Summary of Semigroup Results

$\left.\begin{array}{c}\text { A is closed and densely defined } \\ (\lambda I+A)^{-1} \text { exists for all } \lambda>0 \\ \left\|(\lambda I+A)^{-1}\right\|_{L(H)} \leq \lambda^{-1} \quad \text { for all } \lambda>0\end{array}\right\} \quad$ Hille-Yosida properties

H-Y properties $\Rightarrow \quad \forall u \in H$ and $\forall t \geq 0, S_{n}(t) u$ converges strongly in H to $S(t) u$.
$S(t)=\lim _{n} S_{n}(t)$ has the following properties:
$S(t)$ is stronly continuous in $\mathrm{t}, t \geq 0$

$$
\left.\begin{array}{c}
S(0)=I \\
S(t+s)=S(t) \circ S(s) \quad s, t \geq 0 \\
\|S(t)\|_{L(H)} \leq 1
\end{array}\right\} \quad S(t) \text { is a } C^{0}-s / g \text { of contractions }
$$

Also

$$
\begin{aligned}
S(t) & : D_{A} \rightarrow D_{A} & & \\
A S(t) u & =S(t) A u & & \forall u \in D_{A} \\
S^{\prime}(t) u & =-A S(t) u=-S(t) A u u & & \forall u \in D_{A} \\
\lim _{t \rightarrow 0} \frac{S(t)-I}{t} u & =-A u & & \forall u \in D_{A} \\
S(t) u-u & =-\int_{0}^{t} S(\tau) A u d \tau & & \forall u \in D_{A}
\end{aligned}
$$

Then

$$
\mathrm{H}-\mathrm{Y} \text { properties } \Rightarrow \quad-A \text { generates a } C^{0}-s / g \text { of contractions }
$$

Finally, if $-A$ generates the $C^{0}-s / g$ of contractions, $S(t)$, then $-(\lambda I+A)$ generates the semigroup, $J(t)=e^{-\lambda t} S(t)$ and:

$$
\begin{aligned}
u & =\int_{0}^{\infty} e^{-\lambda \tau} S(\tau)(\lambda I+A) u d \tau & & \forall u \in D_{A} \\
(\lambda I+A)^{-1} v & =\int_{0}^{\infty} e^{-\lambda \tau} S(\tau) v d \tau & & \forall v \in H
\end{aligned}
$$

It follows from these last two results that
$-A$ generates a $C^{0}-s / g$ of contractions $\Rightarrow \quad \mathrm{H}-\mathrm{Y}$ properties

We also have

$$
\left.\begin{array}{c}
A \text { is accretive } \\
I+A: D_{A} \rightarrow H \text { is onto }
\end{array}\right\} \quad \text { Lumer-Phillips properties }
$$

and

$$
\text { L-P properties } \Rightarrow \quad-A \text { generates a } C^{0}-s / g \text { of contractions }
$$

If $-A$ generates a $C^{0}-s / g$ of contractions, $S(t)$, then

$$
\begin{aligned}
& \forall u_{0} \in D_{A} \text { and } \forall f \in C^{1}(0, T: H) \\
& \qquad u(t)=S(t) u_{0}+\int_{0}^{t} S(t-\tau) f(\tau) d \tau \in C\left[0, T: D_{A}\right] \cap C^{1}\left(0, T: D_{A}\right)
\end{aligned}
$$

solves

$$
u^{\prime}(t)+A u(t)=f(t), \quad 0<t<T \quad \text { and } \quad u(0)=u_{0}
$$

Examples

1.Let $H=L_{2}(0, \infty)=H^{0}\left(R_{+}\right), \quad A=-a \partial_{x}$, and $D_{A}=H^{1}(0, \infty)$ for $a>0$. Note that $u \in D_{A}$ implies $u(x) \rightarrow 0$ as $x \rightarrow \infty$. Then

$$
(A u, u)_{H}=-a \int_{0}^{\infty} u^{\prime}(x) u(x) d x=-\left.\frac{a}{2} u(x)^{2}\right|_{0} ^{\infty}=\frac{a}{2} u(0)^{2} \geq 0
$$

Then A is accretive for $a>0$, and for arbitrary $v \in H$

$$
(I+A) u=u(x)-a u^{\prime}(x)=v(x)
$$

has the solution

$$
u(x)=\int_{x}^{\infty} e^{\frac{1}{a}(x-y)} v(y) d y
$$

This shows that $I+A$ is onto (i.e., $R(I+A)=H$). Then by the L-P theorem, $-A$ generates a $C^{0}-s / g, S(t)$ and the unique solution of

$$
u^{\prime}(t)+A u(t)=\partial_{t} u(x, t)-a \partial_{x} u(x, t)=f(x, t), \quad u(x, 0)=u_{0}(x) \in D_{A}
$$

is given by,

$$
u(x, t)=S(t) u_{0}(x)+\int_{0}^{t} S(t-\tau) f(x, \tau) d \tau=u_{0}(x+a t)+\int_{0}^{t} f(x+a(t-\tau), \tau) d \tau
$$

In order to have this solution it is sufficient to suppose $u_{0} \in D_{A}=H^{1}(0, \infty)$ and f is C^{1} in t and L_{2} in x.
2. Let $H=L_{2}(0, \infty)=H^{0}\left(R_{+}\right), \quad A=a \partial_{x}$, and $D_{A}=\left\{u \in H^{1}(0, \infty): u(0)=0\right\}$. Note that $u \in D_{A}$ implies $u(x) \rightarrow 0$ as $x \rightarrow \infty$. Then

$$
(A u, u)_{H}=a \int_{0}^{\infty} u^{\prime}(x) u(x) d x=\left.\frac{a}{2} u(x)^{2}\right|_{0} ^{\infty}=0
$$

Then A is accretive (for any real a) and for arbitrary $v \in H$

$$
(I+A) u=u(x)+a u^{\prime}(x)=v(x) \quad \text { for } v \in H
$$

has the solution

$$
u(x)=\int_{0}^{x} e^{-\frac{1}{a}(x-y)} v(y) d y
$$

Note that it is necessary to have $a>0$ in order to get $u \in D_{A}$ for $v \in H$ since a negative value for a would produce an exponentially growing $u(x)$ which is not even in H much less in D_{A}. This shows that $R(I+A)=H$ for $a>0$..Then $-A$ generates a $C^{0}-s / g, S(t)$ and $u(t)=S(t) u_{0}$ is the unique solution of

$$
u^{\prime}(t)+A u(t)=\partial_{t} u(x, t)+a \partial_{x} u(x, t)=0, \quad u(0, t)=0, \quad u(x, 0)=u_{0}(x) \in D_{A} ;
$$

i.e,

$$
u(x, t)=u_{0}(x-a t) H(x-a t)=S(t) u_{0}(x) .
$$

3. Let $H=L_{2}(R)=H^{0}(R), \quad A=\partial_{x}$, and $D_{A}=H^{1}(R)$. Note that $u \in D_{A}$ implies $u(x) \rightarrow 0$ as $x^{2} \rightarrow \infty$. Then

$$
(A u, u)_{H}=\int_{-\infty}^{\infty} u^{\prime}(x) u(x) d x=\left.\frac{1}{2} u(x)^{2}\right|_{-\infty} ^{\infty}=0 .
$$

so A is accretive. Note that $-A$ is also accretive in this case. For arbitrary $v \in H$

$$
(I \pm A) u=u(x) \pm u^{\prime}(x)=v(x) \quad \text { for } v \in H
$$

implies via Fourier transformation that

$$
(1 \pm i \alpha) U(\alpha)=V(\alpha)
$$

Then

$$
U(\alpha)=(1 \mp i \alpha) \frac{V(\alpha)}{1+\alpha^{2}}=W(\alpha) \mp(i \alpha) W(\alpha)
$$

and

$$
u(x)=w(x) \mp w^{\prime}(x) \quad w(x)=T_{F}^{-1}\left[\frac{V(\alpha)}{1+\alpha^{2}}\right]=\int_{R} e^{-|x-y|} v(y) d y
$$

Then the ODE has the solution

$$
u(x)=\int_{0}^{x} e^{-|x-y|} v(y) d y \mp \frac{d}{d x}\left(\int_{0}^{x} e^{-|x-y|} v(y) d y\right)
$$

which shows that $R(I \pm A)=H$. Then $-A$ generates a $C^{0}-s / g, S(t)$ and $u(t)=S(t) u_{0}$ is the unique solution of

$$
u^{\prime}(t)+A u(t)=\partial_{t} u(x, t)+\partial_{x} u(x, t)=0, \quad u(x, 0)=u_{0}(x) \in D_{A} ;
$$

i.e,

$$
u(x, t)=u_{0}(x+t)=S(t) u_{0}(x) .
$$

But $+A$ also generates a $C^{0}-s / g, Z(t)$ and then $u(t)=Z(t) u_{0}$ is the unique solution of

$$
u^{\prime}(t)-A u(t)=\partial_{t} u(x, t)-\partial_{x} u(x, t)=0, \quad u(x, 0)=u_{0}(x) \in D_{A}
$$

i.e,

$$
u(x, t)=u_{0}(x-t)=Z(t) u_{0}(x)=S(-t) u_{0}(x)
$$

So in this case, since both A and $-A$ are accretive and $(I \pm A)$ is onto, there are two $C^{0}-s / g^{\prime} s, S(t)$ and $S(-t)$. Moreover, by the semigroup property, $S(t) \circ S(-t)=S(0)=I$, which is to say $S(t)^{-1}=S(-t)$; i.e., $S(t)$ forms a \boldsymbol{C}^{0}-group for $t \in R$.
4. Let $H=L_{2}(U)=H^{0}(U), \quad A=-\nabla^{2}$, and $D_{A}=H_{0}^{1}(U) \cap H^{2}(U)$. Then

$$
(A u, u)_{H}=-\int_{U} u \nabla^{2} u=\int_{U}|\nabla u|^{2} \geq 0 \quad u \in D_{A}
$$

So A is accretive. For arbitrary $f \in H$, the elliptic problem

$$
(\lambda I+A) u=\lambda u-\nabla^{2} u=f \text { in } U, \quad u=0 \text { on } \partial U
$$

has a unique weak solution $u \in D_{A}$ since

$$
b[u, v ; \lambda]=\int_{U} \nabla u \cdot \nabla v+\lambda u v
$$

satisfies

$$
b[u, u ; \lambda]=\|\nabla u\|_{0}^{2}+\lambda\|u\|_{0}^{2} \quad u \in D_{A}
$$

and, in particular,

$$
b[u, u ; 1]=\|u\|_{1}^{2}
$$

which implies $b[u, u ; 1]$ is coercive and $(I+A)$ is then an isomorphism from D_{A} onto H.
Then $-A$ generates a $C^{0}-s / g, S(t)$ and $u(t)=S(t) u_{0}$ is the unique solution of

$$
\begin{aligned}
& u^{\prime}(t)+A u(t)=\partial_{t} u(x, t)-\nabla^{2} u(x, t)=0, \\
& u=0 \text { on } \partial U \times(0, T)
\end{aligned}
$$

and

$$
u(x, 0)=u_{0}(x) \in D_{A}
$$

i.e,

$$
u(x, t)=\sum_{n}\left(u_{0}, w_{n}\right)_{H} e^{-\lambda_{n} t} w_{n}(x)=S(t) u_{0}(x)
$$

where $\left\{w_{n}\right\}$ are the family of orthonormal eigenfunctions associated with

$$
-\nabla^{2} w(x)=\lambda w(x) \quad x \in U, \quad w \in D_{A} .
$$

5.Consider the problem

$$
\begin{array}{rlrl}
\partial_{t t} u(x, t)-\partial_{x x} u(x, t) & =0, & & 0<x<1, t>0 \\
u(x, 0) & =f(x), & & 0<x<1, \\
\partial_{t} u(x, 0) & =g(x) & & t>0, \\
u(0, t) & =u(1, t)=0, \quad 0<x<1 .
\end{array}
$$

Let $\quad u_{1}=\partial_{x} u$ and $u_{2}=\partial_{t} u$
Then $\quad \partial_{t} u_{1}=\partial_{x t} u=\partial_{x} u_{2}$

$$
\partial_{t} u_{2}=\partial_{t t} u=\partial_{x} u_{1}
$$

i.e.,

$$
\partial_{t}\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]-\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \partial_{x}\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right](x, 0)=\left[\begin{array}{l}
f^{\prime}(x) \\
g(x)
\end{array}\right]
$$

i.e.,

$$
\partial_{t} \vec{U}(t)+A \vec{U}(t)=0, \quad \vec{U}(0)=\vec{U}_{0}
$$

where

$$
\begin{aligned}
& H=L^{2}(0,1)^{2}, \quad A=-\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \partial_{x} \\
& D_{A}=\left\{\vec{U} \in H: u_{1} \in H^{1}(0,1), u_{2} \in H_{0}^{1}(0,1)\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
(A \vec{U}, \vec{U})_{H} & =-\int_{0}^{1}\left(\partial_{x} u_{2} \cdot u_{1}+u_{2} \cdot \partial_{x} u_{1}\right) d x=-\int_{0}^{1} d / d x\left(u_{1} u_{2}\right) d x \\
& =-\left.\left(u_{1} u_{2}\right)\right|_{x=0} ^{x=1}=0 \quad\left(\text { since } u_{2} \in H_{0}^{1}(0,1)\right)
\end{aligned}
$$

This proves A is accretive, in fact, conservative. Now for $\lambda \neq 0, \vec{F} \in H$, consider

$$
\lambda\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]+A\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
\lambda u_{1}-\partial_{x} u_{2} \\
\lambda u_{2}-\partial_{x} u_{1}
\end{array}\right]=\left[\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right]
$$

Then

$$
\lambda \partial_{x} u_{1}-\partial_{x x} u_{2}=\partial_{x} F_{1} \quad \text { and } \quad \partial_{x} u_{1}=\lambda u_{2}-F_{2},
$$

or

$$
-\partial_{x x} u_{2}+\lambda^{2} u_{2}=\partial_{x} F_{1}+\lambda F_{2}
$$

Since $\partial_{x} F_{1}+\lambda F_{2} \in H^{-1}(0,1)$, this last equation has a unique weak solution $u_{2} \in H_{0}^{1}(0,1)$, by the previously developed elliptic theory. Then

$$
\lambda u_{1}=F_{1}+\partial_{x} u_{2} \in L^{2}(0,1), \quad \partial_{x} u_{1}=\lambda u_{2}-F_{2} \in L^{2}(0,1),
$$

so $u_{1} \in H^{1}(0,1)$ and $\vec{U} \in D_{A}$. This shows that $\lambda+A: D_{A} \rightarrow H$ is surjective for all $\lambda \neq 0$.
Then A generates a $C^{0}-s / g$, actually both $\pm A$ generate $C^{0}-s / g^{\prime} s$ so A generates a group of solution operators, $G(t)$.

This group $G(t)$, (using a previously discovered solution to the wave equation) is seen to be given by

$$
G(t)[\vec{U}(x, 0)]=\left[\begin{array}{l}
\frac{1}{2}\left(\tilde{f}^{\prime}(x+t)+\tilde{f}^{\prime}(x-t)\right)+\frac{1}{2}(\tilde{g}(x+t)-\tilde{g}(x-t)) \\
\frac{1}{2}\left(\tilde{f}^{\prime}(x+t)-\tilde{f}^{\prime}(x-t)\right)+\frac{1}{2}(\tilde{g}(x+t)+\tilde{g}(x-t))
\end{array}\right]
$$

where \tilde{f}, \tilde{g} denote the odd 2-periodic extensions of f and g.

