G-Hodge Integrals, Gerby Localization and $\mathcal{GW}(\ [\mathbb{C}^3/\mathbb{Z}_3]\)$

Renzo Cavalieri

University of Michigan

Algebraic Geometry Seminar, University of British Columbia

< < >> < </>

Roadmap for the talk

pplication (Cadman-C, 2007)

gerby localization produces recursions that determine any genus 0 equivariant Gromov-Witten invariant of $[\mathbb{C}^3/\mathbb{Z}_3]$.

Roadmap for the talk

pplication (Cadman-C, 2007)

gerby localization produces recursions that determine any genus 0 equivariant Gromov-Witten invariant of $[\mathbb{C}^3/\mathbb{Z}_3]$.

Roadmap for the talk

Application (Cadman-C, 2007):

gerby localization produces recursions that determine any genus 0 equivariant Gromov-Witten invariant of $[\mathbb{C}^3/\mathbb{Z}_3]$.

Outline

프 > 프

Hodge Integrals G-Hodge integrals

The Hodge bundle:

The Hodge bundle

$$\mathbb{E} o \overline{\mathcal{M}_g}$$

is a rank g vector bundle, whose fiber over a curve C is:

- the holomorphic differential 1-forms on C (if C is smooth).
- the global sections of the relative dualizing sheaf (*K_C* if *C* smooth).
- the dual to $H^1(\mathcal{C}, \mathcal{O}_{\mathcal{C}})$.

The *i-th Hodge class* is

$$\lambda_i := c_i(\mathbb{E}).$$

Hodge Integrals G-Hodge integrals

The Hodge bundle:

The Hodge bundle

$$\mathbb{E} o \overline{\mathcal{M}_g}$$

is a rank g vector bundle, whose fiber over a curve C is:

- the holomorphic differential 1-forms on C (if C is smooth).
- the global sections of the relative dualizing sheaf (*K_C* if *C* smooth).
- the dual to $H^1(\mathcal{C}, \mathcal{O}_{\mathcal{C}})$.

The *i-th Hodge class* is

$$\lambda_i := c_i(\mathbb{E}).$$

Hodge Integrals G-Hodge integrals

What's nice about λ classes?

They are tautological (Mumford).

- They "split nicely" when restriced to the boundary.
- There is a wealth of natural combinatorial relations between them.

They are a natural tool to study the intersection theory of the moduli space of curves.

Hodge Integrals G-Hodge integrals

What's nice about λ classes?

- They are tautological (Mumford).
- Intel and the second second
- There is a wealth of natural combinatorial relations between them.

They are a natural tool to study the intersection theory of the moduli space of curves.

Hodge Integrals G-Hodge integrals

What's nice about λ classes?

- They are tautological (Mumford).
- Intel and the second second
- There is a wealth of natural combinatorial relations between them.

They are a natural tool to study the intersection theory of the moduli space of curves.

Hodge Integrals G-Hodge integrals

What's nice about λ classes?

- They are tautological (Mumford).
- Provide the second s
- There is a wealth of natural combinatorial relations between them.

They are a natural tool to study the intersection theory of the moduli space of curves.

.≣⇒

Hodge Integrals G-Hodge integrals

Hodge Integrals

Hodge Integrals are top intersection numbers of λ classes. When organized in generating function, they exhibit a surprising amount of structure.

Example:(Faber-Pandharipande/Bertram-C-Todorov)

$$\mathcal{F}(u) := \sum_{g=1}^{\infty} \left(\int_{\overline{H}_g} \lambda_g \lambda_{g-1} \right) \frac{u^{2g-1}}{(2g-1)!} = \frac{1}{2} \tan\left(\frac{u}{2}\right)$$

(used to show that dim $R^{g-2}M_g=1$)

イロン 不得 とくほ とくほとう

Hodge Integrals G-Hodge integrals

Hodge Integrals

Hodge Integrals are top intersection numbers of λ classes. When organized in generating function, they exhibit a surprising amount of structure.

Example:(Faber-Pandharipande/Bertram-C-Todorov)

$$\mathcal{F}(u) := \sum_{g=1}^{\infty} \left(\int_{\overline{H}_g} \lambda_g \lambda_{g-1} \right) \frac{u^{2g-1}}{(2g-1)!} = \frac{1}{2} \tan\left(\frac{u}{2}\right)$$

(used to show that dim $R^{g-2}M_g=1$)

Hodge Integrals G-Hodge integrals

Hodge Integrals

Hodge Integrals are top intersection numbers of λ classes. When organized in generating function, they exhibit a surprising amount of structure.

Example:(Faber-Pandharipande/Bertram-C-Todorov)

$$\mathcal{F}(u) := \sum_{g=1}^{\infty} \left(\int_{\overline{H}_g} \lambda_g \lambda_{g-1} \right) \frac{u^{2g-1}}{(2g-1)!} = \frac{1}{2} \tan\left(\frac{u}{2}\right)$$

(used to show that dim $R^{g-2}M_g=1$)

Hodge Integrals G-Hodge integrals

Hodge Integrals

Hodge Integrals are top intersection numbers of λ classes. When organized in generating function, they exhibit a surprising amount of structure.

Example:(Faber-Pandharipande/Bertram-C-Todorov)

$$\mathcal{F}(u) := \sum_{g=1}^{\infty} \left(\int_{\overline{H}_g} \lambda_g \lambda_{g-1} \right) \frac{u^{2g-1}}{(2g-1)!} = \frac{1}{2} \tan\left(\frac{u}{2}\right)$$

(used to show that dim $R^{g-2}M_g=1$)

Motivation and History $[\mathbb{C}^3/\mathbb{Z}_3]$

Gerby Localization

Hodge Integrals G-Hodge integrals

A one slide sidetrack

Theorem (C, 2007)

$$\mathcal{P}(u; x_1, \ldots) := \sum_{g=1}^{\infty} \left(\int_{\overline{H}_g} \lambda_g \lambda_{g-i} \psi_1^{i_1} \ldots \psi_n^{i_n} \right) \frac{u^{2g-1}}{(2g-1)!} x_1^{i_1} \ldots x_n^{i_n} =$$
$$= \frac{1}{2} \left(\cos\left(\frac{u}{2}\right) \right)^{-2\sum x_i} \tan\left(\frac{u}{2}\right)$$

・ロト ・聞ト ・ヨト ・ヨト

₹ 990

Hodge Integrals and GW Theory

Let X be a space with a torus action and isolated fixed points. Then Gromov-Witten invariants of X can be computed via localization and expressed in terms of Hodge integrals:

- induce a torus action on $\overline{M}_{g,n}(X,\beta)$;
- fixed loci parameterize maps where all high genus components are collapsed;

$$\Rightarrow$$
 F \cong (*comb. mess*) $\prod \overline{M}_{g_i,n_i}$

- the virtual fundamental class restricted to a fixed locus is a polynomial in λ classes;
- the normal bundle to a fixed locus is a rational function in ψ classes.

ヘロン 人間 とくほ とくほ とう

Hodge Integrals G-Hodge integrals

Hodge Integrals and open GW Theory

Let X be a non-compact space with a torus action with compact fixed locus F. GW invariants for X can be defined via localization as intersection numbers on

$$\overline{M}_{g,n}(F,\beta)$$

"corrected" by a class

e(*Ob*),

(obstruction bundle "coming" from N_F). This again causes the appearance of Hodge Integrals in these expressions.

Hodge Integrals G-Hodge integrals

Faber-Pandharipande's technique

Faber and Pandharipande study Hodge integrals through the equivariant GW theory of \mathbb{P}^1 .

They compute via localization some known intersection numbers on

$$\overline{M}_{g,n}(\mathbb{P}^1,1)$$

and extract relations among Hodge integrals from the fixed loci contributions.

Hodge Integrals G-Hodge integrals

Faber-Pandharipande's technique

- Faber and Pandharipande study Hodge integrals through the equivariant GW theory of \mathbb{P}^1 .
- They compute via localization some known intersection numbers on

$$\overline{M}_{g,n}(\mathbb{P}^1,1)$$

and extract relations among Hodge integrals from the fixed loci contributions.

Hodge Integrals *G*-Hodge integrals

G actions on curves

Let *G* be a finite group. Consider the locus of curves in *C* in $\overline{\mathcal{M}_g}$ that admit a *G* action such that the quotient is a rational curve.

Example: the hyperelliptic locus is such a locus for the group $G = \mathbb{Z}_2$.

∃ > < ∃ >

Hodge Integrals *G*-Hodge integrals

The splitting of the Hodge bundle

The *G* action on the curves induces a *G* action on the 1-forms. The Hodge bundle then splits according to the irreducible representations of G

$$\mathbb{E} = \mathbb{E}_{\rho_1} \oplus \ldots \oplus \mathbb{E}_{\rho_n},$$

We now define:

 $\lambda_i^{
ho} := c_i(\mathbb{E}_{
ho}).$

Hodge Integrals G-Hodge integrals

The splitting of the Hodge bundle

The *G* action on the curves induces a *G* action on the 1-forms. The Hodge bundle then splits according to the irreducible representations of G

$$\mathbb{E}=\mathbb{E}_{\rho_1}\oplus\ldots\oplus\mathbb{E}_{\rho_n},$$

We now define:

 $\lambda_i^{
ho} := c_i(\mathbb{E}_{
ho}).$

Hodge Integrals *G*-Hodge integrals

Why we like $G-\lambda$ classes

• They are tautological (Pandharipande).

- They "split nicely" when restriced to the boundary.
- There is a wealth of natural combinatorial relations between them.

G-Mumford relations:

$$c(\mathbb{E}_
ho\oplus\mathbb{E}_{
ho^ee}^ee)=1$$

Top intersection numbers of G- λ classes are called G-Hodge integrals.

Hodge Integrals *G*-Hodge integrals

Why we like $G-\lambda$ classes

- They are tautological (Pandharipande).
- 2 They "split nicely" when restriced to the boundary.
- There is a wealth of natural combinatorial relations between them.

G-Mumford relations:

$$c(\mathbb{E}_
ho\oplus\mathbb{E}_{
ho^ee}^ee)=1$$

Top intersection numbers of G- λ classes are called G-Hodge integrals.

Hodge Integrals *G*-Hodge integrals

Why we like $G-\lambda$ classes

- They are tautological (Pandharipande).
- 2 They "split nicely" when restriced to the boundary.
- There is a wealth of natural combinatorial relations between them.

G-Mumford relations:

$$c(\mathbb{E}_{
ho}\oplus\mathbb{E}_{
ho^{ee}}^{ee})=1$$

Top intersection numbers of G- λ classes are called G-Hodge integrals.

くロト (過) (目) (日)

æ

Hodge Integrals G-Hodge integrals

Twisted stable maps to BG

The locus in $\overline{\mathcal{M}_g}$ of curves admitting a *G* action can be interpreted as a moduli space of genus 0 twisted stable maps to the classifying stack *BG*.

Admissible *G* covers $\cong \overline{\mathcal{M}}_{0,n}(BG, 0)$

Idea: think of the genus g curve C as a principal G bundle over an orbifold rational curve. This gives a map to BG. The marked points keep track of the orbifold points on the base, or, if you prefer, of the branch points for the ramified cover.

By $[\mathbb{C}^3/\mathbb{Z}_3]$ we mean the stack quotient of \mathbb{C}^3 by the action:

$$\omega \mapsto \left[\begin{array}{cc} \omega & & \\ & \omega & \\ & & \omega \end{array} \right]$$

This orbifold is very fascinating to both mathematicians and physicists, because of its role in mirror symmetry. Aganagic-Bouchard-Klemm predicted all of its Gromov-Witten invariants (physicists are always one step ahead...) Verifying mathematically the physics predictions and the CRC is a quest that has only been fulfilled in genus 0.

ヘロト ヘ戸ト ヘヨト ヘヨト

Orbifold GW theory

Orbifold GW invariants of $[\mathbb{C}^3/\mathbb{Z}_3]$ can be interpreted in terms of \mathbb{Z}_3 -Hodge integrals on moduli spaces of Galois \mathbb{Z}_3 -admissible covers. This is best illustrated in a picture.

Orbifold GW theory

イロン イロン イヨン イヨン

æ

\mathbb{Z}_3 -Hodge Integrals

For the orbifold $[\mathbb{C}^3/\mathbb{Z}_3]$, the obstruction bundle consists of three copies of $\mathbb{E}_{\omega}^{\vee}$, the ω -subrepresentation of the dual of the Hodge bundle on the cover curve.

.≣⇒

Remarks:

Monodromy condition. We denote by (n₁, n₂) the genus 0, (degree 0) invariant corresponding to n₁ ω-insertions and n₂ ω²-insertions. For such an invariant to be non-zero the condition

$$n_1 - n_2 \equiv 0 \quad (3)$$

must be satisfied.

The obstruction bundle exceeds the dimension of the moduli space precisely by the number of ω^2 points. Invariants of type (3k + 3, 0) are defined non-equivariantly, whereas all other invariants are polynomials in the equivariant parameters.

The genus 0 Gromov-Witten invariants of $[\mathbb{C}^3/\mathbb{Z}_3]$

Genus of the cover curves:

g=1 g=2g=3g=5 g=4(6,0)(4,1)(5,2)(3,0)(2,2)(3,3)(0,3)(2,5)(1,4)number of ω insertions (0,6)number of ω^2 insertions

イロト イポト イヨト イヨト

The genus 0 Gromov-Witten invariants of $[\mathbb{C}^3/\mathbb{Z}_3]$

The 3 pointed invariants, defined over a zero dimensional moduli space, are easily computed by hand and considered initial conditions. All other invariants are polynomials in λ^{ω}

classes and in the three equivariant parameters t_1 , t_2 , t_3 .

All the invariants are computed recursively in terms of the three pointed invariants. Relations are developed via:

- WDVV;
- gerby localization.

The genus 0 Gromov-Witten invariants of $[\mathbb{C}^3/\mathbb{Z}_3]$

The 3 pointed invariants, defined over a zero dimensional moduli space, are easily computed by hand and considered initial conditions. All other invariants are polynomials in λ^{ω}

classes and in the three equivariant parameters t_1 , t_2 , t_3 .

All the invariants are computed recursively in terms of the three pointed invariants. Relations are developed via:

- WDVV;
- gerby localization.

Strategy: WDVV

ヘロン 人間 とくほど くほとう

Strategy: gerby localization

ヘロト 人間 とくほとく ほとう

Gerbes

Intuition: a G-gerbe over a space X is, roughly speaking, a BG bundle over X.

We focus on \mathbb{Z}_3 -gerbes over \mathbb{P}^1 . A concrete way to describe them is:

$$G_k \cong [\{\mathcal{O}_{\mathbb{P}^1}(k) \setminus Z\}/\mathbb{C}^*],$$

where \mathbb{C}^* acts on the fibers of the line bundle via:

$$(\alpha, \mathbf{V}) \mapsto \alpha^3 \mathbf{V}$$

Intuition: a G-gerbe over a space X is, roughly speaking, a BG bundle over X.

We focus on \mathbb{Z}_3 -gerbes over \mathbb{P}^1 . A concrete way to describe them is:

$$G_k \cong [\{\mathcal{O}_{\mathbb{P}^1}(k) \setminus Z\}/\mathbb{C}^*],$$

where \mathbb{C}^* acts on the fibers of the line bundle via:

$$(\alpha, \mathbf{v}) \mapsto \alpha^3 \mathbf{v}$$

≣ ▶

Maps to the trivial gerbe

For X a rational twisted curve, a map:

$$X \xrightarrow{d=1} G_0 \cong \mathbb{P}^1 \times B\mathbb{Z}_3$$

is equivalent to a \mathbb{Z}_3 admissible cover of *X*, where one (and only one!) of the twigs of *X* is a parameterized \mathbb{P}^1 .

Obtaining relations

Let us write the number 0 in a more interesting way:

$$\int_{(3k+3,0)\to G_0} e(R^1_\omega \pi_* f^*(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-1))) ev_1^*(\infty) = 0$$

Localizing this integral gives relations between \mathbb{Z}_3 -Hodge integrals (with descendants).

.≣⇒

Remarks

- in genus 0 removing descendants is but a technical/combinatorial issue. In higher genus this is currently the obstacle preventing us from succeeding with this approach.
- although it is possible to concoct many auxiliary integrals producing relations, it is really quite hard to produce independent relations.
- a clever choice for the auxiliary integrals and for the linearizations of the bundles is instrumental to keeping the combinatorial complexity of the recursions manageable.
- despite our most creative efforts, auxiliary integrals on maps to the trivial gerbe do NOT produce sufficiently many relations to determine the invariants of [C³/Z₃]!!

Maps to non-trivial gerbes

We turn our attention to maps to non-trivial gerbes. For example:

$$\int_{\mathcal{G}_1(3k+1,0)} e \left(R^1 \pi_* f^* \left(\mathcal{O}_{G_1} \left(-\frac{2}{3} \right) \oplus \mathcal{O}_{G_1} \left(-\frac{2}{3} \right) \oplus \mathcal{O}_{G_1} \left(-\frac{2}{3} \right) \right) \right) = 0$$

イロト イポト イヨト イヨト

ъ

Determining the invariants

To prove that invariants are reconstructed, we proceed by induction on "three genera at a time". Invariants (with at most 2 ω^2 insertions) for genera g, g + 1 and g + 2 are determined by 4 monomials in *G*- λ classes. The two relations above plus two more give an invertible 4 × 4 matrix of principal parts. The invariants can therefore be computed in terms of invariants of genus < g.

Some Numbers:

$$(9,0): \frac{1}{9}$$

$$(3,0): \frac{1}{3}$$

$$(4,1): \frac{1}{9}t$$

$$(5,2): \frac{7}{27}t^{2}$$

$$(4,4): -\frac{98}{81}t^{4}$$

$$(0,3): \frac{1}{3}t^{3}$$

$$(1,4): \frac{2}{9}t^{4}$$

$$(2,5): \frac{19}{27}t^{5}$$

$$(3,6): \frac{1274}{243}t^{6}$$

$$(0,6): -\frac{10}{27}t^{6}$$

$$(1,7): -\frac{179}{81}t^{7}$$

$$(0,9): \frac{686}{81}t^{9}$$

Generating functions

Our recursions are neatly packaged in terms of generating functions for \mathbb{Z}_3 Hodge integrals with one descendand insertion. Let:

$$\mathcal{L}^{\omega}(\mathbf{x}, \mathbf{y}; \mathbf{u}, \mathbf{v}) := \sum_{m, n, i, j} \int_{(m, n)} \lambda_{top} \lambda_{top-i} \lambda_{top-j} \psi_{\omega}^{i+j-n} \frac{\mathbf{x}^m}{m!} \frac{\mathbf{y}^n}{n!} u^i v^j$$

and define $\mathcal{L}^{\bar{\omega}}$ analogously. Then the two (families of) relations written earlier are equivalent to the following PDE's on these generating functions.

PDE's

Relation 1:

$$2\mathcal{L}_{x}^{\omega}(-x,0;1,0) = 3\mathcal{L}_{y}^{\bar{\omega}}(-x,0;1,0)\mathcal{L}_{xx}^{\omega}(-x,0;0,0)$$

Relation 2:

$$\mathcal{L}_{y}^{\bar{\omega}}\left(-x,0;\frac{2}{3},\frac{2}{3}\right) - \mathcal{L}_{y}^{\bar{\omega}}\left(-x,0;\frac{2}{3},0\right) =$$
$$= \frac{1}{9}\mathcal{L}_{x}^{\omega}\left(-x,0;\frac{2}{3},\frac{2}{3}\right)\mathcal{L}_{x}^{\omega}\left(-x,0;\frac{2}{3},0\right)$$

