cup \ldots \cup T_n$ is a nodal curve obtained by attaching rational tails to *X*.
- *E* is a nodal curve.
- Nodes of *E* "correspond" to nodes of *X*'.
- π is étale of constant degree *d* away from a finite set of points *S*.

Moduli Spaces of Admissible Covers

Let X be a nodal curve of genus h.

An admissible cover of X of degree d is a finite morphism $\pi: E \longrightarrow X'$ satisfying the following:

- $X' = X \cup T_1 \cup \ldots \cup T_n$ is a nodal curve obtained by attaching rational tails to *X*.
- E is a nodal curve.
- Nodes of *E* "correspond" to nodes of *X*'.
- π is étale of constant degree *d* away from a finite set of points *S*.

イロト イポト イヨト イヨト

Moduli Spaces of Admissible Covers

Let *X* be a nodal curve of genus *h*.

An admissible cover of X of degree d is a finite morphism $\pi: E \longrightarrow X'$ satisfying the following:

- $X' = X \cup T_1 \cup \ldots \cup T_n$ is a nodal curve obtained by attaching rational tails to *X*.
- *E* is a nodal curve.
- Nodes of *E* "correspond" to nodes of *X*'.
- π is étale of constant degree d away from a finite set of points S.

Moduli Spaces of Admissible Covers

Let *X* be a nodal curve of genus *h*.

An admissible cover of X of degree d is a finite morphism $\pi: E \longrightarrow X'$ satisfying the following:

- $X' = X \cup T_1 \cup \ldots \cup T_n$ is a nodal curve obtained by attaching rational tails to *X*.
- E is a nodal curve.
- Nodes of *E* "correspond" to nodes of *X*'.
- π is étale of constant degree d away from a finite set of points S.

 $\lambda_q \lambda_{q-1}$

くロト (過) (目) (日)

Notation

$\overline{Adm}_{g\overset{d}{\rightarrow}X,(\mu_1,\cdots,\mu_r)}$

The stack of (possibly disconnected), degree d admissible covers of the curve X by curves of genus g, such that:

 the ramification profile over the marked point p_i on X is described by the partition η_i;

 $\lambda_q \lambda_{q-1}$

イロト イポト イヨト イヨト

• the cover map is unramified away from {p₁,..., p_r}.

Notation

$\overline{Adm}_{g\overset{d}{\rightarrow}X,(\mu_1,\cdots,\mu_r)}$

The stack of (possibly disconnected), degree d admissible covers of the curve X by curves of genus g, such that:

the ramification profile over the marked point *p_i* on *X* is described by the partition η_i;

 $\lambda_q \lambda_{q-1}$

イロト イポト イヨト イヨト

• the cover map is unramified away from $\{p_1, \ldots, p_r\}$.

Notation

$\overline{Adm}_{g\overset{d}{\rightarrow}X,(\mu_1,\cdots,\mu_r)}$

The stack of (possibly disconnected), degree d admissible covers of the curve X by curves of genus g, such that:

 the ramification profile over the marked point *p_i* on *X* is described by the partition η_i;

 $\lambda_q \lambda_{q-1}$

イロト イポト イヨト イヨト

• the cover map is unramified away from $\{p_1, \ldots, p_r\}$.

Natural maps and tautological classes:

There are natural forgetful morphisms:

$$\overline{\mathsf{Adm}}_{\substack{g \to 0, (\mu_1, \cdots, \mu_r) \\ \downarrow \\ \overline{\mathcal{M}}_{0, r}.}} \to \overline{\mathcal{M}}_g$$

イロン 不得 とくほ とくほとう

Tautological classes:

- λ classes are pulled back via the horizontal map;
- ψ classes are pulled back via the vertical map.

 $\lambda_g \lambda_{q-1}$

Natural maps and tautological classes:

There are natural forgetful morphisms:

$$\overline{Adm}_{\substack{g \to 0, (\mu_1, \cdots, \mu_r) \\ \downarrow \\ \overline{\mathcal{M}}_{0, r}.}} \to \overline{\mathcal{M}}_g$$

< ロ > < 同 > < 三 >

Tautological classes:

- λ classes are pulled back via the horizontal map;
- ψ classes are pulled back via the vertical map.

 $\lambda_q \lambda_{q-1}$

Natural maps and tautological classes:

There are natural forgetful morphisms:

$$\overline{Adm}_{\substack{g \to 0, (\mu_1, \cdots, \mu_r) \\ \downarrow \\ \overline{\mathcal{M}}_{0, r}.}} \to \overline{\mathcal{M}}_g$$

 $\lambda_q \lambda_{q-1}$

< < >> < </>

Tautological classes:

- λ classes are pulled back via the horizontal map;
- ψ classes are pulled back via the vertical map.

The Hodge Bundle Simple Hurwitz Numbers Admissible Covers

What aboout them?

They are beautiful spaces:

- they are smooth (stacks);
- the boundary is "combinatorial".

2 They are useful spaces:

- Ionel, Graber-Vakil: applications to the study of the tautological ring of moduli spaces of curves.
- Costello, Bryan-Graber-Pandharipande: orbifold GW theory of Gorenstein stacks.

They are handy spaces:

 One can use standard GW techniques such as localization or WDVV to produce combinatorial topological recursions.

The Hodge Bundle Simple Hurwitz Numbers Admissible Covers

What aboout them?

They are beautiful spaces:

- they are smooth (stacks);
- the boundary is "combinatorial".

Particular and the second s

- Ionel, Graber-Vakil: applications to the study of the tautological ring of moduli spaces of curves.
- Costello, Bryan-Graber-Pandharipande: orbifold GW theory of Gorenstein stacks.

They are handy spaces:

 One can use standard GW techniques such as localization or WDVV to produce combinatorial topological recursions.

The Hodge Bundle Simple Hurwitz Numbers Admissible Covers

What aboout them?

They are beautiful spaces:

- they are smooth (stacks);
- the boundary is "combinatorial".
- They are useful spaces:
 - *lonel, Graber-Vakil*: applications to the study of the tautological ring of moduli spaces of curves.
 - Costello, Bryan-Graber-Pandharipande: orbifold GW theory of Gorenstein stacks.
- They are handy spaces:
 - One can use standard GW techniques such as localization or WDVV to produce combinatorial topological recursions.

The Hodge Bundle Simple Hurwitz Numbers Admissible Covers

What aboout them?

They are beautiful spaces:

- they are smooth (stacks);
- the boundary is "combinatorial".

They are useful spaces:

- *Ionel, Graber-Vakil*: applications to the study of the tautological ring of moduli spaces of curves.
- *Costello, Bryan-Graber-Pandharipande*: orbifold GW theory of Gorenstein stacks.
- They are handy spaces:
 - One can use standard GW techniques such as localization or WDVV to produce combinatorial topological recursions.

The Hodge Bundle Simple Hurwitz Numbers Admissible Covers

What aboout them?

They are beautiful spaces:

- they are smooth (stacks);
- the boundary is "combinatorial".
- They are useful spaces:
 - *Ionel, Graber-Vakil*: applications to the study of the tautological ring of moduli spaces of curves.
 - *Costello, Bryan-Graber-Pandharipande*: orbifold GW theory of Gorenstein stacks.
- They are handy spaces:
 - One can use standard GW techniques such as localization or WDVV to produce combinatorial topological recursions.

The Hodge Bundle Simple Hurwitz Numbers Admissible Covers

What aboout them?

They are beautiful spaces:

- they are smooth (stacks);
- the boundary is "combinatorial".
- They are useful spaces:
 - *lonel, Graber-Vakil*: applications to the study of the tautological ring of moduli spaces of curves.
 - *Costello, Bryan-Graber-Pandharipande*: orbifold GW theory of Gorenstein stacks.

They are handy spaces:

 One can use standard GW techniques such as localization or WDVV to produce combinatorial topological recursions.

・ロト ・ 一下・ ・ ヨト・

The Hodge Bundle Simple Hurwitz Numbers Admissible Covers

What aboout them?

They are beautiful spaces:

- they are smooth (stacks);
- the boundary is "combinatorial".
- They are useful spaces:
 - *Ionel, Graber-Vakil*: applications to the study of the tautological ring of moduli spaces of curves.
 - *Costello, Bryan-Graber-Pandharipande*: orbifold GW theory of Gorenstein stacks.
- They are handy spaces:
 - One can use standard GW techniques such as localization or WDVV to produce combinatorial topological recursions.

< □ > < 同 > < 三 > <

The Hodge Bundle Simple Hurwitz Numbers Admissible Covers

What aboout them?

They are beautiful spaces:

- they are smooth (stacks);
- the boundary is "combinatorial".
- They are useful spaces:
 - *Ionel, Graber-Vakil*: applications to the study of the tautological ring of moduli spaces of curves.
 - *Costello, Bryan-Graber-Pandharipande*: orbifold GW theory of Gorenstein stacks.
- They are handy spaces:
 - One can use standard GW techniques such as localization or WDVV to produce combinatorial topological recursions.

 $\lambda_q \lambda_{q-1}$

< ロ > < 同 > < 三 >

The Theorems The Proof

The Theorems

Faber-Pandharipande New proof (-)

Denote by \overline{H}_g a (2g + 2)! cover of the hyperelliptic locus obtained by marking all the Weierstrass points. Then:

$$\mathcal{F}(u) := \sum_{g=1}^{\infty} \left(\int_{\overline{H}_g} \lambda_g \lambda_{g-1} \right) \frac{u^{2g-1}}{(2g-1)!} = \frac{1}{2} \tan\left(\frac{u}{2}\right).$$

 $\lambda_g \lambda_{q-1}$

イロン 不得 とくほ とくほとう

ъ

This is what we will proof!

The Theorems The Proof

A generalization

Looijenga/Bryan-Pandharipande New proof (Bertram , -, Todorov)

Let $\overline{H}_{dd} \subseteq \overline{\mathcal{M}_g}$ be the closure of the locus of curves that admit a degree *d* map to \mathbb{P}^1 with two fully ramified points (again, all branch locus marked). Then:

$$\sum_{g=1}^{\infty} \left(\int_{\overline{H}_{dd}} \lambda_g \lambda_{g-1} \right) \frac{u^{2g-1}}{(2g-1)!} = \frac{1}{2} \left(\cot\left(\frac{u}{2}\right) - d \cot\left(\frac{du}{2}\right) \right).$$

 $\lambda_q \lambda_{q-1}$

The strategy

- Relate the (evaluation of) $\lambda_g \lambda_{g-1}$ to tautological classes with descendants.
- Find a way to compute the sum of all such classes in terms of λ_gλ_{g-1}.

イロト イポト イヨト イヨト

ъ

3 Invert to find $\lambda_g \lambda_{g-1}$.

The strategy

- Relate the (evaluation of) $\lambda_g \lambda_{g-1}$ to tautological classes with descendants.
- Find a way to compute the sum of all such classes in terms of λ_gλ_{g-1}.

イロト 不得 トイヨト イヨト

3

3 Invert to find $\lambda_g \lambda_{g-1}$.

The strategy

- Relate the (evaluation of) $\lambda_g \lambda_{g-1}$ to tautological classes with descendants.
- Find a way to compute the sum of all such classes in terms of λ_gλ_{g-1}.

イロト イポト イヨト イヨト

3

3 Invert to find $\lambda_g \lambda_{g-1}$.

The task

The Proof

Introducing descendants:

æ

The Theorems The Proof

Double Hodge Functions

For any degree *d*, define

$$\mathcal{L}_{i}(\boldsymbol{u}) := \sum_{g=i}^{\infty} \left(\int_{\overline{Adm}_{g\overset{d}{\rightarrow}0,(d),(d),(2),\dots,(2)}} \lambda_{g} \lambda_{g-i} \psi^{i-1} \right) \frac{u^{2g}}{(2g)!}$$

Then

Theorem (-)

$$\mathcal{L}_i(u) = \frac{d^{i-1}}{i!} \mathcal{L}_1^i(u)$$

Remark: we use the theorem to define $\mathcal{L}_0 = \frac{1}{d}$. This is not a wacky thing to do.

 $\lambda_g \lambda_{q-1}$

The Theorems The Proof

The Calabi-Yau cap

Lemma (-)

$$CY(u) := \frac{1}{2}u + \sum_{g=1}^{\infty} \left(\int_{\overline{Adm}_{g^2 \to 0, (2), \dots, (2)}} \lambda_g \lambda_{g-2} \psi + \dots + \lambda_g \psi^{g-1} \right) \frac{u^{2g+1}}{(2g+1)!} = \\ = \tan\left(\frac{u}{2}\right).$$

 $\lambda_g \lambda_{g-1}$

The Theorems The Proof

Putting everything together

$$CY(u) \leftrightarrow \sum_{0}^{\infty} \mathcal{L}_{i}(u) \leftrightarrow \exp(\mathcal{L}_{1})(u)$$

 $\mathcal{L}_1(u) \quad \leftrightarrow \quad \mathcal{F}(u)$

 $\lambda_g \lambda_{g-1}$

₹ 990
Motivation and Philosophy The Characters The task

The Theorem: The Proof

Putting everything together

$$\frac{d}{du}CY(u) = \sum_{0}^{\infty} \mathcal{L}_{i}(u) = \frac{1}{2}e^{\frac{(\mathcal{L}_{1})(u)}{2}}$$

$$\frac{d}{du}\mathcal{L}_1(u) = \mathcal{F}(u)$$

 $\lambda_g \lambda_{g-1}$

₹ 990

Renzo Cavalieri