Summary of Semigroup Results

A is closed and densely defined $(\lambda I + A)^{-1}$ exists for all $\lambda > 0$ $\|(\lambda I + A)^{-1}\|_{L(H)} \le \lambda^{-1}$ for all $\lambda > 0$ Hille-Yosida properties

H-Y properties $\implies \forall u \in H \text{ and } \forall t \ge 0, S_n(t)u \text{ converges strongly in } H \text{ to } S(t)u.$

 $S(t) = \lim_{n} S_n(t)$ has the following properties:

$$S(t) \text{ is stronly continuous in t, } t \ge 0$$

$$S(0) = I$$

$$S(t+s) = S(t) \circ S(s) \quad s,t \ge 0$$

$$\|S(t)\|_{L(H)} \le 1$$

$$S(t) \text{ is a } C^0 - s/g \text{ of contractions}$$

Also

$$S(t) : D_A \to D_A$$

$$AS(t)u = S(t)Au \qquad \forall u \in D_A$$

$$S'(t)u = -AS(t)u = -S(t)Au \qquad \forall u \in D_A$$

$$\lim_{t \to 0} \frac{S(t) - I}{t}u = -Au \qquad \forall u \in D_A$$

$$S(t)u - u = -\int_0^t S(\tau)Au \, d\tau \qquad \forall u \in D_A$$

Then

H-Y properties \implies -A generates a $C^0 - s/g$ of contractions

Finally, if -A generates the $C^0 - s/g$ of contractions, S(t), then $-(\lambda I + A)$ generates the semigroup, $J(t) = e^{-\lambda t}S(t)$ and:

$$u = \int_0^\infty e^{-\lambda \tau} S(\tau) (\lambda I + A) u \, d\tau \qquad \forall u \in D_A$$
$$(\lambda I + A)^{-1} v = \int_0^\infty e^{-\lambda \tau} S(\tau) v \, d\tau \qquad \forall v \in H$$

It follows from these last two results that

-A generates a $C^0 - s/g$ of contractions \implies H-Y properties

We also have

$$\left. \begin{array}{c} A \text{ is accretive} \\ I+A: D_A \to H \quad is \quad onto \end{array} \right\} \qquad \text{Lumer-Phillips properties}$$

and

L-P properties \implies -A generates a $C^0 - s/g$ of contractions

If -A generates a $C^0 - s/g$ of contractions, S(t), then

 $\forall u_0 \in D_A \text{ and } \forall f \in C^1(0, T : H)$

$$u(t) = S(t)u_0 + \int_0^t S(t-\tau)f(\tau)d\tau \in C[0,T:D_A] \cap C^1(0,T:D_A)$$

solves

$$u'(t) + Au(t) = f(t), \quad 0 < t < T \quad and \quad u(0) = u_0$$

Examples

1.Let $H = L_2(0,\infty) = H^0(R_+)$, $A = -a \partial_x$, and $D_A = H^1(0,\infty)$ for a > 0. Note that $u \in D_A$ implies $u(x) \to 0$ as $x \to \infty$. Then

$$(Au, u)_{H} = -a \int_{0}^{\infty} u'(x)u(x)dx = -\frac{a}{2}u(x)^{2}|_{0}^{\infty} = \frac{a}{2}u(0)^{2} \ge 0$$

Then *A* is accretive for a > 0, and for arbitrary $v \in H$

$$(I+A)u = u(x) - au'(x) = v(x)$$

has the solution

$$u(x) = \int_x^\infty e^{\frac{1}{a}(x-y)} v(y) dy$$

This shows that I + A is onto (i.e., R(I + A) = H). Then by the L-P theorem, -A generates a $C^0 - s/g$, S(t) and the unique solution of

$$u'(t) + Au(t) = \partial_t u(x,t) - a \partial_x u(x,t) = f(x,t), \qquad u(x,0) = u_0(x) \in D_A;$$

is given by,

$$u(x,t) = S(t)u_0(x) + \int_0^t S(t-\tau)f(x,\tau)d\tau = u_0(x+at) + \int_0^t f(x+a(t-\tau),\tau)d\tau$$

In order to have this solution it is sufficient to suppose $u_0 \in D_A = H^1(0,\infty)$ and *f* is C^1 in *t* and L_2 in *x*.

2. Let $H = L_2(0,\infty) = H^0(R_+)$, $A = a\partial_x$, and $D_A = \{u \in H^1(0,\infty) : u(0) = 0\}$. Note that $u \in D_A$ implies $u(x) \to 0$ as $x \to \infty$. Then

$$(Au, u)_{H} = a \int_{0}^{\infty} u'(x)u(x)dx = \frac{a}{2}u(x)^{2}|_{0}^{\infty} = 0$$

Then A is accretive (for any real a) and for arbitrary $v \in H$

$$(I+A)u = u(x) + au'(x) = v(x) \quad for v \in H$$

has the solution

$$u(x) = \int_0^x e^{-\frac{1}{a}(x-y)} v(y) dy.$$

Note that it is necessary to have a > 0 in order to get $u \in D_A$ for $v \in H$ since a negative value for *a* would produce an exponentially growing u(x) which is not even in *H* much less in D_A . This shows that R(I+A) = H for a > 0. Then -A generates a $C^0 - s/g$, S(t) and $u(t) = S(t)u_0$ is the unique solution of

$$u'(t) + Au(t) = \partial_t u(x,t) + a \partial_x u(x,t) = 0, \quad u(0,t) = 0, \quad u(x,0) = u_0(x) \in D_A;$$

i.e,

$$u(x,t) = u_0(x-at)H(x-at) = S(t)u_0(x).$$

3. Let $H = L_2(R) = H^0(R)$, $A = \partial_x$, and $D_A = H^1(R)$. Note that $u \in D_A$ implies $u(x) \to 0$ as $x^2 \to \infty$. Then

$$(Au, u)_{H} = \int_{-\infty}^{\infty} u'(x)u(x)dx = \frac{1}{2}u(x)^{2}|_{-\infty}^{\infty} = 0.$$

so *A* is accretive. Note that -A is also accretive in this case. For arbitrary $v \in H$

$$(I \pm A)u = u(x) \pm u'(x) = v(x)$$
 for $v \in H$

implies via Fourier transformation that

$$(1 \pm i\alpha)U(\alpha) = V(\alpha)$$

Then

$$U(\alpha) = (1 \mp i\alpha) \frac{V(\alpha)}{1 + \alpha^2} = W(\alpha) \mp (i\alpha) W(\alpha)$$

and

$$u(x) = w(x) \mp w'(x)$$
 $w(x) = T_F^{-1} \left[\frac{V(\alpha)}{1 + \alpha^2} \right] = \int_R e^{-|x-y|} v(y) dy$

Then the ODE has the solution

$$u(x) = \int_0^x e^{-|x-y|} v(y) dy = \frac{d}{dx} \left(\int_0^x e^{-|x-y|} v(y) dy \right)$$

which shows that $R(I \pm A) = H$. Then -A generates a $C^0 - s/g$, S(t) and $u(t) = S(t)u_0$ is the unique solution of

$$u'(t) + Au(t) = \partial_t u(x,t) + \partial_x u(x,t) = 0, \quad u(x,0) = u_0(x) \in D_A;$$

i.e,

$$u(x,t) = u_0(x+t) = S(t)u_0(x).$$

But +A also generates a $C^0 - s/g$, Z(t) and then $u(t) = Z(t)u_0$ is the unique solution of

$$u'(t) - Au(t) = \partial_t u(x,t) - \partial_x u(x,t) = 0, \quad u(x,0) = u_0(x) \in D_A;$$

i.e,

$$u(x,t) = u_0(x-t) = Z(t)u_0(x) = S(-t)u_0(x).$$

So in this case, since both *A* and -A are accretive and $(I \pm A)$ is onto, there are two $C^0 - s/g's$, S(t) and S(-t). Moreover, by the semigroup property, $S(t) \circ S(-t) = S(0) = I$, which is to say $S(t)^{-1} = S(-t)$; i.e., S(t) forms a **C**⁰ -**group** for $t \in R$.

4. Let $H = L_2(U) = H^0(U)$, $A = -\nabla^2$, and $D_A = H_0^1(U) \cap H^2(U)$. Then $(Au, u)_H = -\int_U u \nabla^2 u = \int_U |\nabla u|^2 \ge 0$ $u \in D_A$

So *A* is accretive. For arbitrary $f \in H$, the elliptic problem

$$(\lambda I + A)u = \lambda u - \nabla^2 u = f \text{ in } U, \qquad u = 0 \text{ on } \partial U$$

has a unique weak solution $u \in D_A$ since

$$b[u,v;\lambda] = \int_U \nabla u \cdot \nabla v + \lambda u v$$

satisfies

$$b[u,u;\lambda] = \|\nabla u\|_0^2 + \lambda \|u\|_0^2 \qquad u \in D_A$$

and, in particular,

$$b[u,u;1] = ||u||_1^2$$

which implies b[u, u; 1] is coercive and (I + A) is then an isomorphism from D_A onto H. Then -A generates a $C^0 - s/g$, S(t) and $u(t) = S(t)u_0$ is the unique solution of

$$u'(t) + Au(t) = \partial_t u(x,t) - \nabla^2 u(x,t) = 0,$$

$$u = 0 \quad on \quad \partial U \times (0,T)$$

and

$$u(x,0) = u_0(x) \in D_A;$$

i.e,

$$u(x,t) = \sum_{n} (u_0, w_n)_{H} e^{-\lambda_n t} w_n(x) = S(t) u_0(x).$$

where $\{w_n\}$ are the family of orthonormal eigenfunctions associated with

$$-\nabla^2 w(x) = \lambda w(x)$$
 $x \in U$, $w \in D_A$.

5.Consider the problem

$$\partial_{tt}u(x,t) - \partial_{xx}u(x,t) = 0, \qquad 0 < x < 1, t > 0$$
$$u(x,0) = f(x), \qquad 0 < x < 1,$$
$$\partial_{t}u(x,0) = g(x) \qquad t > 0,$$
$$u(0,t) = u(1,t) = 0, \qquad 0 < x < 1.$$

Let

 $u_1 = \partial_x u$ and $u_2 = \partial_t u$

Then

 $\partial_t u_1 = \partial_{xt} u = \partial_x u_2$ $\partial_t u_2 = \partial_t u = \partial_x u_1$

i.e.,

$$\partial_t \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \partial_x \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

and

 $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} (x,0) = \begin{bmatrix} f'(x) \\ g(x) \end{bmatrix}$

i.e.,

$$\partial_t \vec{U}(t) + A \vec{U}(t) = 0, \qquad \vec{U}(0) = \vec{U}_0$$

where

$$H = L^{2}(0,1)^{2}, \qquad A = -\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \partial_{x}$$
$$D_{A} = \{ \vec{U} \in H : u_{1} \in H^{1}(0,1), \ u_{2} \in H^{1}_{0}(0,1) \}$$

Then

$$(A\vec{U},\vec{U})_{H} = -\int_{0}^{1} (\partial_{x}u_{2} \cdot u_{1} + u_{2} \cdot \partial_{x}u_{1})dx = -\int_{0}^{1} d/dx(u_{1}u_{2})dx$$
$$= -(u_{1}u_{2})|_{x=0}^{x=1} = 0 \quad (\text{since } u_{2} \in H_{0}^{1}(0,1))$$

This proves A is accretive, in fact, conservative. Now for $\lambda \neq 0$, $\vec{F} \in H$, consider

$$\lambda \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + A \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \lambda u_1 - \partial_x u_2 \\ \lambda u_2 - \partial_x u_1 \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$

Then

$$\lambda \partial_x u_1 - \partial_{xx} u_2 = \partial_x F_1$$
 and $\partial_x u_1 = \lambda u_2 - F_2$

or

$$-\partial_{xx}u_2 + \lambda^2 u_2 = \partial_x F_1 + \lambda F_2$$

Since $\partial_x F_1 + \lambda F_2 \in H^{-1}(0,1)$, this last equation has a unique weak solution $u_2 \in H^1_0(0,1)$, by the previously developed elliptic theory. Then

$$\lambda u_1 = F_1 + \partial_x u_2 \in L^2(0,1), \qquad \partial_x u_1 = \lambda u_2 - F_2 \in L^2(0,1),$$

so $u_1 \in H^1(0,1)$ and $\vec{U} \in D_A$. This shows that $\lambda + A : D_A \to H$ is surjective for all $\lambda \neq 0$.

Then *A* generates a $C^0 - s/g$, actually both $\pm A$ generate $C^0 - s/g's$ so *A* generates a group of solution operators, G(t).

This group G(t), (using a previously discovered solution to the wave equation) is seen to be given by

$$G(t)[\vec{U}(x,0)] = \begin{bmatrix} \frac{1}{2}(\tilde{f}'(x+t)+\tilde{f}'(x-t))+\frac{1}{2}(\tilde{g}(x+t)-\tilde{g}(x-t)) \\ \frac{1}{2}(\tilde{f}'(x+t)-\tilde{f}'(x-t))+\frac{1}{2}(\tilde{g}(x+t)+\tilde{g}(x-t)) \end{bmatrix}$$

where \tilde{f} , \tilde{g} denote the odd 2-periodic extensions of f and g.