

Physics

Physicists tell us that matter consists of tiny little strings that wiggle their way through Space Time. In doing so they trace surfaces, which represent the evolution of a physical system. These surfaces come with a complex structure.

It seems reasonable that physicists want to know as much as possible about analytic functions between surfaces.

Geometry

Geometers have been studying such maps for over a century, and know they are ramified covers: away from a finite number of points (branch points), there are exactly d preimages.

Above a branch point, the local expression of the function is $z \mapsto z^{n}$, and the collection of the n 's above a branch is called the ramification profile.

The Quest

QUESTION: how many covers of degree d from a genus g surface to a sphere, with specified ramification profile over two points and generic ramification over r other points?

Such number is called a Hurwitz number, denoted $H_{g}^{r}(\alpha, \beta)$.

Algebra

Algebra gives us a way to compute Hurwitz number via the following construction:

In order to count covers, we instead count ($r+2$)-tuples $\sigma_{0}, \tau_{1}, \ldots, \tau_{r}, \sigma_{\infty}$ of permutations of d points such that:
(1) $\left(\sigma_{0}, \sigma_{\infty}\right)$ have cycle type (α, β);
(2) τ 's are simple transpositions;
(3) $\sigma_{0} \tau_{1} \ldots \tau_{r} \sigma_{\infty}=l d$
(1) $\left\langle\sigma_{0}, \tau_{1}, \ldots, \tau_{r}, \sigma_{\infty}\right\rangle$ acts transitively on the d points

Combinatorics

The cut and join equations tell us how a permutation can change when you compose it with a simple transposition:

$$
\sigma=(1234)(56) \quad \tau_{1}=(13) \quad \Rightarrow \tau_{1} \sigma=(12)(34)(56)
$$

$$
\sigma=(1234)(56) \quad \tau_{1}=(35) \quad \Rightarrow \tau_{1} \sigma=(123564)
$$

This gives us a way to compute Hurwitz number by instead counting weighted trivalent graphs.
$H_{0}^{2}((2,1),(2,1))=4=$

Sketch of further coolness...

$$
\begin{gathered}
\mathrm{x}_{1}+\mathrm{y}_{2}>0 \\
\mathrm{x}_{1}+\mathrm{y}_{1}>0 \quad \mathrm{x}_{1}+\mathrm{y}_{1}=0 \quad \mathrm{x}_{1}+\mathrm{y}_{1}<0
\end{gathered}
$$

$$
2 x_{1} \quad 2\left(x_{1}+y_{1}\right) \quad-2 y_{1}
$$

