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Motivation 1

Faber Conjecture

R∗(Mg) is a Poincaré duality ring with socle in degree g − 2.

The class λgλg−1 vanishes on the boundary Mg \Mg , and
hence is an evaluation class for R∗(Mg).
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The hyperelliptic locus Hg is a 2g − 1 dimensional tautological
class. Our computation shows in particular that it is a non-trivial
class in Rg−2(Mg).
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Motivation 2

The evaluation of λgλg−1 on the hyperelliptic locus determines
completely the degree 2 (level (0,0)) local Gromov-Witten
theory of curves of Bryan and Pandharipande.

Can show this in two steps:
1 Local invariants of curves can be organized to be the

structure constants of a Topological Quantum Field Theory.
2 The generators of the TQFT can be reduced via

localization to the evaluation of λgλg−1 on Hg .
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X

tqft GW(X)
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The evaluation of λgλg−1 on Hg controls the orbifold
Gromov-Witten theory of the orbifold quotient

X = [C2/Z2]

.
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Philosophy

In the late ’90s Faber and Pandharipande computed the
evaluation of the (closure of the) hyperelliptic locus in
Rg−2(Mg) using a GRR computation by Mumford.

Our philosophy is to understand this geometric problem via
purely combinatorial instruments - and give a new proof of such
computation.
Tools:

Hurwitz Theory;
Localization.
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Admissible Covers

Definitions:

The Hodge bundle
Eg →Mg

is a rank g vector bundle, whose fiber over a curve C is:

the holomorphic differential 1-forms on C (if C is smooth).
the global sections of the relative dualizing sheaf (KC if C
smooth).
the dual to H1(C,OC).

The i -th Hodge class is

λi := ci(Eg).
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What you need to know about Eg:

1 How it splits on the boundary.
2 Mumford relation:

c(Eg ⊕ Eν
g) = 1
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Simple Hurwitz numbers

The Simple Hurwitz number Hg
η :

“number" of degree d covers E π−→ P1 such that:
E is a (connected) curve of genus g.
π is unramified over P1 \ {p1, . . . ,pr ,∞};
π ramifies with profile η over ∞.
π has simple ramification over the other pi ’s.

The above number is weighted by the number of automorphisms of such
covers.
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Hurwitz Numbers are Combinatorial

By “identifying" a ramified cover with its monodromy
representation, we obtain the following purely combinatorial
expressions for simple Hurwitz numbers:

Hg
η =

| Homη(π1(P1 \ {p1, . . . ,pr ,∞}),Sd) |
d !

.
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Hyperelliptic Hurwitz Numbers

POP QUIZ: What are all hyperelliptic Hurwitz numbers?

Hg
(2) =

1
2
;

Hg
(1,1) =

1
2
.

Caution! Not all 1
2 ’s are equal...
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Generating Functions for Simple Hurwitz Numbers

It’s often useful to package Hurwitz numbers for all genera in
formal power series form:

Hη(u) :=
∑

Hg
η

uϕ(g)

ϕ(g)!
.

ϕ(g) = 2g + d + `(η)− 2 = number of simple ramification points not
including∞.
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Back to Hyperelliptic numbers

H(2)(u) :=
∑

Hg
(2)

u2g+1

(2g + 1)!
=

1
2

sinh(u).

H(1,1)(u) :=
∑

Hg
(1,1)

u2g+2

(2g + 2)!
=

1
2
(cosh(u)− 1).
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Moduli Spaces of Admissible Covers

Let X be a nodal curve of genus h.
An admissible cover of X of degree d is a finite morphism
π : E −→ X ′ satisfying the following:

X ′ = X ∪ T1 ∪ . . . ∪ Tn is a nodal curve obtained by
attaching rational tails to X .
E is a nodal curve.
Nodes of E “correspond" to nodes of X ′.
π is étale of constant degree d away from a finite set of
points S.
Nodes can be smoothed (in particular matching
ramification).
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Notation

Adm
g d→X ,(µ1,··· ,µr )

The stack of (possibly disconnected), degree d admissible
covers of the curve X by curves of genus g, such that:

the ramification profile over the marked point pi on X is
described by the partition ηi ;
the cover map is unramified away from {p1, . . . ,pr}.
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Natural maps and tautological classes:

There are natural forgetful morphisms:

Adm
g d→0,(µ1,··· ,µr )

→ Mg

↓
M0,r .

Tautological classes:
λ classes are pulled back via the horizontal map;
ψ classes are pulled back via the vertical map.
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What aboout them?

1 They are beautiful spaces:
they are smooth (stacks);
the boundary is “combinatorial".

2 They are useful spaces:
Ionel, Graber-Vakil : applications to the study of the
tautological ring of moduli spaces of curves.
Costello, Bryan-Graber-Pandharipande: orbifold GW theory
of Gorenstein stacks.

3 They are handy spaces:
One can use standard GW techniques such as localization
or WDVV to produce combinatorial topological recursions.
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or WDVV to produce combinatorial topological recursions.
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The Theorems

Faber-Pandharipande New proof (-)

Denote by Hg a (2g + 2)! cover of the hyperelliptic locus
obtained by marking all the Weierstrass points. Then:

F(u) :=
∞∑

g=1

(∫
Hg

λgλg−1

)
u2g−1

(2g − 1)!
=

1
2

tan
(u

2

)
.

This is what we will proof!
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A generalization

Looijenga/Bryan-Pandharipande
New proof (Bertram , -, Todorov)

Let Hdd ⊆Mg be the closure of the locus of curves that admit
a degree d map to P1 with two fully ramified points (again, all
branch locus marked). Then:

∞∑
g=1

(∫
Hdd

λgλg−1

)
u2g−1

(2g − 1)!
=

1
2

(
cot
(u

2

)
− d cot

(
du
2

))
.
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The strategy

1 Relate the (evaluation of) λgλg−1 to tautological classes
with descendants.

2 Find a way to compute the sum of all such classes in terms
of λgλg−1.

3 Invert to find λgλg−1.
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Introducing descendants:

 

g

j

D1D2D3

T1

T2

T3

T4

V0 V1 V2 V3

1

u2

u4

u6

u8

1

d

λ1

λ2ψ

λ3ψ
2

λ4ψ
3

λ2λ1

λ3λ1ψ

λ4λ1ψ
2

λ3λ2

λ4λ2ψ λ4λ3

Figure 1: Integral with descendants we wish to consider.

1
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Double Hodge Functions

For any degree d , define

Li(u) :=
∞∑

g=i

∫
Adm

g d→0,(d),(d),(2),...,(2)

λgλg−iψ
i−1

 u2g

(2g)!

Then

Theorem (-)

Li(u) =
d i−1

i!
Li

1(u)

Remark: we use the theorem to define L0 = 1
d . This is not a wacky thing to

do.
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The Calabi-Yau cap

Lemma (-)

CY (u) :=
1
2

u +
∞X

g=1

0@Z
Adm

g 2→0,(2),...,(2)

λgλg−1 + λgλg−2ψ + . . .+ λgψ
g−1

1A u2g+1

(2g + 1)!
=

= tan
(u

2

)
.
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Putting everything together

CY (u) ↔
∞∑
0

Li(u) ↔ exp(L1)(u)

L1(u) ↔ F(u)
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Putting everything together

d
du

CY (u) =
∞∑
0

Li(u) =
1
2

e
(L1)(u)

2

d
du
L1(u) = F(u)
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