
Linear Elliptic PDE’s
Elliptic partial differential equations frequently arise out of conservation statements of

the form

∫
∂B

F⃗ ⋅ n⃗ dσ = ∫
B

Sdx ∀B contained in bounded open set U ⊂ Rn.

Here F⃗, S denote respectively, the flux density field and source density field associated with
a distribution of some quantity throughout a bounded open set U in Rn, and B denotes an
arbitrary ball inside U with n⃗ the unit outward normal to ∂B, the boundary of B. The
statement above then asserts that for any ball B contained in U, the flow of material through
the boundary of B is exactly balanced by the internal production as presribed by the source
term.

Using the divergence theorem, we can convert this expression to

∫
B
div F⃗ − S dx = 0 ∀B ⊂⊂ U,

which, since B is arbitrary, implies

div F⃗x − Sx = 0 ∀x ∈ U.

If there is now some constituitive law which asserts that

F⃗ = −Kx∇ux + uxV⃗x ∀x ∈ U,

diffusion convection

and if, Sx = −cxux +

fx ∀x ∈ U,

leakage source term
then

div −Kx∇ux + uxV⃗x − −cxux + fx = 0 ∀x ∈ U,

i.e., −div Kx∇ux + V⃗ ⋅ ∇ux + cxux = fx ∀x ∈ U

This last equation is a typical elliptic partial differential equation. The terms which appear in
the constituitive laws for flux and source density can frequently be given physical
interpretations as diffusive or convective transport terms (in the flux law) and loss due to
leakage (in the source equation). Then the equation can be written as

Lux = fx ∀x ∈ U,

where L can be expressed variously as

Lux = −div Kx∇ux + V⃗ ⋅ ∇ux + cxux

= −∑
i,j=1

n

∂jKijx∂iux +∑
i=1

n

vix∂iux + cxux

= −∂⃗K ∂⃗ux + V⃗∂⃗ux + cxux.

We place the following assumption on the coefficient K = Kx,
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i) if K is a scalar, then Kx ≥ k0 x ∈ Ū

ii) if K is a matrix (tensor), then ∑
i,j=1

n

Kijxzizj ≥ k0| z⃗|2 ∀z⃗ ∈ Rn, x ∈ Ū.

This is the assumption of uniform ellipticity for the operator L.
In addition to the elliptic equation, which is satisfied throughout U, it is usual to impose

certain conditions on the solution values on the boundary of the domain. These boundary
conditions are chosen so as to cause the resulting boundary value problem to have a
unique solution. At each point on the boundary of U we will assume that one (and only one)
of the following conditions holds

ux = gx x ∈ ∂U

∇u ⋅ n⃗x = gx x ∈ ∂U

∇u ⋅ n⃗x + pxux = gx x ∈ ∂U

Dirichlet condition

Neumann condition

Robin condition

Here gx is a given function defined on ∂U.
Consider the so called Dirichlet boundary value problem,

Lux = fx x ∈ U
ux = 0 x ∈ ∂U.

Then u = ux is said to be a classical solution of the BVP if u ∈ C2U ∩ CŪ. Clearly it
is necessary that the given data function f satisfy f ∈ CU if a classical solution is to have
any possibility of existing. There are several inconvenient aspects to classical solutions:

● a classical solution may fail to exist.
(e.g. if ∂U is not sufficiently smooth or if f ∉ CU )

● approximating a classical solution may be difficult
● even if a classical solution exists, it may be easier to prove

the existence of a weak solution and subsequently prove the
weak solution is actually classical.

In deciding how to define a weak solution, consider the special case that Lu = −∇2u. Then
there are the following possibilities for definitions of a weak solution to the Dirichlet BVP:

i) an ultra regular weak solution: u ∈ H2U ∩ H0
1U such that

∫
U
∇2ux + fxvxdx = 0 ∀v ∈ H0U

ii) a weak solution: u ∈ H0
1U such that

Bu,v = ∫
U
∇u ⋅ ∇v − fv dx = 0 ∀v ∈ H0

1U

iii) an ultra weak solution: u ∈ H0U such that

∫
U

ux∇2vx + fx dx = 0 ∀v ∈ H2U ∩ H0
1U
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In case i) it is difficult to construct a family of approximate solution spaces VN that tend to
H2U ∩ H0

1U as N tends to infinity. Similarly, in case iii) it is difficult to construct a
sequence of ”test function” spaces WN which tend to H2U ∩ H0

1U as N tends to infinity.
On the other hand, case ii) is a compromise in which we take VN = WN and these spaces
are finite dimensional subspaces of CU. Moreover, the approximate problem contains a
(symmetric) positive definite matrix approximating the infinite dimensional operator, L.

Weak Formulation
Consider the following partial differential operator acting on functions defined on a bounded
open set U ⊂ Rn

Lux = −∑
i,j=1

n

∂jKijx∂iux +∑
i=1

n

bix∂iux + cxux, x ∈ U

where we suppose

i) Kij ∈ L∞U and |Kijx| ≤ k1 for x ∈ U

also ∑
i,j=1

n

Kijxzizj ≥ k0| z⃗|2 ∀z⃗ ∈ Rn, x ∈ Ū

ii) bi ∈ L∞U and |bix| ≤ b1 for x ∈ U

iii) c ∈ L∞U and c0 ≤ cx ≤ c1 for x ∈ U.

Now define, for u,v ∈ H0
1U,

Bu,v = ∫
U
∑
i,j=1

n

Kijx∂iux∂jvx + vx∑
i=1

n

bix∂iux + cxuxdx

Then, for f ∈ H0U, we define u to be a weak solution of the Dirichlet boundary value
problem,

Lux = fx x ∈ U,
ux = 0 x ∈ Γ

if u ∈ H0
1U satisfies

Bu,v = f,v0 = ∫
U

fxvxdx ∀v ∈ H0
1U.

Definition of H−1U
If f,v are both elements of H0U, then the integral ∫

U
fv exists since

∫
U

fxvxdx ≤ ‖f‖0‖v‖0 < ∞.

More generally, suppose v ∈ H0
1U and that f is of the form

fx = g0x +∑
j=1

n

∂igix where gi ∈ H0U for i = 0, . . . ,n.
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Then

∫
U

fxvxdx = ∫
U

g0x +∑
j=1

n

∂igix vxdx =

= ∑
j=1

n

∫
∂U

vgidS + ∫
U

vg0 −∑
j=1

n

gi∂iv dx

= ∫
U

vg0 −∑
i=1

n

gi∂iv dx ∀v ∈ H0
1U

and

∫
U

fxvxdx ≤ ‖g0‖0‖v‖0 +∑
i=1

n

‖gi‖0‖∂iv‖0 < ∞ ∀v ∈ H0
1U

If we define

H−1U = f ∈ D′U : fx = g0x +∑
j=1

n

∂igix where gi ∈ H0U, 0 ≤ i ≤ n

then ∫
U

fxvxdx ≤ ∑
i=0

n

‖gi‖0
2

1/2

‖v‖1

Evidently, if v ∈ H0
1U then f,v0 is finite for all f ∈ H−1U and we can can consider weak

solutions to the Dirichlet problem under the weaker assumption that f ∈ H−1U.

Inhomogeneous Boundary Data
To consider weak solutions for the Dirichlet boundary value problem with

inhomogeneous boundary data,

Lux = fx x ∈ U,
ux = gx x ∈ Γ

where g ∈ H1/2Γ, we recall that for Γ sufficiently regular, there exists a G ∈ H1U such
that T0G = g. Then w = u − G ∈ H0

1U and w satisfies,

Lwx = Lux − Gx = fx − LGx = F x ∈ U,
wx = ux − gx = 0 x ∈ Γ.

Since G ∈ H1U then LG ∈ H−1U, so F ∈ H−1U and we are back to the weak BVP
having homogeneous data. Then the weak solution of the problem with inhomogeneous
data is obtained by finding the weak solution for,

Bw,v = F,v0 ∀v ∈ H0
1U,

and then u = w + G.
Alternatively, let G be any function such that G ∈ H1U and T0G = g ∈ H1/2Γ.Then

u ∈ H1U is a weak solution of the Dirichlet boundary value problem with inhomogeneous
boundary data, g, if u − G = w ∈ H0

1U and Bw,v = F,v0 ∀v ∈ H0
1U.
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Existence of Weak Solutions
There are several different ways to prove existence of a weak solution to the Dirichlet
problem.

● Symmetric Bilinear form (Poincare inequality approach)
Suppose that the bilinear form B has been shown to satisfy

Bu,v = Bv,u
|Bu,v| ≤ α||u||1||v||1
Bu,u ≥ β ||u||1

2

Then u,v1 := Bu,v defines a new inner product on H0
1U that is equivalent to

the standard H0
1U inner product via the Poincare inequality . In this case we can write

the weak equation in the form

u,v1 = f,v0 = Fv ∀v ∈ H0
1U.

But F ∈ H−1U, hence by the Riesz theorem, there exists a unique zF ∈ H0
1U such that

Fv = zF,v1 ∀v ∈ H0
1U.

Then u = zF is the unique weak solution of the BVP.

● Non-Symmetric Bilinear form (Lax-Milgram approach)
Now suppose that the bilinear form B is not symmetric but has been shown to satisfy

|Bu,v| ≤ α||u||1||v||1
Bu,u ≥ β ||u||1

2.

It follows from the first condition that for any fixed u ∈ H0
1U,

H0
1U ∋ v  Bu,v ∈ R

defines a bounded linear functional on H0
1U. Then the Riesz theorem implies the

existence of a unique element Au ∈ H0
1U such that

Bu,v = Au,v1 ∀v ∈ H0
1U.

Note that since B is not symmetric, we are using the standard inner product on H0
1U. It

now follows from the second condition that A is an isomorphism of H0
1U onto H0

1U.

i.e.,the two conditions together imply β ‖u‖1 ≤ ‖Au‖1 ≤ α ‖u‖1

Then Bu,v = Fv becomes

Bu,v = Au,v1 = Fv = zF,v1 ∀v ∈ H0
1U,

and Au = zF has a unique solution for every zF ∈ H0
1U and this solution is the unique

weak solution of the BVP.

A slight variation on the Lax-Milgram approach is offered by the following argument.
Define a mapping T : H0

1U into H0
1U by
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Tu = u − ρAu − zF

where ρ is a real number, A denotes the previously defined bounded linear mapping
associated with the bilinear form Bu,v and zF is associated with F via the Riesz theorem.
Then

‖Tu1 − Tu2‖1
2 = ‖u1 − u2 − ρAu1 − Au2‖1

2

= ‖u1 − u2‖1
2 − 2ρBu1 − u2,u1 − u2  + ρ2‖Au1 − u2‖1

2

≤ 1 − 2ρβ + ρ2α2‖u1 − u2‖1
2

and for 0 < ρ <
2β
α2

it is clear that T is a strict contraction on H0
1U.Then T has a unique fixed point which must

satisfy Au = zF, or equivalently, Bu,v = Fv ∀v ∈ H0
1U.

None of these abstract approaches gives any insight into how a solution might be
constructed. Therefore, we consider an additional approach to existence under the
assumptions of the second example above.

● Galerkine Proof of Existence
We assume that the bilinear form is bounded and coercive but not necessarily

symmetric. Then we begin by defining a sequence of approximate solutions.

a) Approximate Solution
We let φk denote an ON basis for H0

1U, and for each positive integer N let

uNx = ∑
k=1

N

Ck,N φkx

where BuN,φj  = Fφj 1 ≤ j ≤ N.

Then
BjkC⃗N = F⃗N,

where
Bjk = Bφj,φk
C⃗N = C1,N,… ,CN,N 

F⃗N = Fφ1,… ,FφN.

Note that C⃗N
 Bjk C⃗N = BuN,uN  ≥ β ||uN||1

2 = β C⃗N
2

and hence Bjk is positive definite so that a unique approximate solution exists for every N.

We now obtain estimates on the H0
1U norm of the sequence of approximate solutions

b) A-priori Estimate
It follows from BuN,φj  = Fφj 1 ≤ j ≤ N,
that

β ||uN ||1
2 ≤ |FuN| ≤ CF ||uN ||1

hence
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||uN ||1 ≤ 1
β

CF ∀N

Then the uniform (in N) bound for the norms implies that the sequence uN contains a
weakly convergent subsequence uν;

i.e. , uν,v1 → u,v1 ∀v ∈ H0
1U.

We must now show that the weak limit of this subsequence is, in fact, a weak solution.

c) Passing to the (weak) Limit

Let VN = spanφ1,… ,φN. Then for each ν,

Buν,v = Fv ∀v ∈ Vν

↓ ν → ∞
Bu,v = Fv ∀v ∈ ⋃

ν>0
Vν,

where the convergence Buν,v → Bu,v follows from the weak convergence of uν.
Since the φ′s form a basis for V = H0

1U, ⋃
N>0

VN is dense in V, and we have that

Bu,v = Fv ∀v ∈ H0
1U.

We have just shown that if uν is a subsequence of approximate solutions having weak
limit, u, in H0

1U then u must be a weak solution of the BVP. This can be done for any
weakly convergent subsequence of the sequence of approximate solutions, and since the
weak solution can be shown to be unique, it follows that all sub-sequences have the same
weak limit, u. But then it follows that the sequence of approximate solutions, uN, must
itself converge weakly to u. In fact, the sequence converges strongly to u, as we shall now
show.

d) Passing to the (strong) Limit
To see the strong convergence, let zN denote a sequence with
zN ∈ VN, and ||zN − u||1 → 0 as N → ∞. For each N

BuN,v = Fv ∀v ∈ VN

Bu,v = Fv ∀v ∈ H0
1U,

hence
Bu − uN,v = 0 ∀v ∈ VN.

In particular, for v = zN − uN ∈ VN,

Bu − uN, zN − uN  = Bu − uN, zN − u + Bu − uN,u − uN  = 0,

i.e., Bu − uN,u − zN  = Bu − uN,u − uN ,

α||u − uN ||1||u − zN ||1 ≥ β ||u − uN ||1
2.

Then ||u − uN ||1 ≤ α
β ||u − zN ||1 → 0 as N → ∞,

which shows that uN converges strongly to u.

To see that the weak solution is unique, suppose there are two weak solutions, u1,u2.Then
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their difference satisfies

Bu1 − u2,v = 0 for all v in H0
1U.

In particular, choosing v = u1 − u2,and using the coercivity of B leads to u1 = u2.

Coercivity and V-H Coercivity
The conditions i), ii) and iii) on Kij,bj and c are sufficient to show that operator L generates a
bounded bilinear form B; i.e., the form B satisfies,

|Bu,v| ≤ α||u||1||v||1.

These conditions do not, in general imply that the bilinear form B is coercive; i.e., they do
not imply the existence of β > 0 such that

Bu,u ≥ β ||u||1
2.

However, they do imply that B is V − H coercive for V = H0
1U and H = H0U; i.e. , they

imply the existence of β,λ > 0 such that

Bu,u ≥ β ||u||1
2 − λ||u||0

2.

To see this, write

Bu,v = ∫
U
∑
i,j=1

n

Kijx∂iux∂jvx + vx∑
i=1

n

bix∂iux + cxuxdx

and note that conditions i), ii) and iii) imply

(a) z⃗  Kx z⃗ ≥ k0| z⃗|2 ∀z⃗ ∈ Rn, x ∈ U

(b) ||Kij ||∞ ≤ k1, ||bj ||∞ ≤ b1, c0 ≤ cx ≤ c1.

Then |Bu,v| ≤ |∫
U
∑
i,j=1

n

Kijx∂iux∂jvxdx |+|∫
U

vx∑
i=1

n

bix∂iuxdx|+|∫
U

cxuxdx|

≤ k1 ∫
U

|∇u ⋅ ∇v|dx + b1 ∫
U

|v∇u|dx + ||c||∞ ∫
U

|uv|dx

≤ C||∇u||0||∇v||0 + ||∇u||0||v||0 + ||u||0||v||0  ≤ α ||u||1||v||1.

Similarly,

|Bu,u| = ∫
U
∑
i,j=1

n

Kijx∂iux∂jux + ux∑
i=1

n

bix∂iux + cxuxdx

≥ k0 ∫
U

|∇u ⋅ ∇u|dx + c0 ∫
U

|u|2 dx − b1 ∫
U

|u | |∇u|dx.

Now ∫
U

|u | |∇u|dx ≤ ∫
U
 

b1
|∇u|2 + b0

4
|u|2dx = 

b1
||∇u||0

2 + b0

4
||u||0

2

and

|Bu,u| ≥ k0 − ||∇u||0
2 + c0 −

b0
2

4
||u||0

2 ≥ β ||u||1
2 − λ||u||0

2.

Under these conditions we then are able to prove the Fredholm alternative theorem for the
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ellliptic boundary value problem. When the space V is chosen to be H1U instead of H0
1U

then one obtains the Neumann boundary value problem. By choosing V to be a space lying
between H1U and H0

1U, one obtains various mixed boundary value problems. (See the
notes #8)

The Fredholm Alternative Theorem
What happens in the case that B is V − H coercive but not coercive (i.e., V elliptic)? In this
case we can gain insight from looking back at the finite dimensional situation.

Suppose A is an n × n real matrix. Then

Rn = RA ⊕ NA = NA ⊕ RA

dim NA = n − rankA = dim NA

dim RA = n − dim NA = rankA

and we have the following alternatives for the problem Ax = b :

a) rankA = n there is a unique solution for every b ∈ Rn

b) rankA = m < n there is no solution unless b  NA

in which case there is an n − m parameter family of (nonunique) solutions

This is the so called Fredholm alternative stated for a system of linear algebraic equations.
We will find a similar result for elliptic boundary value problems.

Suppose the bilinear form B satisfies

∃ positive β,λ such that |Bu,u| + λ||u||0
2 ≥ β ||u||1

2 ∀u ∈ H0
1U

Then B is not coercive but the modified form Bμu,v = Bu,v + μu,v0 is coercive for
μ ≥ λ.This implies that

∀f ∈ H−1U there exists a unique u ∈ H0
1U such that

Bμu,v = 〈f,v〉 ∀v ∈ H0
1U

This is equivalent to the statement

Lμ = L + μI : H0
1U → H−1U is an isomorphism

Denote the unique weak solution of the boundary value problem with Bμ by u = Lμ
−1f and

recall that we want to solve Lu = f,not Lμu = f. If we write

Lμu = Lu + μu = f + μu := g,

then
u = Lμ

−1g = Lμ
−1f + μu, or u − μLμ

−1u = Lμ
−1f.

Write K = μLμ
−1, and F = Lμ

−1f,

so our equation can be written I − Ku = F,
where

K : H0U  H0
1U is bounded.
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To see this write

Bμu,u = g,u0

which leads to

β‖u‖1
2 ≤ |Bμu,u| ≤ ‖g‖0‖u‖0 ≤ ‖g‖0‖u‖1;

i.e., ‖u‖1 = ‖Lμ
−1g‖

1
≤

‖g‖0

β
;

But then the definition of K leads to the estimate

‖Kg‖1 = ‖μLμ
−1g‖

1
≤ μ

β
‖g‖0

and since K : H0U  H0
1U is bounded, and the embedding i : H0

1U  H0U is
compact, it follows that

K : H0U  H0U is compact.

Now we list for convenient reference, several equivalent problems:

u is a weak solution for Lux = fx x ∈ U

u = 0 x ∈ Γ

if and only if

a u ∈ H0
1U, satisfies Bu,v = f,v0 ∀v ∈ H0

1U

if and only if

b u ∈ H0
1U, satisfies Bμu,v = f,v0 + μu,v0 ∀v ∈ H0

1U

if and only if

c u = Lμ
−1f + μLμ

−1u,

if and only if

d I − Ku = Lμ
−1f,

The problems a through d are all equivalent formulations and u ∈ H0
1U solves one if

and only if it solves all the others. However, the operator I − K is an example of what is
called a Fredholm operator on H0U. This means

H0U = RngI − K ⊕ NI − K∗ = NI − K ⊕ RngI − K∗

dim NI − K = dim NI − K∗ < ∞

RngI − K is closed and RngI − K = NI − K∗

RngI − K∗ is closed and RngI − K∗ = NI − K

The analogy with the statements at the beginning of the section are obvious. We can now
state without proof the Fredholm alternative theorem for a compact operator on a Hilbert
space.

Fredholm Alternative Theorem- Consider the equation I − Ku = F ∈ H, for K a compact
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operator on Hilbert space, H.Then exactly one of the following alternatives must hold:

i NI − K = 0 : in this case ∀F ∈ H there exists a unique u ∈ H satisfying

I − Ku = F

ii NI − K = spanz1,… , zp and NI − K∗ = spanw1,… ,wp for a positive
integer p. In this case I − Ku = F has no solution unless

F,wjH = 0, 1 ≤ j ≤ p.

Then I − Ku0 + C1z1 + ⋯ + Cpzp  = F

for all constants, Cj and any u0 ∈ H such that I − Ku0 = F.

Here, the operator K∗ on H is defined as follows. For v ∈ H, fixed we can define a linear
functional on H by

λu =: Ku,vH ∀u ∈ H.

Then the Riesz theorem implies the existence of an element, denoted by K∗v to indicate its
dependence on v, such that

λu =: u,K∗vH ∀u ∈ H.

i.e., Ku,vH = u,K∗vH ∀u,v ∈ H.

The operator K∗ : H  H is easily seen to be bounded and linear and it can be shown
to be compact of K is compact. The operator is called the adjoint operator for K.

The Adjoint Boundary Value Problem
Suppose that u is a weak solution for

Lux = fx x ∈ U

u = 0 x ∈ Γ

That is,
u ∈ H0

1U, satisfies Bu,v = f,v0 ∀v ∈ H0
1U

Note that for φ,ψ ∈ Cc
∞Ū we have

Lφ,ψ0 = Bφ,ψ − ∫
Γ
ψ K∇φ ⋅ n dS = Bφ,ψ − 0

and if we extend this by continuity to u ∈ H1U, this becomes

Lu,ψ0 = Bu,ψ = f,ψ0 ∀ψ ∈ Cc
∞U

Evidently, if u is a weak solution of the BVP, then

Lu = f in the sense of distributions on U.

If we integrate by parts again in order to move all of the differentiation onto ψ, we get,

Lu,ψ0 = Bu,ψ
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= ∫
U
∑
i,j=1

n

Kijx∂iux∂jψx + ψx∑
i=1

n

bix∂iux + cxuxdx

= ∫
U
∇ψK∇u + ψb ⋅ ∇u + cψu dx

∫
U

u−∇ ⋅ K∇ψ − ∇ ⋅ ψb + cψ dx = u,L∗ψ0

where

L∗ψ = −∇K∇ψ − ∇ψb + cψ

= −∑
i,j=1

n

∂iKijx∂jψx −∑
i=1

n

∂ibixψx + cxψx

Then

Lu,ψ0 = Bu,ψ = u,L∗ψ0

and by analogy with

u is a weak solution for Lux = fx x ∈ U

u = 0 x ∈ Γ

if and only if u ∈ H0
1U, satisfies Bu,v = f,v0 ∀v ∈ H0

1U

we have

v is a weak solution for L∗vx = gx x ∈ U

v = 0 x ∈ Γ

if and only if v ∈ H0
1U, satisfies B∗v,u = g,u0 ∀u ∈ H0

1U

where B∗v,u = Bu,v.

We refer to the BVP as the adjoint problem to the original BVP.
Proceeding just as we did above, we have that v is a weak solution of the adjoint

problem if and only if,

a v ∈ H0
1U, satisfies B∗v,u = g,u0 ∀u ∈ H0

1U

if and only if

b v ∈ H0
1U, satisfies Bμ

∗v,u = g,u0 + μu,v0 ∀u ∈ H0
1U

if and only if

c u = Lμ
∗ −1f + μLμ

∗ −1u,

if and only if

d I − K∗u = Lμ
∗ −1f,

Since Lu,v0 = Bu,v = u,L∗v0 for u,v ∈ H0
1U

then μLμ
−1f,g

0
= f,μLμ

∗ −1g
0

for f,g ∈ H0U
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i.e., Kf,g0 = f,K∗g0 for f,g ∈ H0U

This proves that K∗ is the adjoint mapping for K.

Then we can restate the Fredholm alternative theorem as it applies to the elliptic boundary
value problem as follows:

Fredholm Alternative Theorem- Consider the elliptic boundary value problem

Lux = fx x ∈ U

u = 0 x ∈ Γ

Exactly one of the following alternatives must apply to the associated weak problem:

i N = u ∈ H0
1U : Bu,v = 0, ∀v ∈ H0

1U = 0 :

N∗ = v ∈ H0
1U : B∗u,v = 0, ∀u ∈ H0

1U = 0

In this case ∀f ∈ H−1U there exists a unique weak solution, u ∈ H0
1U.

ii N = spanz1,… , zp and N∗ = spanw1,… ,wp for a positive integer p.
In this case there is no weak solution for the BVP unless

f,wj0 = 0, 1 ≤ j ≤ p.

Then Bu0 + C1z1 + ⋯ + Cpzp,v = f,v0

for all constants, Cj and any weak solution u0 ∈ H0
1U .
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