
Injections, Embeddings and the Trace Theorem

We want to derive a number of properties for the spaces HkU for U a bounded open set in
Rn. It turns out that the most efficient way to do this is to consider first the much simpler
case where U = Rn.

1. Fourier Characterization of the Hilbert-Sobolev Spaces
For φ ∈ Cc

∞Rn let the Fourier transform be defined by,

TFφ = 2π−n/2 ∫
Rn
φxe−ix⋅zdx = φ̂z

We have showed previously that the Fourier transform is an isometric isomorphism on
L2 = Cc

∞Rn ∩ L2Rn. In particular, we have

a ∀u ∈ L2 ||u||0 = ||û||0 Parseval relation

b ∀u,v ∈ L2, u,v0 = û, v̂0 Plancherel relation

The results (a) and (b) hold for every test function, and since the test functions are dense in
L2Rn, they extend to L2Rn by continuity. Then the Fourier transform can be extended to
L2Rn by continuity as well. In addition,

i if u,Dαu ∈ L2 then TFDαu = izαûz ∈ L2

ii  if u,xαux ∈ L2 then TFxαux = iD zαûz ∈ L2.

i.e.,
TFDαu = ∫

Rn
Dαuxe−ix⋅zdx̂ = −1 |α | ∫

Rn
uxDx

αe−ix⋅zdx̂

= −1 |α | ∫
Rn

ux −izα e−ix⋅zdx̂ = izαûz;

TFxαux = iα ∫
Rn

ux −ixα e−ix⋅zdx̂ = iα ∫
Rn

uxDz
αe−ix⋅zdx̂ = iD zαûz.

The result (i) asserts that when u is smooth, û decays rapidly at infinity and result (ii) asserts
the converse. This suggested the definition,

for s ≥ 0, Hs = u ∈ L2 : 1 + |z|2
s/2

ûz ∈ L2

with ||u||s
2 = ∫

Rn1 + |z|2
s
ûz2 dz,

and u,vs = ∫
Rn1 + |z|2

s
ûz v̂zdz.

Then H0 = L2, and s ≥ t ≥ 0 implies Hs ⊂ Ht ⊂ H0.
To see how partial differential operators act on these spaces, let

Pmz = ∑
|α |≤m

cαzα

and define PDxux = TF
−1Pmi zûz for u ∈ HmRn ⊂ H0 = L2.

Then

PDxux = ∫
Rn

eix⋅z ∑
|α |≤m

cαizα ûzdẑ
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= ∑
|α |≤m

cα ∫
Rn

eix⋅zizα ûzdẑ

= ∑
|α |≤m

cαDx
αux

where the last step follows from i. Then PDx is a differential operator of order m. For
s > m we have

||PDxux||s−m = ∫
Rn1 + |z|2

s−m
Pmi z2 ûz2 dz,

= ∫
Rn1 + |z|2

s Pmi z2

1 + |z|2
m ûz2 dz ≤ Cm||u||s

2,

where

Cm = maxz
|Pmi z|2

1 + |z|2
m < ∞.

This implies that any differential operator of order m is a bounded linear mapping from
Hs into Hs−m for s > m.

Recall that the definition of the norm in HmRn = u ∈ L2 : Dαu ∈ L2, |α| ≤ m was
defined as

||u||m
2 = ∑

|α |≤m||Dαu||0
2

But
||Dαu||0

2 = ||zαûz||0
2 = ∫

Rn
|z|2αûz2dz

hence
||u||m

2 = ∑
|α |≤m

∫
Rn

|z|2αûz2dz

= ∫
Rn ∑ |α |≤m

|z|2α

1 + |z|2
m 1 + |z|2

m
ûz2dz ≤ Cm ||u||m

2

where

1 + |z|2
m ≤ ∑

|α |≤m|z|2α ≤ Cm1 + |z|2
m

This shows that the Fourier norm is equivalent to the original Sobolev norm on Hm, and the
two definitions of the space are therefore also equivalent. We will now prove the first of the
important embedding results for these spaces.

2. Inclusions and Embeddings

We prove first a result that says that if u ∈ Hs for s sufficiently large, then u is equivalent
(i.e., equal almost everywhere to) a function that is continuous.

Theorem 2.1 (Sobolev embedding theorem, primitive version) If s > m+ n
2 then Hs is

continuously injected into Cm

Proof- We will first prove the result for m = 0. If u ∈ Hs then
v̂z = 1 + |z|2

s
ûz ∈ H0 = L2. Then note that

||ûz||L1 = ∫
Rn |ûz|dz = ∫

Rn1 + |z|2
−s/2

1 + |z|2
s/2

|ûz|dz = ∫
Rn1 + |z|2

−s/2
| v̂z|dz
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and ||ûz||L1 ≤ 1 + |z|2
−s/2

0
|| v̂||0.

Now 1 + |z|2
−s/2

0

2
= ∫

Rn1 + |z|2
−s

dz = ∫
Ω
∫

0

∞
1 + r 2−srn−1dr dω,

and ∫
0

∞
1 + r 2−srn−1dr ~ ∫

1

∞
rn−1−2sdr ~ rn−2s|1

∞.

Then the integral is finite if n − 2s < 0; i.e. , if s > n
2 . We have proven that u ∈ Hs, s > n

2
implies û ∈ L1. But û ∈ L1implies, in turn, that ũ = TF

−1û is in the space, C0, of continuous
functions which tend to zero at infinity. That is to say, after possibly modifying u on a set of
measure zero, it is a continuous function.

For m > 0, and u∈ Hs for s > m+ n
2 , we have, from the result about differential

operators of order m, that Dαu ∈ Hs−m for |α| ≤ m, and hence, if s− m > n
2 then

Dαu ∈ C0 for |α| ≤ m.■

We interpret this result to mean that for s > m+ n
2 , every u ∈ Hs can be identified with

a unique function ũ ∈ Cm and that this injection is continuous. More precisely, if u ∈ Hs then
there exists a ũ ∈ Cm such that ||u − ũ||Hs = 0 and ||ũ||Cm ≤ ||u||Hs.

The next result we are going to prove has to do with the embedding of H0
1U into

H0U. For U a bounded open set in Rn, let um ∈ H0
1U be such that ||um||1 ≤ M, ∀m.

Since H0
1U is a Hilbert space, it follows from a classical property of Hilbert spaces that

um must contain a weakly convergent subsequence. Moreover, since H0
1U is

continuously injected into H0U, the subsequence must also converge weakly in
H0U. The somewhat surprising fact is that the subsequence is actually strongly
convergent in H0U; i.e.,, the continuous injection of H0

1U into H0U is a compact
embedding.

To prove the compact embedding result, we first define, for u ∈ H0
1U,

Zux =
ux if x ∈ U

0 if x ∉ U
extension by zero

Since the support of u is compactly contained in U, it follows that

||Zu||H1Rn = ||u||H1U and Zu ∈ H1Rn.

More generally,

u ∈ H0
mU = completion of Cc∞U in the norm||⋅||m implies Zu ∈ Hs s ≤ m.

For u ∈ HmU, it is not generally the case that the extension by zero, Zu, belongs to
HmRn since extending by zero introduces a sharp change in u at the boundary of the set
U. For example, ux = 1, x ∈ 0,1 belongs to H10,1 but Zux is just the indicator
function of 0,1. Since this is a discontinuous function, it is not in H1R.

Theorem 2.2 (Rellich’s lemma, primitive version) Suppose U is open and bounded in
Rn. Then the natural injection

i : H0
1U  H0U is a compact mapping.

i.e., every sequence that is bounded in H0
1U contains a subsequence that is strongly
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convergent in H0U.

Proof- Suppose um ∈ H0
1U is such that ||um||1 ≤ M, ∀m. Since um ∈ H0

1U it is
evident that Zum ∈ H1 ⊂ L2 and Zum has a Fourier transform, ûm ∈ L2. Then

Zumx = TF
−1ûm = ∫

Rn
ûmzeix⋅zdz = ∫

|z|<A
ûmzeix⋅zdz+ ∫

|z|>A
ûmzeix⋅zdz,

= TF
−1ûmzIAz + TF

−1ûmz1 − IAz.

Now ûmz IAz has compact support which implies that TF
−1ûmz IAz is smooth.

Moreover, we will use the hypothesis ||um||1 ≤ M, ∀m, to show that the second term here
can be made arbitrarily small by choosing A large. In fact,

||TF
−1ûmz1 − IAz||0

2
= ∫

|z|>A
ûmz2 dz = ∫

|z|>A
1 + |z|2

−1
1 + |z|2ûmz2 dz,

≤ max |z|>A1 + |z|2
−1

||um||1
2 ≤ M2

A2 , ∀m.

Then, for any  > 0, choose A > M
 , to obtain ||TF

−1ûmz1 − IAz||0 ≤ .

Now the smooth functions vmx = TF
−1ûmzIAz can be shown to be a uniformly

bounded and equicontinuous family of continuous functions. Postponing the proof of this
fact for the moment, we note that this implies the existence (via Ascoli-Arzela) of a
subsequence vm′x which converges uniformly on U to a limit v ∈ CŪ. Since uniform
convergence on U implies convergence in L2U, it follows that this subsequence converges
strongly to v in L2U. In particular then, it must be true of the subsequence that

||vm′ − vk′ ||H0U <  for m′,k′ > N

and
||um′ − uk′ ||H0U ≤ ||vm′ − vk′ ||0 + ||TF

−1ûm′z − ûk′z1 − IAz||0

≤  + 2 for m′,k′ > N.

Repeat this argument now for the subsequence vm′ = TF
−1ûm′zIAz replacing  by /2.

Iterate the procedure in order to generate a sequence of subsequences to which we can
apply a diagonal procedure to get, finally, a subsequence um" of um that is Cauchy in
H0U.

To see that vmx = TF
−1ûmzIAz is uniformly bounded and equicontinuous, note

first that for any x and every m,

|vmx| = ∫
|z|<A

ûmzeix⋅zdz ≤ ∫
|z|<A

|ûmz |dz ≤ CA ||ûm||0 = CM ||um||0 ≤ CM ||um||1 ≤ M.CM.

Thus the family is uniformly bounded. Next,

|vmx − vmy| = ∫
|z|<A

ûmz eix⋅z − eiy⋅zdz ≤ ∫
|z|<A

|ûmzeix⋅z1 − eiy−x⋅z|dz

≤ sup |z|≤A|1 − eiy−x⋅z| CA M → 0 as y→ x uniformly in m.

Since sup |z|≤A|1 − eiy−x⋅z| → 0 as y→ x uniformly in m, it follows that the family is
equicontinuous.■
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Corollary- For U open and bounded in Rn, and m> 1, H0
mU is compactly embedded in

Hm−1U.

Proof- Suppose um ⊂ H0
mU with ||um||m ≤ M ∀m. Then for each α, |α| ≤ m− 1, we

have ||Dαum||1 ≤ M and it follows from the theorem that there is a subsequence
um′ ⊂ um such that Dαum′ is Cauchy in H0U. Then a diagonal argument implies the
existence of a single subsequence um" ⊂ um such that Dαum" is Cauchy in H0U for
every α, |α| ≤ m− 1. Then this subsequence is Cauchy in Hm−1U.■

We will think of this result in the following way. Any sequence
um ⊂ H0

mU with ||um||m ≤ M ∀m contains a weakly convergent (in H0
mU)

subsequence just by virtue of the fact that H0
mU is a Hilbert space. Then we use the

embedding lemma to conclude that this subsequence is, in fact, strongly convergent in
Hm−1U.So, a bounded sequence in H0

mU contains a subsequence that is strongly
convergent in Hm−1U.

3. The Trace Theorem
Since functions in H0U, are, in fact, equivalence classes of functions they are defined only
up to sets of measure zero. Then restriction of such functions to the boundary of U (a set of
measure zero) has no meaning. On the other hand, for u ∈ HmU for m sufficiently large
relative to n, it will be possible to give meaning to the restrictions to ∂U not just for the
functions, but for some derivatives of the functions as well. We will begin with the simplest
possible case of a set with a boundary, the set

U = R+
n = x′,xn : x′ ∈ Rn−1, 0 < xn < ∞ = Rn−1 × R+.

In this case, ∂U = Rn−1 = x′,xn : x′ ∈ Rn−1, xn = 0 .

For u ∈ C∞R+
n define

Tjux′ = limxn→0+ ∂n
j ux′,xn, 0 ≤ j ≤ m− 1.

We will show that this operator, called the trace operator of order j, can be extended to
HmR+

n.

Theorem 3.1 (Trace theorem, primitive version)

1. ||Tju||Hm−j−1/2 Rn−1 ≤ C ||u||HmR+
n ∀u ∈ C∞R+

n hence Tj extends as a bounded

linear mapping Tj : HmR+
n  Hm−j−1/2Rn−1

2. Tj maps HmR+
n onto Hm−j−1/2Rn−1

3. Tju = 0 if and only if u ∈ H0
mR+

n

idea of the proof- In order to use the Fourier transform techniques, the functions must
belong to HmRn rather than HmR+

n. Thus for u ∈ HmR+
n we define

Zux =
ux′,xn if xn > 0

0 if xn < 0
.
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In general, u ∈ HmR+
n does not imply Zu ∈ HmRn. Thus we define an operator,

E : HmR+
n → HmRn,

Eux =

ux′,xn if xn > 0

∑
k=1

m

ak ux′,−kxn if xn < 0

Here the ak
′ s are required to satisfy

∑
k=1

m

ak −k j = 1 for j = 0,1, . . . ,m− 1.

This (unique) choice of the ak
′ s ensures

limxn→0− ∂n
j Eux′,xn = limxn→0+ ∂n

j ux′,xn for j = 0,1, . . . ,m− 1.

Then u ∈ HmR+
n implies Eu ∈ HmRn and, moreover

||Eu||HmRn ≤ C0||u||HmR+
n

For future reference we also define

E1ux′,xn =
ux′,xn if xn > 0

axn Eux′,xn if xn < 0

where

axn ∈ C∞R1, ax =
1 if xx > 0

0 if xn < −1
= a smooth cutoff function

Then E1u ∈ HmR−1
n  for all u ∈ HmR+

n where R−1
n = x′,xn : x′ ∈ Rn−1, − 1 < xn < ∞ .

This modified extension operator smoothly extends the function u ∈ HmR+
n to a

neighborhood of the boundary of R+
n .

For v ∈ HmRn let

v̂z = v̂z′,zn = ∫
Rn

e−ix⋅zvxdx̂

= ∫
Rn−1

∫
R

e−ix′⋅z′e−ixn⋅znvx′,xndx̂′ dx̂n

= ∫
Rn−1

e−ix′⋅z′ v̂x′,zndx̂′.

where v̂x′,zn denotes the Fourier transform of vx′,xn with respect to the variable
xn only; i.e., v̂x′,zn := TFvx′,xnn

This splitting off of the xn to zn part of the Fourier transform now allows us to define the
action of the mapping Tj in a convenient way for purposes of telling to which space
HsRn−1 the function Tjv belongs. We write,

vx′, 0 = ∫
R

e−ixn⋅zn |xn=0 v̂x′,zn dẑn = ∫
R

v̂x′,zn dẑn

and
Tjvx′ = ∂n

j vx′, 0 = ∫
R
izn j v̂x′,zn dẑn, j = 0,1, . . . ,m− 1.
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This leads to

||Tj v||Hs Rn−1
2

= ∫
Rn−1

1 + |z′ |2
s
TFTjvz′n−1

2 dẑ′, TFTjvz′n−1 = transform in x′ only

and since TFTjvz′n−1 = TF ∫
R
izn j v̂x′,zn dẑn

n−1

= ∫
R
izn j TFv̂x′,znn−1 dẑn,

we have

||Tj v||Hs Rn−1
2

= ∫
Rn−1

1 + |z′ |2
s ∫

R
izn j v̂z

2
dẑn dẑ′

Then, using several clever tricks, we can show

||Tj v||Hs Rn−1
2 ≤ C1 ||v||HmRn

2 for v ∈ HmRn, s ≤ m− j − 1/2.

and
E : HmR+

n → HmRn Tj : HmRn → Hm−j−1/2Rn−1

so the composition Tj ∘ E : HmR+
n → Hm−j−1/2Rn−1 is linear and bounded.

To show that Tj ∘ E is onto we will construct a continuous right inverse for Tj . Define,
for v ∈ HsRn−1

Kvx′,xn = TF
−1 e−xn 1+ z′ 2 1/2

v̂z′ = ∫
Rn−1

eix′⋅z′e−xn 1+ z′ 2 1/2

v̂z′dẑ′.

Then Kvx′, 0 = vx′ which implies T0Kv = v ∀v ∈ HsRn−1

Note that this definition of K implies that Kvx satisfies

1 − ∇2Kvx = 0 in R+
n

T0Kv = v on ∂R+
n

Then for every v ∈ HsRn−1 this boundary value problem is uniquely solvable; i.e., there
exists a u = Kv and we can show that

||Kv||HmR+
n ≤ C ||v||Hm−1/2 Rn−1

This is the beginning of the idea of the proof that each Tj has a continuous right inverse;
i.e., Tj ∘ K = id, and Tj maps HmR+

n onto Hm−j−1/2Rn−1 continuously. The choice of the
operator K is not unique.

Finally, it is easy to see that Tju = 0 for all u ∈ HmR+
n. That the converse is also true

is more difficult to show and we will omit this proof.■
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