

Renzo Cavalieri

Oh The Places You'll Go

Physics

Physicists tell us that matter consists of tiny little strings that wiggle their way through Space Time. In doing so they trace surfaces, which represent the evolution of a physical system. These surfaces come with a complex structure.

It seems reasonable that physicists want to know as much as possible about analytic functions between surfaces.

Geometry

Geometers have been studying such maps for over a century, and know they are ramified covers: away from a finite number of points (branch points), there are exactly *d* preimages.

Above a branch point, the local expression of the function is $z \mapsto z^n$, and the collection of the *n*'s above a branch is called the ramification profile.

The Quest

QUESTION: how many covers of degree d from a genus g surface to a sphere, with specified ramification profile over two points and generic ramification over r other points?

Such number is called a Hurwitz number, denoted $H_{a}^{r}(\alpha,\beta)$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Algebra

Algebra gives us a way to compute Hurwitz number via the following construction:

In order to count covers, we instead count (r + 2)-tuples $\sigma_0, \tau_1, \ldots, \tau_r, \sigma_\infty$ of permutations of *d* points such that:

•
$$(\sigma_0, \sigma_\infty)$$
 have cycle type $(lpha, eta)$;

2 τ 's are simple transpositions;

$$0 \sigma_0 \tau_1 \dots \tau_r \sigma_\infty = I$$

• $\langle \sigma_0, \tau_1, \dots, \tau_r, \sigma_\infty \rangle$ acts transitively on the *d* points

The cut and join equations tell us how a permutation can change when you compose it with a simple transposition:

$$\sigma = (1234)(56)$$
 $\tau_1 = (13)$ $\Rightarrow \tau_1 \sigma = (12)(34)(56)$

$$\sigma = (1234)(56)$$
 $\tau_1 = (35)$ $\Rightarrow \tau_1 \sigma = (123564)$

This gives us a way to compute Hurwitz number by instead counting weighted trivalent graphs.

$$H_0^2((2,1),(2,1)) = 4$$

Sketch of further coolness...

