Applications of Semigroups to Nonlinear IVP's

1.The Abstract IVP

Consider the following nonlinear initial value problem

$$
\begin{equation*}
u^{\prime}(t)+A u(t)=F(u(t)) \quad 0<t<T, \quad u(0)=u_{0} \tag{1.1}
\end{equation*}
$$

where $-A: D_{A} \rightarrow H$ generates a $C^{0}-s / g$ of contractions on H. Of course this includes the special case that the semigroup generated by $-A$ is analytic. A strong solution of (1) on [0,T] is a function $u(t) \in C^{0}([0, T): H) \cap C^{1}((0, T): H)$ which solves the equation and we will define a funtion $u(t)$ to be a mild solution of (1) if $u(t) \in C^{0}([0, T): H)$ satisfies

$$
\begin{equation*}
u(t)=S(t) u_{0}+\int_{0}^{t} S(t-s) F(u(s)) d s \quad 0<t<T \tag{1.2}
\end{equation*}
$$

The simplest existence proofs for problems like this make the assumption that $F: V \rightarrow H$ is locally Lipschitz; i.e., V denotes a closed subspace of $\mathrm{H}(V=H$ is allowed) and for some $R>0$, there exists $C_{R}>0$ such that

$$
\begin{equation*}
\|F(u)-F(v)\|_{H} \leq C_{R}\|u-v\|_{V} \quad \forall u, v \in B_{R}(0) \subset V \tag{1.3}
\end{equation*}
$$

For some nonlinearities it will suffice to take $\mathrm{V}=\mathrm{H}$, while for others it will be necessary to choose V to be an appropriate proper closed subspace of H . In these cases we will suppose that $\mathrm{S}(\mathrm{t})$ maps H into $V \subset D_{\infty}$ with $\|S(t) x\|_{V} \leq C_{V}\|x\|_{H}$, and, for convenience we will assume $C_{V}=1$.

To show that (1) has a mild solution under the assumption (3), let

$$
\Phi(u)=\int_{0}^{t} S(t-s) F(u(s)) d s \quad \text { and } \quad v(t)=S(t) u_{0}
$$

also

$$
R=2\left\|u_{0}\right\|_{V} \quad \text { and } \quad K_{R}=R C_{R}+\|F(0)\|_{H} .
$$

Then

$$
\|F(u)\|_{H}-\|F(0)\|_{H} \leq\|F(u)-F(0)\|_{H} \leq C_{R}\|u\|_{V} \leq R C_{R}
$$

and

$$
\|F(u)\|_{H} \leq K_{R} \quad \forall u \in B_{R}(0) \subset V
$$

This bound on $\|F(u)\|_{H}$ implies

$$
\|\Phi(u(t))\|_{V} \leq T \max _{0 \leq s \leq \leq \leq T}\|S(t-s) F(u(s))\|_{V} \leq T K_{R}
$$

if $u(t) \in B_{R}(0)$ for $0 \leq t \leq T$. Now if we let

$$
M_{R}=\left\{u \in C([0, T]: H):\|u(t)\|_{V} \leq R, \quad 0 \leq t \leq T\right\}
$$

Then for $u \in M_{R}$ and $0<T<R /\left(2 K_{R}\right)$ we have

$$
\|\Phi(u(t))\|_{V} \leq T K_{R}<R / 2=\left\|u_{0}\right\|_{V}
$$

i.e.,

$$
\Phi: M_{R} \rightarrow M_{R} \quad \text { for } \quad 0 \leq t \leq T<\frac{R}{2 K_{R}}
$$

In addition, for $0 \leq t \leq T$,

$$
\|\Phi(u(t))-\Phi(w(t))\|_{H} \leq C_{R} t\|u(t)-w(t)\|_{V} \quad \forall u, v \in M_{R}
$$

hence, for $t<1 / C_{R}, \Phi$ is a strict contraction on M_{R}. Now let

$$
T_{0}=\min \left[1 / C_{R}, R / 2 K_{R}\right]
$$

Then for $u \in M_{R}$ and $0 \leq t \leq T_{0}$,

$$
\|v(t)+\Phi(u(t))\|_{V} \leq\left\|u_{0}\right\|_{V}+\|\Phi(u(t))\|_{V} \leq 2\left\|u_{0}\right\|_{V}=R
$$

and it follows that $M_{R} \ni u \leadsto v+\Phi(u) \in M_{R}$ is a strict contraction. Then there is a unique fixed point, $\hat{u} \in M_{R}$ such that

$$
\hat{u}(t)=v(t)+\Phi(\hat{u}(t)), \quad 0 \leq t \leq T_{0}
$$

i.e., \hat{u} is a mild solution of the IVP. In order to prove that \hat{u} is, in fact, a strong solution to the IVP, additional hypotheses on A or on F are needed. For example, if A generates an analytic semigroup, then \hat{u} would have the additional smoothness required of a strong solution. Also if additional smoothness on F were assumed, we may be able to show the mild solution is strong.

Since the solution has only been shown to exist for $0 \leq t \leq T_{0}$, it is referred to as a local solution. In an effort to extend the solution to larger time, suppose we use $u_{1}=\hat{u}\left(T_{0}\right)$ as the initial condition for a new IVP and follow the same procedure to obtain a new mild solution on an interval $\left[T_{0}, T_{1}\right]$ for some $T_{1}>T_{0}$. Repeating this procedure N times leads to solutions on $\left[0, T_{0}\right] \cup\left[T_{0}, T_{1}\right] \cup\left[T_{1}, T_{2}\right] \cup \ldots \cup\left[T_{N-1}, T_{N}\right]=\left[0, T_{N}\right]$. In general, the length $\left|\left[T_{j}, T_{j+1}\right]\right|$ tends to zero with increasing j due to the fact that R, C_{R}, K_{R} grow as T increases. However, if it is known, say from some a-priori estimate of the solution, that any solution of the IVP must satisfy $\|u(t)\|_{V} \leq C$ for $0 \leq t \leq T$, then we may take $R=\max \left[2\left\|u_{0}\right\|_{H}, C\right]$ in the procedure just described. Then we can divide [$0, \mathrm{~T}$] into subintervals $\left[T_{j}, T_{j+1}\right]$ of uniform length and in this way, obtain a solution for the interval [0, T]; i.e., a uniform bound on solutions implies a global solution.

The nonlinear operator $\Xi[u(t)]=v(t)+\Phi[u(t)]: H \rightarrow H$ may be interpreted as the continuous flow on H associated with the IVP.

2. A Nonlinear Diffusion Equation on \mathbf{R}^{n}

Consider the problem

$$
\begin{array}{cc}
\partial_{t} u(x, t)=\nabla^{2} u(x, t)+f(u(x, t)) & x \in R^{n}, t>0 \tag{2.1}\\
u(x, 0)=u_{0}(x) & x \in R^{n} .
\end{array}
$$

In this problem we take, instead of a Hilbert space H, the Banach space of functions which are defined and continuous on R^{n} and have a finite max. This linear space of functions $X=C_{b}\left(R^{n}\right)$ is a Banach space for the sup norm. We assume also that the nonlinearity, $f: R \rightarrow R$ satisfies,

$$
\begin{equation*}
|f(u)-f(v)| \leq C_{R}|u-v| \quad \forall|u|,|v| \leq R \tag{2.2}
\end{equation*}
$$

Note that $f(u)=u^{2}$ satisfies condition (2.2) for $C_{R}=2 R$. Then (2.2) implies that $F(u)=f(u(x, t))$ satisfies the condition (1.3) with $H=V=X$, and, since the composition of
continuous functions is continuous, that $F(u)=f(u(x, t)$ maps X to itself.
Since the operator $A=-\nabla^{2}$ on $D_{A}=\{u \in X: A u \in X\}=C^{2}\left(R^{n}\right) \cap C_{b}\left(R^{n}\right)$ can be shown to generate a C^{0} semigroup of contractions on X, it follows from the result of the previous section that the initial value problem has a unique mild solution, $\hat{u}(x, t)$ which satisfies,

$$
\hat{u}(t)=S(t) u_{0}+\int_{0}^{t} S(t-s) F(\hat{u}(s)) d s \quad 0<t<T_{0}
$$

i.e.,

$$
\begin{equation*}
\hat{u}(x, t)=\int_{R^{n}} K(x-y, t) u_{0}(y) d y .+\int_{0}^{t} \int_{R^{n}} K(x-y, t-s) f(\hat{u}(y, s) d y d s . \tag{2.3}
\end{equation*}
$$

where

$$
K(x, t)=1 / \sqrt{4 \pi t} e^{-x^{2} / 4 t}, \quad t>0
$$

Since the semigroup generated by $-A=\nabla^{2}$ is, in fact, analytic, we can show that the mild solution to the IVP is actually a strong solution. This follows from the fact that when the semigroup is analytic, the abstract IVP has a strong solution when the inhomogeneous term $f(t)$ is only Lipschitz continuous in t . The condition (2.2) is sufficient to imply that $f(t)=f(u(x, t))$ is Lipschitz in t for any $u(x, t) \in X$.

In addition, for this problem it is possible to use monotonicity methods to establish uniform bounds on the solution under appropriate conditions on f. When f is such that such bounds can be established, the solution can be shown to be global in t .

3. An IBVP in 1-dimension

Consider the problem

$$
\begin{array}{lc}
\partial_{t} u(x, t)-\partial_{x x} u(x, t)=f(u(x, t)) & 0<x<1, t>0 \\
u(x, 0)=u_{0}(x) & 0<x<1, \\
u(0, t)=u(1, t)=0 & t>0,
\end{array}
$$

where we suppose $f \in C^{1}(R)$.
Let $H=L^{2}(0,1)$ and $V=H_{0}^{1}(0,1)$. Then we can show that

$$
V \subset C^{0, \alpha}(0,1) \quad \text { for } \quad 0<\alpha \leq 1 / 2
$$

i.e., for $u \in V$, and $0 \leq x, y \leq 1$,

$$
\begin{aligned}
|u(x)-u(y)| & =\left|\int_{y}^{x} u^{\prime}(s) d s\right| \leq\left(\int_{y}^{x} 1^{2} d s\right)^{1 / 2}\left(\int_{y}^{x} u^{\prime}(s)^{2} d s\right)^{1 / 2} \\
& \leq|x-y|^{1 / 2}\left(\int_{0}^{1} u^{\prime}(s)^{2} d s\right)^{1 / 2} \leq\|u\|_{V}|x-y|^{1 / 2}
\end{aligned}
$$

Then it follows that for $0 \leq x \leq 1,|u(x)| \leq\|u\|_{V}$; i.e., $\|u\|_{\infty} \leq\|u\|_{V}$. In particular then for $u \in V$, $f(u) \in H$ so $F=f(u)$ maps V to H. Now, for $u, v \in B_{R}(0) \subset V$,

$$
\begin{aligned}
\|f(u)-f(v)\|_{H}^{2} & =\int_{0}^{1}|f(u(x))-f(v(x))|^{2} d x \\
& \leq\left(\max _{\mid s \leq \leq R}\left|f^{\prime}(s)\right|\right)^{2} \int_{0}^{1}|u(x)-v(x)|^{2} d x \\
& \leq C_{R}\|u-v\|_{H}^{2} \leq C_{R}\|u-v\|_{V}^{2}
\end{aligned}
$$

and we see that $f: V \mapsto H$ is locally Lipschitz. It follows from the results of section 1 that
the abstract IVP has a unique mild solution, $\hat{u} \in C([0, T]: H)$ for $T>0$, sufficiently small. However, since the semigroup generated by $-A$ is, in fact, an analytic semigroup, the Lipschitz smoothness of f is sufficient to imply that the mild solution is actually strong.

Note that we used that $V \subset C^{0,1 / 2}([0,1]) \subset H$ in order to assert that $f(u) \in H$ for $u \in V$ and that

$$
u, v \in B_{R}(0) \subset V \text { implies }\|u\|_{\infty} \leq R, \text { and }\|v\|_{\infty} \leq R
$$

which leads then to the result, $|f(u)-f(v)| \leq \max _{|s| \leq R} f^{\prime}(s)| | u-v \mid$. i.e., this is a case where we have to take V to be an appropriate closed subspace of H in order to get the behavior we need for f.

4. A Semilinear IBVP on \mathbf{R}^{1}

Consider the semilinear problem

$$
\begin{array}{cc}
\partial_{t} u(x, t)-\partial_{x x} u(x, t)+u(x, t) \partial_{x} u(x, t)=f(u(x, t)) & 0<x<1, t>0 \\
u(x, 0)=u_{0}(x) & 0<x<1, \tag{4.1}\\
u(0, t)=u(1, t)=0 & t>0,
\end{array}
$$

where we suppose $f \in C^{1}(R)$. Let

$$
\begin{aligned}
& F(u)=f(u)-u \partial_{x} u \\
& H=L^{2}(0,1) \quad V=H_{0}^{1}(0,1) \subset C^{0,1 / 2}([0,1])
\end{aligned}
$$

Then $\quad f: V \mapsto H$
and

$$
\left\|u \partial_{x} u\right\|_{H} \leq\|u\|_{\infty}\left\|\partial_{x} u\right\|_{H} \leq\|u\|_{V}^{2}
$$

so we have

$$
F: V \mapsto H . \text { Moreover, for all } u, v \in B_{R}(0) \subset V,
$$

$$
\begin{aligned}
\left\|u \partial_{x} u-v \partial_{x} v\right\|_{H} & \leq\left\|u\left(\partial_{x} u-\partial_{x} v\right)\right\|_{H}+\left\|(u-v) \partial_{x} v\right\|_{H} \\
& \leq\|u\|_{\infty}\|u-v\|_{V}+\|u-v\|_{\infty}\|v\|_{V} \\
& \leq\left(\|u\|_{V}+\|v\|_{V}\right)\|u-v\|_{V} \leq 2 R\|u-v\|_{V}
\end{aligned}
$$

and this implies F is locally Lipschitz on V. It follows then that the abstract IVP has a unique mild solution which can again be seen to be a strong solution due to the fact that $-A$ generates an analytic semigroup on H. The strong solution is only local in t unless some a-priori bound on the solution can be established.

5. A Semilinear IBVP on $\mathbf{R}^{n}, \mathbf{n}=\mathbf{2 , 3}$

The previous two examples were set in one space dimension where it happens that $V \subset C^{0, \alpha}(0,1)$ for $0<\alpha \leq 1 / 2$. For $n \geq 2$, the Sobolev embedding theorem changes the situation and we have to deal more carefully with the function spaces in order to get the Lipschitz behavior for the nonlinearity.

For U a bounded open set in $R^{n}, n \geq 2$ and for $\alpha \geq 0$, define

$$
H_{\alpha}(U)=\left\{u \in H^{0}(U): \sum_{\rho \geq 1}\left|\lambda_{j}\right|^{2 \alpha}\left|\left(u, \varphi_{j}\right)_{H}\right|^{2}<\infty\right\}
$$

where $\left\{\varphi_{j}\right\}_{j \geq 1}$ denote the orthonormal family of eigenfunctions for $A=-\nabla^{2}$ on

$$
\begin{aligned}
& V=H_{0}^{1}(U) ; \text { i.e., } \\
& \quad H=H^{0}(U) \ni u=\sum_{\rho \geq 1}\left(u, \varphi_{j}\right)_{H} \varphi_{j} \quad\|u\|_{H}^{2}=\sum_{j \geq 1}\left|\left(u, \varphi_{j}\right)_{H}\right|^{2} \\
& H_{1}=D_{A}=\left\{u \in H: A u=\sum_{j \geq 1} \lambda_{j}\left(u, \varphi_{j}\right)_{H} \varphi_{j} \in H\right\} \\
& \text { i.e., } u \in D_{A} \text { iff }\|A u\|_{H}^{2}=\sum_{j \geq 1}\left|\lambda_{j}\right|^{2}\left|\left(u, \varphi_{j}\right)_{H}\right|^{2}<\infty \\
& \text { for } u \in H_{\alpha}, \quad A^{\alpha} u=\sum_{j \geq 1} \lambda_{j}^{\alpha}\left(u, \varphi_{j}\right)_{H} \varphi_{j} \quad 0 \leq \alpha \leq 1, \\
& \qquad u u\left\|_{\alpha}^{2}=\right\| A^{\alpha} u \|_{H}^{2}=\sum_{\rho \geq 1}\left|\lambda_{j}\right|^{2 \alpha}\left|\left(u, \varphi_{j}\right)_{H}\right|^{2}
\end{aligned}
$$

This defines a sequence of linear spaces,

$$
D_{A}=H_{1} \subset H_{\alpha} \subset H_{0}=H^{0}(U), \quad 0<\alpha<1 .
$$

Evidently, H_{α} is a Hilbert space for

$$
(u, v)_{\alpha}=(u, v)_{H}+\left(A^{\alpha / 2} u, A^{\alpha / 2} v\right)_{H}=\sum_{j \geq 1}\left(1+\left|\lambda_{j}\right|^{2 \alpha}\right)\left|u_{j} v_{j}\right|
$$

i.e.,

$$
\|u\|_{\alpha}^{2}=\|u\|_{H}^{2}+\left\|A^{\alpha} u\right\|_{H}^{2}
$$

And since this can be seen to be the graph norm on D_{A}, it follows from the closed graph theorem that H_{α} is a Banach space for this norm. Of course the norm then supports this inner product and H_{α} becomes a Hilbert space. In particular, $H_{1 / 2}=H_{0}^{1}(U)$.

Embedding Results

We state now some results regarding the embedding of the H_{α} spaces.
If

$$
H_{0}^{1}(U) \cap H^{2}(U) \subset D_{A}=H_{1} \subset H_{\alpha} \subset H_{0}=H^{0}(U), \quad 0<\alpha<1 .
$$

then we can show that
H_{α} is continuously embedded in $W^{p, q}(U)$ if $\left\{\begin{array}{c}2 \alpha>p \\ 2 \alpha-n / 2>p-n / q\end{array}\right\}$
H_{α} is continuously embedded in $C^{m}(\bar{U})$ if $2 \alpha-n / 2>m$
Now consider

$$
\begin{array}{cc}
\partial_{t} u(x, t)-\nabla^{2} u(x, t)=f(u(x, t)) & x \in U \subset R^{n}, t>0 \\
u(x, 0)=u_{0}(x) & x \in U \\
u(x, t)=0 & x \in \Gamma, t>0,
\end{array}
$$

where $f \in C^{1}(R)$. Then $F(u)=f(u(x, t)): H_{\alpha} \rightarrow H$ provided $H_{\alpha} \hookrightarrow C^{0}(U)$; i.e., for $\alpha>n / 4$. In addition, F is locally Lipschitz if

$$
u, v \in B_{R}(0) \subset H_{\alpha} \text { implies }\|u\|_{\infty},\|v\|_{\infty} \leq R
$$

Again, we need H_{α} continuously embedded in $C^{0}(\bar{U})$ which means that $\alpha>n / 4$. It follows that for $u_{0} \in H_{\alpha}$ with $\alpha>n / 4$ there is a unique mild solution for the
IBVP, $\hat{u}(t) \in C([0, T]: H)$ for sufficiently small $T>0$. Since the semigroup generated by $-A$ is analytic here, the solution is actually a strong solution belonging to $C^{0}([0, T]: H)$
$\cap C^{1}((0, T): H)$. Note that for $n \geq 2$ it is not sufficient to choose $H_{1 / 2}=H_{0}^{1}(U)$ as the closed subspace of H which leads to Lipschitz behavior for F.

Now let us consider the IBVP in the more difficult case where $n=3$ and the nonlinearity $F(u)=f(u(x, t))$ is given by

$$
f(u)=\sum_{i=1}^{3} u\left(\partial u / \partial x_{i}\right)
$$

This nonlinearity is more difficult to deal with than the previous $f \in C^{1}(R)$ and we need some lemmas before trying to prove existence of the solution to the IBVP.

Lemma 1 There exists a constant $C>0$, such that for all $u \in H_{1}=D_{A}$,

$$
|u(x)-u(y)| \leq C\|A u\|_{H}|x-y|_{R^{3}}^{1 / 2} \quad \forall x, y \in R^{3}
$$

Proof- For $\varphi \in C_{0}^{\infty}(U)$ we have the classical representation for a solution of Poisson's equation in terms of a fundamental solution, (cf sec 2.2.1 in the Evans text)

$$
\varphi(x)=C \int_{U} \frac{\nabla^{2} \varphi(y)}{|x-y|} d y
$$

for C an appropriate constant. Applying the C-S inequality to this expression leads to

$$
\begin{aligned}
|\varphi(x)-\varphi(z)|^{2} & \leq C^{2}\left(\int_{U} \nabla^{2} \varphi(y)\left\{\frac{1}{|x-y|}-\frac{1}{|z-y|}\right\} d y\right)^{2} \\
& \leq C^{2} \int_{U}\left|\nabla^{2} \varphi(y)\right|^{2} d y \cdot \int_{U}\left\{\frac{1}{|x-y|}-\frac{1}{|z-y|}\right\}^{2} d y
\end{aligned}
$$

But

$$
\int_{U}\left\{\frac{1}{|x-y|}-\frac{1}{|z-y|}\right\}^{2} d y \leq C_{U}|x-z|
$$

for $C_{U}>0$ depending only on U. Then it follows that

$$
|\varphi(x)-\varphi(z)| \leq C\|A \varphi\|_{H}|x-z|^{1 / 2}
$$

Since $C_{0}^{\infty}(U)$ is dense in $D_{A}=H_{1} \subset C^{0}(\bar{U})$, we can approximate any $u \in D_{A}$ by $\left\{\varphi_{n}\right\} \subset C_{0}^{\infty}(U)$ and pass to the limit to get the result.

Lemma 2 There exists a constant $\mathrm{C}>0$, such that for all $u \in H_{1}=D_{A}$,

$$
\|u\|_{\infty}^{4} \leq C\|A u\|_{H}^{3}\|u\|_{H}
$$

Proof- The embedding results imply $D_{A}=H_{1} \subset C^{0}(\bar{U})$ and, assuming the boundary Γ is smooth, we have that $\left.u\right|_{\Gamma}=0$, since $H_{0}^{1}(U) \cap H^{2}(U)$ is dense in $D_{A}=H_{1}$. Now if u is identically zero, the result is trivial so suppose $\|u\|_{\infty}=e s s-\sup _{U}|u(x)|=L>0$.
We have from the previous lemma

$$
|u(x)-u(y)| \leq K|x-y|_{R^{3}}^{1 / 2} \quad \text { for } K=C\|A u\|_{H}
$$

and WOLG we may suppose $L=|u(0)|$. Let $R=(L / K)^{2}$ and consider the open ball, $B_{R}(0) \subset R^{3}$. For $x \in B_{R}(0)$

$$
|u(x)|>|u(0)|-|u(0)-u(x)| \geq L-K|x|^{1 / 2}>L-(K / L)=0
$$

Since $\left.u\right|_{\Gamma}=0$ this last estimate implies $B_{R}(0) \subset U$ and for $x \in B_{R}(0), \quad|u(x)| \geq L-K|x|^{1 / 2}$. Now the result follows from,

$$
\begin{aligned}
\|u\|_{H}^{2} & \geq \int_{B_{R}(0)}|u(x)|^{2} d x \geq\left.\left.\int_{B_{R}(0)}|L-K| x\right|^{1 / 2}\right|^{2} d x \\
& \geq 4 \pi L^{2} R^{3} \int_{0}^{1}\left(1-z^{1 / 2}\right)^{2} z^{2} d z=C L^{2} R^{3}=C L^{8} K^{-6}
\end{aligned}
$$

i.e.,

$$
L^{4} \leq C K^{3}\|u\|_{H} .
$$

Lemma 3 For $1 \geq \alpha>3 / 4$, and $\forall u, v \in D_{A}$

1. $\quad f: H_{\alpha} \rightarrow H$ with $\|f(u)\|_{H} \leq C\left\|A^{\alpha} u\right\|_{H}\left\|A^{1 / 2} u\right\|_{H}$
2. $\|f(u)-f(v)\|_{H} \leq C\left(\left\|A^{\alpha} u\right\|_{H}\left\|A^{1 / 2} u-A^{1 / 2} v\right\|_{H}+\left\|A^{1 / 2} v\right\|_{H}\left\|A^{\alpha} u-A^{\alpha} v\right\|_{H}\right)$

Proof- Note that the embedding result asserts that for $1 \geq \alpha>3 / 4, H_{\alpha}$ is continuously embedded in $C(\bar{U})$. This implies that there exists a constant $C>0$, depending on U and α such that for all $u \in D_{A}, \quad\|u\|_{\infty} \leq C\left\|A^{\alpha} u\right\|_{H}$. Then for $u \in D_{A}, \quad u \in L^{\infty}(U)$ and $\partial u / \partial x_{i} \in L^{2}(U)=H$ so $f(u) \in H$. Moreover

$$
\|f(u)\|_{H} \leq\|u\|_{\infty}\|\nabla u\|_{H} \leq C\left\|A^{\alpha} u\right\|_{H}\|\nabla u\|_{H} \leq C\left\|A^{\alpha} u\right\|_{H}\left\|A^{1 / 2} u\right\|_{H} .
$$

This proves 1). Now note that

$$
\begin{aligned}
\|f(u)-f(v)\|_{H} & \leq\|u \nabla u-v \nabla v\|_{H}=\|u \nabla(u-v)-(u-v) \nabla v\|_{H} \\
& \leq\|u\|_{\infty}\|\nabla(u-v)\|_{H}+\|u-v\|_{\infty}\|\nabla v\|_{H} \\
& \leq C\left(\left\|A^{\alpha} u\right\|_{H}\left\|A^{1 / 2} u-A^{1 / 2} v\right\|_{H}+\left\|A^{1 / 2} v\right\|_{H}\left\|A^{\alpha} u-A^{\alpha} v\right\|_{H}\right) .
\end{aligned}
$$

This proves 2).
Now we can show the results needed to establish existence for the solution of the IBVP. Since $D_{A}=H_{1} \subset H_{\alpha} \subset H_{0}=H^{0}(U), 0<\alpha<1$, it follows that the mapping f can be extended from H_{1} to H_{α} for $1 \geq \alpha>3 / 4$. Moreover, $H_{3 / 4} \subset H_{1 / 2}$ and

$$
\left\|A^{1 / 2} u-A^{1 / 2} v\right\|_{H} \leq\left\|A^{3 / 4} u-A^{3 / 4} v\right\|_{H}
$$

It follows that f satisfies, for $1 \geq \alpha>3 / 4$,

$$
\|f(u)-f(v)\|_{H} \leq C\left(\left\|A^{\alpha} u\right\|_{H}+\left\|A^{\alpha} v\right\|_{H}\right)\left\|A^{\alpha} u-A^{\alpha} v\right\|_{H}
$$

i.e., $f: H_{\alpha} \rightarrow H$ is locally Lipschitz for $1 \geq \alpha>3 / 4$. Then the IBVP has a unique mild solution for every $u_{0} \in H_{\alpha}, 1 \geq \alpha>3 / 4$. Since the semigroup $\mathrm{S}(\mathrm{t})$, generated by $-A$ is analytic, this is also a strong solution.

