
Applications of Semigroups to Nonlinear IVP’s

1.The Abstract IVP
Consider the following nonlinear initial value problem

u′t + Aut = Fut 0 < t < T, u0 = u0 1.1

where −A : DA  H generates a C0 − s/g of contractions on H. Of course this includes the
special case that the semigroup generated by −A is analytic. A strong solution of (1) on [0,T]
is a function ut ∈ C00,T : H ∩ C10,T : H which solves the equation and we will
define a funtion ut to be a mild solution of (1) if ut ∈ C00,T : H satisfies

ut = Stu0 + ∫
0

t
St − sFusds 0 < t < T. 1.2

The simplest existence proofs for problems like this make the assumption that F : V  H
is locally Lipschitz; i.e., V denotes a closed subspace of H (V = H is allowed) and for some
R > 0, there exists CR > 0 such that

||Fu − Fv||H ≤ CR||u − v||V ∀u,v ∈ BR0 ⊂ V 1.3

For some nonlinearities it will suffice to take V=H, while for others it will be necessary to
choose V to be an appropriate proper closed subspace of H. In these cases we will suppose
that S(t) maps H into V ⊂ D∞ with ||Stx||V ≤ CV ||x||H, and, for convenience we will assume
CV = 1.

To show that (1) has a mild solution under the assumption (3), let

Φu = ∫
0

t
St − sFusds and vt = Stu0,

also
R = 2||u0||V and KR = RCR + ||F0||H.

Then

||Fu||H − ||F0||H ≤ ||Fu − F0||H ≤ CR||u||V ≤ RCR

and
||Fu||H ≤ KR ∀u ∈ BR0 ⊂ V.

This bound on ||Fu||H implies

||Φut||V ≤ Tmax0≤s≤t≤T ||St − sFus||V ≤ TKR

if ut ∈ BR0 for 0 ≤ t ≤ T. Now if we let

MR = u ∈ C0,T : H : ||ut||V ≤ R, 0 ≤ t ≤ T

Then for u ∈ MR and 0 < T < R/2KR we have

||Φut||V ≤ TKR < R/2 = ||u0 ||V

i.e.,
Φ : MR  MR for 0 ≤ t ≤ T < R

2KR
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In addition, for 0 ≤ t ≤ T,

||Φut − Φwt||H ≤ CRt||ut − wt||V ∀u,v ∈ MR

hence, for t < 1/CR, Φ is a strict contraction on MR. Now let

T0 = min1/CR,R/2KR

Then for u ∈ MR and 0 ≤ t ≤ T0,

||vt + Φut||V ≤ ||u0 ||V + ||Φut||V ≤ 2||u0 ||V = R

and it follows that MR ∋ u ⇝ v + Φu ∈ MR is a strict contraction. Then there is a unique
fixed point, û ∈ MR such that

ût = vt + Φût, 0 ≤ t ≤ T0

i.e., û is a mild solution of the IVP. In order to prove that û is, in fact, a strong solution to the
IVP, additional hypotheses on A or on F are needed. For example, if A generates an
analytic semigroup, then û would have the additional smoothness required of a strong
solution. Also if additional smoothness on F were assumed, we may be able to show the
mild solution is strong.

Since the solution has only been shown to exist for 0 ≤ t ≤ T0, it is referred to as a local
solution. In an effort to extend the solution to larger time, suppose we use u1 = ûT0as the
initial condition for a new IVP and follow the same procedure to obtain a new mild solution
on an interval T0,T1 for some T1 > T0. Repeating this procedure N times leads to solutions
on 0,T0 ∪ T0,T1 ∪ T1,T2 ∪. . .∪TN−1,TN = 0,TN. In general, the length |Tj ,Tj+1| tends
to zero with increasing j due to the fact that R, CR,KR grow as T increases. However, if it is
known, say from some a-priori estimate of the solution, that any solution of the IVP must
satisfy ||ut||V ≤ C for 0 ≤ t ≤ T, then we may take R = max2||u0 ||H,C in the procedure just
described. Then we can divide [0,T] into subintervals Tj ,Tj+1 of uniform length and in this
way, obtain a solution for the interval [0,T]; i.e., a uniform bound on solutions implies a
global solution.

The nonlinear operator Ξut = vt + Φut:H  H may be interpreted as the
continuous flow on H associated with the IVP.

2. A Nonlinear Diffusion Equation on Rn

Consider the problem

∂tux, t = ∇2ux, t + fux, t x ∈ Rn, t > 0 2.1
ux, 0 = u0x x ∈ Rn.

In this problem we take, instead of a Hilbert space H, the Banach space of functions which
are defined and continuous on Rn and have a finite max. This linear space of functions
X = CbRn is a Banach space for the sup norm. We assume also that the nonlinearity,
f : R  R satisfies,

|fu − fv| ≤ CR|u − v| ∀ |u|, |v| ≤ R 2.2

Note that fu = u2 satisfies condition (2.2) for CR = 2R. Then (2.2) implies that
Fu = fux, t satisfies the condition (1.3) with H = V = X, and, since the composition of
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continuous functions is continuous, that Fu = fux, t maps X to itself.
Since the operator A = −∇2 on DA = u ∈ X : Au ∈ X = C2Rn ∩ CbRn can be

shown to generate a C0 semigroup of contractions on X, it follows from the result of the
previous section that the initial value problem has a unique mild solution, û(x,t)
which satisfies,

ût = Stu0 + ∫
0

t
St − sFûsds 0 < t < T0

i.e.,

ûx, t = ∫
Rn

Kx − y, tu0ydy.+ ∫
0

t ∫
Rn

Kx − y, t − sfûy,sdyds. 2.3

where
Kx, t = 1/ 4πt e−x2/4t, t > 0.

Since the semigroup generated by −A = ∇2 is, in fact, analytic, we can show that the mild
solution to the IVP is actually a strong solution. This follows from the fact that when the
semigroup is analytic, the abstract IVP has a strong solution when the inhomogeneous term
ft is only Lipschitz continuous in t. The condition (2.2) is sufficient to imply that
ft = fux, t is Lipschitz in t for any ux, t ∈ X.

In addition, for this problem it is possible to use monotonicity methods to establish
uniform bounds on the solution under appropriate conditions on f. When f is such that such
bounds can be established, the solution can be shown to be global in t.

3. An IBVP in 1-dimension
Consider the problem

∂tux, t − ∂xxux, t = fux, t 0 < x < 1, t > 0
ux, 0 = u0x 0 < x < 1,
u0, t = u1, t = 0 t > 0,

where we suppose f ∈ C1R.
Let H = L20,1 and V = H0

10,1. Then we can show that

V ⊂ C0,α0,1 for 0 < α ≤ 1/2.

i.e., for u ∈ V, and 0 ≤ x,y ≤ 1,

|ux − uy| = ∫
y

x
u′sds ≤ ∫

y

x
12ds

1/2
∫

y

x
u′s2ds

1/2

≤ |x − y|1/2 ∫
0

1
u′s2ds

1/2
≤ ||u||V|x − y|1/2

Then it follows that for 0 ≤ x ≤ 1, |ux| ≤ ||u||V; i.e., ||u||∞ ≤ ||u||V. In particular then for u ∈ V,
fu ∈ H so F = fu maps V to H. Now, for u,v ∈ BR0 ⊂ V,

||fu − fv||H
2 = ∫

0

1
|fux − fvx|2dx

≤ max |s|≤R f
′
s 2 ∫

0

1
|ux − vx|2dx

≤ CR||u − v||H
2 ≤ CR||u − v||V

2

and we see that f : V  H is locally Lipschitz. It follows from the results of section 1 that
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the abstract IVP has a unique mild solution, û ∈ C0,T : H for T > 0, sufficiently small.
However, since the semigroup generated by −A is, in fact, an analytic semigroup, the
Lipschitz smoothness of f is sufficient to imply that the mild solution is actually strong.

Note that we used that V ⊂ C0,1/20,1 ⊂ H in order to assert that fu ∈ H for
u ∈ V and that

u,v ∈ BR0 ⊂ V implies ||u||∞ ≤ R, and ||v||∞ ≤ R

which leads then to the result, |fu − fv| ≤ max |s|≤R|f′s| |u − v|. i.e., this is a case where we
have to take V to be an appropriate closed subspace of H in order to get the behavior we
need for f.

4. A Semilinear IBVP on R1

Consider the semilinear problem

∂tux, t − ∂xxux, t + ux, t∂xux, t = fux, t 0 < x < 1, t > 0
ux, 0 = u0x 0 < x < 1, 4.1
u0, t = u1, t = 0 t > 0,

where we suppose f ∈ C1R. Let

Fu = fu − u∂xu

H = L20,1 V = H0
10,1 ⊂ C0,1/20,1

Then f : V  H

and ||u∂xu||H ≤ ||u||∞||∂xu||H ≤ ||u||V
2

so we have F : V  H. Moreover, for all u,v ∈ BR0 ⊂ V,

||u∂xu − v∂xv||H ≤ ||u∂xu − ∂xv||H + ||u − v∂xv||H

≤ ||u||∞||u − v||V + ||u − v||∞||v||V

≤ ||u||V + ||v||V||u − v||V ≤ 2R||u − v||V

and this implies F is locally Lipschitz on V. It follows then that the abstract IVP has a
unique mild solution which can again be seen to be a strong solution due to the fact that −A
generates an analytic semigroup on H. The strong solution is only local in t unless some
a-priori bound on the solution can be established.

5. A Semilinear IBVP on Rn, n=2,3
The previous two examples were set in one space dimension where it happens that
V ⊂ C0,α0,1 for 0 < α ≤ 1/2. For n ≥ 2, the Sobolev embedding theorem changes the
situation and we have to deal more carefully with the function spaces in order to get the
Lipschitz behavior for the nonlinearity.

For U a bounded open set in Rn, n ≥ 2 and for α ≥ 0, define

HαU = u ∈ H0U : ∑ j≥1 |λ j |
2α|u,ϕ jH |2 < ∞

where ϕ j j≥1 denote the orthonormal family of eigenfunctions for A = −∇2 on
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V = H0
1U; i.e. ,

H = H0U ∋ u = ∑ j≥1
u,ϕ jHϕ j ||u||H

2 = ∑ j≥1 |u,ϕ jH |2

H1 = DA = u ∈ H : Au = ∑ j≥1
λ ju,ϕ jHϕ j ∈ H

i.e., u ∈ DA iff ||Au||H
2 = ∑ j≥1 |λ j |

2|u,ϕ jH |2 < ∞

for u ∈ Hα, Aαu = ∑ j≥1
λ j
αu,ϕ jHϕ j 0 ≤ α ≤ 1,

||u||α
2 = ||Aαu||H

2 = ∑ j≥1 |λ j |
2α|u,ϕ jH |2

This defines a sequence of linear spaces,

DA = H1 ⊂ Hα ⊂ H0 = H0U, 0 < α < 1.

Evidently, Hα is a Hilbert space for

u,vα = u,vH + Aα/2u,Aα/2v
H
= ∑ j≥1

1 + |λ j |
2α|ujvj |

i.e.,
||u||α

2 = ||u||H
2 + ||Aαu||H

2

And since this can be seen to be the graph norm on DA, it follows from the closed graph
theorem that Hα is a Banach space for this norm. Of course the norm then supports this
inner product and Hα becomes a Hilbert space. In particular, H1/2 = H0

1U.

Embedding Results
We state now some results regarding the embedding of the Hα spaces.

If H0
1U ∩ H2U ⊂ DA = H1 ⊂ Hα ⊂ H0 = H0U, 0 < α < 1.

then we can show that

Hα is continuously embedded in Wp,qU if
2α > p

2α − n/2 > p − n/q

Hα is continuously embedded in CmŪ if 2α − n/2 > m

Now consider

∂tux, t − ∇2ux, t = fux, t x ∈ U ⊂ Rn, t > 0
ux, 0 = u0x x ∈ U
ux, t = 0 x ∈ Γ, t > 0,

where f ∈ C1R. Then Fu = fux, t : Hα  H provided Hα ↪ C0U; i.e., for α > n/4.
In addition, F is locally Lipschitz if

u,v ∈ BR0 ⊂ Hα implies ||u||∞, ||v||∞ ≤ R

Again, we need Hα continuously embedded in C0Ū which means that α > n/4. It follows
that for u0 ∈ Hα with α > n/4 there is a unique mild solution for the
IBVP, ût ∈ C0,T : H for sufficiently small T > 0. Since the semigroup generated
by − A is analytic here, the solution is actually a strong solution belonging to C00,T : H
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∩C10,T : H . Note that for n ≥ 2 it is not sufficient to choose H1/2 = H0
1U as the closed

subspace of H which leads to Lipschitz behavior for F.

Now let us consider the IBVP in the more difficult case where n = 3 and the
nonlinearity Fu = fux, t is given by

fu = ∑ i=1
3 u∂u/∂xi

This nonlinearity is more difficult to deal with than the previous f ∈ C1R and we need
some lemmas before trying to prove existence of the solution to the IBVP.

Lemma 1 There exists a constant C > 0, such that for all u ∈ H1 = DA,

|ux − uy| ≤ C ||Au||H |x − y|R3
1/2 ∀x,y ∈ R3

Proof- For ϕ ∈ C0
∞U we have the classical representation for a solution of Poisson’s

equation in terms of a fundamental solution, (cf sec 2.2.1 in the Evans text)

ϕx = C∫
U

∇2ϕy
|x − y|

dy

for C an appropriate constant. Applying the C-S inequality to this expression leads to

|ϕx − ϕz|2 ≤ C2 ∫
U
∇2ϕy 1

|x − y|
− 1

|z− y|
dy

2

≤ C2 ∫
U

|∇2ϕy|2dy ⋅ ∫
U

1
|x − y|

− 1
|z− y|

2

dy

But ∫
U

1
|x − y|

− 1
|z− y|

2

dy ≤ CU|x − z|

for CU > 0 depending only on U. Then it follows that

|ϕx − ϕz| ≤ C||Aϕ||H|x − z|1/2

Since C0
∞U is dense in DA = H1 ⊂ C0Ū, we can approximate any u ∈ DA by

ϕn ⊂ C0
∞U and pass to the limit to get the result.■

Lemma 2 There exists a constant C > 0, such that for all u ∈ H1 = DA,

||u||∞
4 ≤ C ||Au||H

3 ||u||H

Proof- The embedding results imply DA = H1 ⊂ C0Ū and, assuming the boundary Γ is
smooth, we have that u|Γ = 0, since H0

1U ∩ H2U is dense in DA = H1. Now if u is
identically zero, the result is trivial so suppose ||u||∞ = ess− supU |ux| = L > 0.

We have from the previous lemma

|ux − uy| ≤ K |x − y|R3
1/2 for K = C||Au||H

and WOLG we may suppose L = |u0|. Let R = L/K2 and consider the open
ball, BR0 ⊂ R3. For x ∈ BR0
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|ux| > |u0| − |u0 − ux| ≥ L − K|x|1/2 > L − K/L = 0

Since u|Γ = 0 this last estimate implies BR0 ⊂ U and for x ∈ BR0, |ux| ≥ L − K|x|1/2.
Now the result follows from,

||u||H
2 ≥ ∫

BR0
|ux|2dx ≥ ∫

BR0
L − K|x|1/2 2

dx

≥ 4πL2R3 ∫
0

1
1 − z1/22z2dz = CL2R3 = CL8K−6

i.e.,
L4 ≤ CK3 ||u||H.■

Lemma 3 For 1 ≥ α > 3/4, and ∀u,v ∈ DA

1. f : Hα  H with ||fu||H ≤ C||Aαu||H||A1/2u||H

2. ||fu − fv||H ≤ C||Aαu||H||A1/2u − A1/2v||H + ||A1/2v||H||Aαu − Aαv||H

Proof- Note that the embedding result asserts that for 1 ≥ α > 3/4, Hα is continuously
embedded in CŪ. This implies that there exists a constant C > 0, depending on U and α
such that for all u ∈ DA, ||u||∞ ≤ C ||Aαu||H. Then for u ∈ DA, u ∈ L∞U
and ∂u/∂xi ∈ L2U = H so fu ∈ H. Moreover

||fu||H ≤ ||u||∞||∇u||H ≤ C ||Aαu||H||∇u||H ≤ C||Aαu||H||A1/2u||H .

This proves 1). Now note that

||fu − fv||H ≤ ||u∇u − v∇v||H = ||u∇u − v − u − v∇v||H

≤ ||u||∞||∇u − v||H + ||u − v||∞||∇v||H

≤ C ||Aαu||H‖A1/2u − A1/2v‖
H
+ ‖A1/2v‖

H ||Aαu − Aαv||H .

This proves 2).■

Now we can show the results needed to establish existence for the solution of the IBVP.
Since DA = H1 ⊂ Hα ⊂ H0 = H0U, 0 < α < 1, it follows that the mapping f can be
extended from H1 to Hα for 1 ≥ α > 3/4. Moreover, H3/4 ⊂ H1/2 and

‖A1/2u − A1/2v‖
H
≤ ‖A3/4u − A3/4v‖

H

It follows that f satisfies, for 1 ≥ α > 3/4,

||fu − fv||H ≤ C||Aαu||H + ‖Aαv‖H ||Aαu − Aαv||H

i.e., f : Hα  H is locally Lipschitz for 1 ≥ α > 3/4. Then the IBVP has a unique mild
solution for every u0 ∈ Hα, 1 ≥ α > 3/4. Since the semigroup S(t), generated by −A is
analytic, this is also a strong solution.
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