
FUNCTION SPACES
Analysis of systems of linear algebraic equations leads naturally to the notion of a linear
space in which vectors (i.e., the unknowns in the problem) and formation of linear
combinations (i.e., the algebraic conditions imposed on the unkowns) are the principle
ingredients. Considering linear systems in this setting of a linear space results in efficiency
of expression and economy of effort. We are motivated to try to discover similar structures
for the analysis of partial differential equations. Here, of course, functions are going to play
the role played by vectors in linear algebra and the matrices will be replaced by partial
differential operators. An additional difference is that the spaces of functions will be
required to be closed under passage to the limit besides being closed under the operation
of forming linear combinations.

1. Spaces of Functions
A linear space X is a collection of objects x,y,z, ... together with a set of scalars A,B,C...
and two operations:

i) Addition ∀x,y ∈ X, x + y ∈ X

ii) Scalar Multiplication ∀x ∈ X, Ax ∈ X for all scalars A

Examples of linear spaces are familiar from linear algebra and algebra. These spaces are
generally examples of finite dimensional linear spaces. For 1 ≤ p < ∞, let LpU denote the
linear space of functions which are defined and whose p-th power is integrable on an open
set U ⊂ Rn. That is, the functions which are defined on U and for which

∫
I
|fx|pdx < ∞. 1.1

The open set U can be bounded or unbounded and the functions clearly need not be
continuous in order for (1.1) to be satisfied. In fact the set of singularities permitted for
functions in LpU is quite large and, as a result, the integral used must be more general
than the Riemann integral. However, for what we propose to do, we will not require any
detailed knowledge of a more general integration theory.

The linear structure on LpU is defined by

∀f,g ∈ LpU, ∀A,B ∈ R, let Af + Bgx = Afx + Bgx ∀x ∈ U 1.2

That LpU is a linear space is the assertion of,

Proposition 1.1 ∀f,g ∈ LpU, ∀A,B ∈ R, Af + Bg ∈ LpU.

This result follows from the inequality

for each p, 1 ≤ p < ∞, |A + B|p ≤ 2p−1|A|p + |B|p. ∀A,B ∈ R.

Note that the scalars here are taken to be the real numbers.
A real valued function, N⋅, defined on a linear space X is a norm if it has the

following properties:

1. NAx = |A|Nx ∀A ∈ R, ∀x ∈ X
2. Nx + y ≤ Nx + Ny ∀x,y ∈ X
3. Nx ≥ 0 ∀x ∈ X and Nx = 0 iff x = 0
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A norm is defined on LpU, 1 ≤ p < ∞, by

||f ||p =  ∫
U

|fx|pdx1/p, for f ∈ LpU.

Then LpU becomes a normed linear space. That Nf = ||f ||p satisfies 1 and 3 is clear but
2 requires proof. Using the inequality

ab ≤ ap

p + bq

q ∀a,b > 0, and for 1
p + 1

q = 1, 1.3

leads to

Proposition 1.2 ( Holder and Minkowski inequalities)

(a) If 1
p + 1

q = 1, then ||f g||1 ≤ ||f||p ||g||q ∀f ∈ LpU, ∀g ∈ LqU

(b) If 1 ≤ p < ∞, then ∀f,g ∈ LpU ||f + g||p ≤ ||f||p + ||g||p.

We should be careful to notice that ||f − g||p = 0 does not imply that fx = gx at all x ∈ U.
In fact, f and g can differ at infinitely many points in U so long as the set of points contains
no positive volume subsets (i.e., f and g can differ on ”sets of measure zero”). This means
that functions in LpU are defined only up to sets of measure zero and that altering a
function in LpU on such a set does not produce a different function in LpU. Then
functions in LpI are, in fact, equivalence classes of pointwise defined functions where the
equivalence relation is equality ”almost everywhere”. When we say ”let f be an arbitrary
function in LpU”, what we really mean is ”let f be an arbitrary representative of one of
the equivalence classes of functions in LpU”.

To say a sequence fnx in LpU converges of to a limit f in LpU means
||fn − f||p → 0 as n → ∞. This type of convergence is weaker than uniform convergence on U
and neither implies nor is implied by pointwise convergence on U. Every sequence fnx
in LpU that is convergent must be a Cauchy sequence; i.e., it must satisfy
||fn − fm ||p → 0 as m,n → ∞. In fact, it is true in any normed linear space that every
convergent sequence must be a Cauchy sequence. On the other hand, in an arbitrary
normed linear space it is not necessarily the case that every Cauchy sequence converges
to a limit that belongs to the space. A space with the property that every Cauchy sequence
is convergent is said to be complete. The following result, known as the Riesz-Fischer
Theorem in analysis, asserts that LpU is complete. The proof requires techniques of an
integration theory more general than Riemann integration.

Proposition 1.3 (Riesz-Fischer) For 1 ≤ p < ∞, LpU is complete for the norm ||f ||p.

For each p, 1 ≤ p < ∞, LpU is a complete, normed linear space. Such spaces are called
Banach spaces. If 1 ≤ p ≤ q, and if |U|, the volume of the set U, is finite, then we can show

∫
U
|f|p

|U|

1/p

≤
∫

U
|f|q

|U|

1/q
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This implies that under these assumptions on p,q and U, we have the following inclusions

LqU ⊂ LpU ⊂ L1U

In fact, these inclusions are continuous injections. That means that for 1 ≤ p ≤ q, and
f ∈ LqU, we have ||f||p ≤ ||f||q, which means that each f in LqU is also an element of
LpU and the LpU norm of f is not greater than the LqU norm so the mapping which
injects f from LpU into LqU is continuous.

Proposition 1.4 For 1 ≤ p < ∞, the space of test functions Cc
∞U is dense in LpU;

i.e.,for each f in LpU, there exists a sequence of test functions, φn such that
||φn − f||p  0 as n → ∞.

This result is a consequence of the so called ”mollifier theorem”. We will discuss this
theorem in detail later.

2. Inner Product Spaces
An inner product space is a linear space X, on which there is defined a mapping which
associates to every pair of elements x,y ∈ X, a scalar value which we denote by x,yX.
This mapping must have the following properties

1 x,yX = y,xX ∀x,y ∈ X
2 Ax + By,zX = Ax,zX + By,zX, ∀x,y,z ∈ X, ∀A,B ∈ R, 2.1
3 x,xX ≥ 0 ∀x ∈ X, and x,xX = 0 iff x = 0

The mapping is called an inner product on X.
The most familiar example of an inner product space is the space Rn of n-tuples
x⃗ = x1, ...,xn , where the inner product is defined as

x⃗, y⃗Rn = ∑i=1
n xi yi. 2.2

An inner product space has a norm, induced by the inner product. That is,

||x||X = x,xX
1/2 for x ∈ X 2.3

defines a norm on the linear space X. Recall that the norm defines a meaning for distance
in the linear space X. In any inner product space, the following results are valid.

Proposition 2.1 (Cauchy-Schwartz and Triangle inequalities )

a) |x,yX | ≤ ||x||X ||y||X ∀x,y ∈ X

b) ||x + y||X ≤ ||x||X + ||y||X, ∀x,y ∈ X

A Cauchy sequence in the inner product space X is a sequence of elements xm ⊂ X
with the property that ||xm − xk ||X → 0 as m,k → ∞. A sequence of elements xm ⊂ X is
said to be convergent if there exists an element x ∈ X such that ||xm − x||X → 0 as m → ∞.
The inner product space X is said to be complete if every Cauchy sequence in X is
convergent. It is well known that the inner product space Rn is complete (this is just a
consequence of the fact that the real numbers have been constructed to be complete).
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We now consider two additional examples of inner product spaces. The first example is
not a function space but will be important later.

The Space of Square Summable Sequences
Let ℓ2 denote the linear space of infinite sequences of real numbers x⃗ = x1,x2, .... This
space carries the same linear and inner product structure as Rn if we define

Ax⃗ + By⃗ = Ax1 + By1,Ax2 + By2, ... ∀x,y ∈ ℓ2 ∀A,B ∈ R 2.4

x⃗, y⃗2 = ∑i=1
∞ xi yi and ||x⃗||2 = x⃗, x⃗2

1/2 2.5

Of course the inner product and norm have to be restricted to those sequences for which
the infinite sums are finite. Such sequences are said to be square summable sequences
and we use the notation ℓ2 to indicate the linear space of all such sequences. It is
straightforward to show that the dimension of the space ℓ2 is infinite. In fact, by showing
there is a basis for ℓ2 which is in one to one correspondence with the natural numbers, it
follows that the dimension of this space is equal to the cardinality of the natural numbers.

Proposition 2.2 Every Cauchy sequence in ℓ2 is convergent.
Proof- Let x⃗n denote a Cauchy sequence in ℓ2. Then

||x⃗m − x⃗n ||2
2
= ∑ i

xi
m − xi

n 2
→ 0 as m,n → ∞.

For each fixed i, this implies that for every
 > 0, ∃ N such that xi

m − xi
n 2

<  for all m,n > N.

Then for each i, xi
m is a Cauchy sequence in R, and since R is complete

xi
m → Xi as m → ∞, for some real number Xi. It remains now to show that X⃗ = X1,X2, ...

belongs to ℓ2 and that x⃗n converges to X⃗ in ℓ2.

For each fixed i, and m,n > N, ∑i=1
M xi

m − xi
n 2

+∑i=M+1
∞ xi

m − xi
n 2

< , for
arbitrary M

and since each sum is nonnegative,

∑i=1
M xi

m − xi
n 2

< .

Now fix m and let n tend to infinity. This leads to

∑i=1
M xi

m − Xi
2
< , ∀m > N and every M > 1.

Since M is arbitrary, let M tend to infinity to conclude that for every  > 0 there is an N such
that

∑i=1
∞ xi

m − Xi
2
< , ∀m > N.

Then it follows that

X⃗ − X⃗m
2
→ 0 as m → ∞,
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and
X⃗

2
≤ X⃗ − X⃗m

2
+ X⃗m

2
≤  + X⃗m

2
< ∞ (so X⃗ ∈ ℓ2).■

It should be noted that the set of vectors E⃗m in ℓ2 where Ei
m = δim, forms a basis for

ℓ2 in the sense that for any x⃗ ∈ ℓ2, the sequence of elements

x⃗m = ∑i=1
m x⃗, E⃗i

2
E⃗i

is a Cauchy sequence in ℓ2 converging to x⃗ as m → ∞. There is, in general, no finite
combination of E⃗′s which equals x⃗.

The Function Space L2

In the special case, p = q = 2, the Holder inequality looks like the Cauchy-Schwartz
inequality. In fact, in this special case, LpU = L2U is an inner product space. The inner
product on L2U is defined by

f,g2 = ∫
U

fxgxdx, and ||f ||2 = f, f2
1/2 2.6

L2U is the only one of the LpU spaces that supports an inner product. Since it is an
LpU space, it has all the relevant properties such as completeness.

Two elements in an inner product space are said to be orthogonal if their inner product is
zero. In L2U this has no visualizable significance (e.g. it does not mean the graphs of two
orthogonal functions are orthogonal trajectories). However, orthogonality in L2U does
imply linear independence. Since it is possible to generate an infinite family of orthogonal
functions in L2U, it follows that L2U is infinite dimensional. An infinite dimensional inner
product space that is complete in the norm induced by the inner product is called a Hilbert
space. Note that if U is bounded, so that ∫

U
1dx = |U| < ∞, it follows that L2U is contained

in L1U To see this suppose f ∈ L2U and write

||f||1 = ∫
U
|f|dx = ∫

U
1|f|dx ≤ ||1||2 ||f||2

When U is not bounded, then neither space is contained in the other. For example consider
the functions

fx =
1/x if x > 1

0 if x < 1
and gx =

1/ x if 0 < x < 100

0 otherwise
.

Then f belongs to L2R but does not belong to L1R, while g belongs to L1R but does
not belong to L2R. These two spaces have many functions that are in both spaces but
each contains some functions that are not in the other.

3. The Fourier Integral Transform
For functions which are defined on all of Rn we can define an alternative representation for
the function. This alternative representation is called the Fourier transform of the function.
The Fourier transform of the everywhere defined function fx⃗ is defined as follows
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TFf = Fα⃗ = 2π−n ∫
Rn

fx⃗e−i x⃗⋅α⃗ dx.

Here, we will restrict our attention to the one dimensional case where we have

TFf = Fα = 2π−1 ∫
R

fxe−i xα dx 3.1

The notations TFf and Fα will be used interchangeably to denote the Fourier transform
of the function f(x). Note that the transform does not exist for any function f(x) for which the
improper integral (3.1) fails to converge. If the integral converges, it defines a possibly
complex valued function of the real variable α. Evidently, a sufficient condition for the
Fourier transform to exist is that f is absolutely integrable, i.e., f ∈ L1R.

Example 3.1 Some Fourier Transforms
(a) Consider

fx =
1 if |x| < 1

0 if |x| > 1

Then f ∈ L1R and

Fα = 1
2π

∫
R

fx e−i xαdx = 1
2π

∫
−1

1
e−i xαdx = e−i xα

−i2πα
|x=−1
x=1 = sinα

πα

(b) Consider fx = e−|x|. ∈ L1R. Then

Fα = 1
2π

∫
R

fx e−i xαdx = 1
2π

∫
−∞

∞
e−|x| e−i xαdx = 1

2π
∫
−∞

0
ex−i xαdx + 1

2π
∫

0

∞
e−x−i xαdx

= 1
2π

 ex1−iα

1 − iα
|−∞0 + e−x1+iα

1 + iα
|0
∞= 1

2π
 1

1 − iα
+ 1

1 + iα
 = 1

π
1

1 + α2

where we used the result

lim
x→−∞

ex1−iα = lim
x→∞

e−x1+iα = 0.

(c) The Gaussian function fx = e−x2 belongs to L1R and

Fα = 1
2π

∫
R

fx e−i xαdx = 1
2π

∫
−∞

∞
e−x2

e−i xαdx

= 1
2π

∫
−∞

∞
e−x2+ixα−α2/4+α2/4 dx = e−α2/4 1

2π
∫
−∞

∞
e−x+iα2

dx

But
∫
−∞

∞
e−x+iα2

dx = ∫
−∞

∞
e−z2

dz = π

hence
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Fα = 1
4π

e−α2/4 = TF e−x2
.

Each of the functions in this example belongs to L1R and each transform is a continuous
function of the transform variable α. In addition, it appears that the transform tends to zero
as α → ±∞. In fact, this is true in general. We will use the notation F ∈ C0R to indicate that
F is continuous on R1 and Fα tends to zero as |α| tends to infinity. Note that a function in
C0R is not necessarily absolutely integrable. The function pairs  fx, Fα listed above
are examples of Fourier transform pairs.

Theorem 3.1 If f ∈ L1R then Fα = TFfx exists and is a continuous function of
α ∈ R1. Moreover, F ∈ C0R.

The proof of this theorem requires the dominated convergence theorem for Lebesgue
integrals and it therefore omitted. We list now several useful properties of the Fourier
transform.

Theorem 3.2 If fx and gx have Fourier transforms Fα, Gα, respectively, then

1. TFAfx + Bgx = AFα + BGα ∀A,B ∈ R

2. TFfbx = 1
|b|

F α
b

∀b ≠ 0

A transformation with property 1 is said to be linear and one with property 2 is said to be
homogeneous.

Problem 1 Use the definition of the Fourier transform to prove theorem 3.2

Problem 2 Use theorem 3.22 to show that

(a) TFIAx =
sinαA

πα where IAx =
1 if |x/A| < 1

0 if |x/A| > 1
=

1 if |x| < A

0 if |x| > A

(b) TFe−b|x| = b
π

1
b2 + α2 for b > 0

(c) TF e−bx2
= 1

4πb
e−α2/4b for b > 0

Theorem 3.3 If fx has Fourier transform Fα, then for all real values c the following
transforms exist and are related to Fα as indicated

1. TFfx − c = e−icαFα
2. TFeicx fx = Fα − c

Problem 3 Use the definition of the Fourier transform to prove theorem 3.3

7



Theorem 3.4 If both fx and f ′x have Fourier transforms then the transform of the
derivative, f ′x, is given in terms of Fα = TF f by

TFdf/dx  = iαFα.

More generally, if fx and all its derivatives up to order m have Fourier transforms, then

TFdkf/dxk  = iαk Fα for k = 1,2, ...,m

Theorem 3.5 If both fx and xf x have Fourier transforms then the transform of x f x, is
given in terms of Fα = TF f by

TFxfx  = i d/dαFα.

More generally, if fx and xkfx have Fourier transforms, for k = 1,2, ...,m then

TF xkfx = i d/dαkFα for k = 1,2, ...,m

Problem 4 Use the definition of the Fourier transform to prove theorem 3.4

Problem 5 Use the definition of the Fourier transform to prove theorem 3.5

For functions fx and gx defined on R, we formally define the convolution product of f
and g as

f ∗ gx = ∫
R

fx − ygydy 3.2

Problem 6 Use the definition of the convolution product and the change of variable,
z = x − y, to show that f ∗ gx = g ∗ fx.

Theorem 3.6 If fx and gx belong to L1R, then f ∗ g ∈ L1R and

TFf ∗ g = 2πFαGα.

The L1R Inversion Theorem
We have seen that for each f ∈ L1R, there is a Fourier transform F ∈ C0R. In some
sense, knowledge of one of these functions is equivalent to knowledge of the other; i.e.,
they are two different representations for the same information. To make this assertion
more precise, we have the next theorem.

Theorem 3.7 If fx belongs to L1R, and, in addition, the Fourier transform F is also in
L1R, then

φx = ∫
R

Fα ei xαdα ∈ C0R

and
||f − φ||L1

= 0.
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The assertion of this theorem is that if f and F both belong to L1R, then the inverse
Fourier transform of F is defined by

TF
−1Fα = ∫

R
Fα ei xαdα 3.3

and TF
−1Fα = fx where the equality is equality in the sense of L1R. Then 3.3 is

known as the Fourier inversion formula. By comparing (3.3) with (3.1), we arrive at the
following result which can be used to increase the number of transform pairs.

Theorem 3.8 If fx belongs to L1R, and, in addition, the Fourier transform F is also in
L1R, then

TFFα = 1
2π

f−α.

Problem 7 Use theorem 3.8 and previous transform pairs to show that:

a TF
sinAx

πx = 1
2π

IA−x = 1
2π

IAx

b TF
2b

b2 + x2 = e−b|α| for b > 0

c TF e−x2/4b =
b
π

e−bα2
for b > 0

4. The Fourier Transform in L2R
Note that the functions

f1x = IAx, f2x = e−b|x|, and f3x = e−bx2

all belong to L1R and each has a Fourier transform in C0R by theorem 3.1. Note further
that these transforms

F1α =
sinαA

πα , F2α = b
π

1
b2 + α2 and F3α = 1

4πb
e−α2/4b

all belong to L2R, but only F2 and F3 belong to L1R. Then only F2 and F3 can be
inverted using Theorem 3.7 to recover the functions f2 and f3. So in what sense is it
possible to say that the inverse transform of F1 is f1?

If f ∈ L1R then its Fourier transform exists and belongs to C0R. For an arbitrary
function f ∈ L2R, it is not necessarily the case that f ∈ L1R and it is not clear then that
its Fourier transform exists. In order to extend the Fourier transform to L2R we will use an
idea that is pervasive in the study of partial differential equations. We first introduce a
special subspace of L2R where transforming and inverting works more smoothly. This
subspace has the additional property that the results which hold on the subspace can be
extended to the whole space, L2R, by passing to the limit. We define this subspace as
follows.

The Space of Test Functions A function φx defined on R is a test function if φ is
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infinitely differentiable and vanishes on the complement of some closed bounded interval
a,b; i.e., φ has compact support. We denote the linear space of test functions by Cc

∞R.

It is obvious that Cc
∞R ⊂ L1R and Cc

∞R ⊂ L2R but a more surprising fact is true.

Theorem 4.1 For every f ∈ LpR, 1 ≤ p < ∞, there exists a sequence φn ⊂ Cc
∞R

such that ||φn − f||p → 0 as n → ∞.

We describe this by saying that Cc
∞R is a dense subspace of LpR. The proof of this

theorem as well as additional information about test functions will be given later when we
develop the theory of generalized functions. We now proceed to use the test functions to
extend the Fourier transform to L2R.

Theorem 4.2 For every φ ∈ Cc
∞R, the Fourier transform, Φ, exists and, in addition, Φ

belongs to L2R. Moreover,

||φ||2
2 = 2π||Φ||2

2 4.1

It follows now from theorems 4.1 and 4.2 that

1) for every f ∈ L2R, there exists a sequence φnx ∈ Cc
∞R such that

||φn − f||2 → 0 as n → ∞. (hence ||φn − φm ||2 → 0 as m,n → ∞ )

2) since φn ∈ Cc
∞R, the Fourier transforms, Φn, exist and,

in addition, Φn ∈ L2R. Moreover,

||φn − φm ||2
2 = 2π||Φn − Φm ||2

2 → 0 as m,n → ∞

3) since L2R is complete, and the sequence Φn is Cauchy, there exists
a unique Φ ∈ L2R such that

||Φn − Φ||2 → 0 as n → ∞

4) since φn → f, Φn → Φ in L2R, and Φn = TFφn , we define Φ = TF f

Note that we can also invert the transformation as follows,

1) for every F ∈ L2R, there exists a sequence Ψnx ∈ Cc
∞R such that

||Ψn − F||2 → 0 as n → ∞. (hence ||Ψn − Ψm ||2 → 0 as m,n → ∞ )

2) since Ψn ∈ Cc
∞R, the inverse Fourier transforms,

ψnx = ∫
R
Ψnα ei xαdα

exist and, in addition, ψn ∈ L2R. Moreover,

||ψn − ψm ||2
2 = 2π||Ψn − Ψm ||2

2 → 0 as m,n → ∞

3) since L2R is complete, and the sequence ψn is Cauchy, there exists
ψ ∈ L2R such that
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||ψn − ψ||2 → 0 as n → ∞

4) since Ψn → F, ψn → ψ in L2R, and ψn = TF
−1Ψn , we define ψ = TF

−1F

5) since TFf − ψ = F − F = 0, and ||f − ψ||2
2 = 2π||TFf − ψ||2

2 = 0, we have f = ψ.

We summarize these observations in the following theorem.

Theorem 4.3 For every f ∈ L2R there exists a unique F ∈ L2R such that F = TF f in
the sense that

if φnx ∈ Cc
∞R is such that ||φn − f||2 → 0 as n → ∞,

then Φn = TFφn  ∈ L2R is such that ||Φn − F||2 → 0 as n → ∞,

In addition TF
−1F = f, where the equality is in the sense of L2R.

Problem 8 Show that the definition of the L2R Fourier transform F does not depend on
the choice of the sequence φn

Each of the Fourier transform properties detailed in theorems 3.2 to 3.6 holds for the
L2R extension of the Fourier transform. In addition, we have

Theorem 4.4 For f,g ∈ L2R the Fourier transforms, F,G satisfy

f,g2 = ∫
R

fxg∗xdx = 2π ∫
R

FαG∗αdα = 2πF,G2 4.2

Here g∗, G∗ are used to denote complex conjugates. Even though we are dealing
exclusively with real valued functions f,g the Fourier transforms may be complex valued and
we have therefore stated the result for the complex form of the inner product on L2R. Note
that when f = g (4.2) reduces to (4.1). The result (4.1) is known as the Parseval relation
and (4.2) is called the Plancherel relation. Together they assert that the Fourier transform is
a Hilbert space isometry, meaning that TF maps L2R onto itself in a one to one norm and
inner product preserving fashion.

5. Orthogonal Families and Generalized Fourier Series
Using a basis for representing arbitrary vectors in Rn has numerous advantages in dealing
with problems in linear algebra. For most computational purposes, it is convenient if the
basis is an orthonormal basis, meaning that the vectors in the basis are mutually orthogonal
unit vector. If u⃗1,...,u⃗n is such an orthonormal basis then an arbitrary v⃗ ∈ Rn can be
uniquely expressed as

v⃗ = ∑j=1
n v⃗ ⋅ u⃗j u⃗j.

It is our aim now to develop such representations in infinite dimensional function spaces.
Let U ⊂ Rn denote a bounded open and connected set in Rn and consider functions

f,g ∈ L2U. The functions are said to be orthogonal if

f,g2 = ∫
U

fxgxdx = 0.
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A countable family g1x,g2x, ... , of functions in L2U is said to be an orthogonal
family in L2U if gi,gj2 = 0 if i ≠ j. The orthogonal family gjx is said to be an
orthonormal family if, in addition to be mutually orthogonal, the functions satisfy ||gj ||2 = 1
for every j; e.g., The family of functions Gnx = sinnπx, n = 1,2, ... is an orthogonal
family in L20,1, and the family gnx = 2 sinnπx, n = 1,2, ... is an orthonormal family in
L20,1.

Suppose g1x,g2x, ... , is an orthonormal family of functions in L2U, and for an
arbitrary f ∈ L2U, form the infinite sum

∑n=1
∞

f,gn2 gnx.

It is not clear that this sum is convergent in L2U, and even if it is convergent, it is not
evident that it is convergent to f. In any case, we refer to the sum as the generalized
Fourier series for f and we refer to the coefficients fn = f,gn2 as the generalized
Fourier coefficients for f.

Proposition 5.1 Suppose g1x,g2x, ... , is an orthonormal family of functions in L2U,
and for an arbitrary f ∈ L2U, let fn = f,gn2. Then for any integer N, and any choice of
constants a1,a2, ...aN we have

i) fx −∑n=1
N an gnx

2

2
= ||f||2

2 −∑n=1
N

f,gn2
2 +∑n=1

N
fn − an2

ii) fx −∑n=1
N an gnx

2
≥ fx −∑n=1

N fn gnx
2

Proof- For N a fixed positive integer, let

SNx = ∑n=1
N an gnx.

Then
∫

U
fx − SNx2dx = ∫

U
fx2dx − 2∫

U
fxSNxdx + ∫

U
SNx2dx.

But
∫

U
fxSNxdx = ∫

U
fx∑n=1

N an gnxdx = ∑n=1
N an ∫

U
fxgnxdx = ∑n=1

N anfn

and
∫

U
SNx2dx = ∫

U
∑m=1

N am gmx∑n=1
N an gnxdx

= ∑m=1
N am ∑n=1

N an ∫
U

gnxgmxdx = ∑n=1
N an

2 since gn,gm2 = δmn

Then ∫
U
fx − SNx2dx = ∫

U
fx2dx − 2∑n=1

N anfn +∑n=1
N an

2

= ∫
U

fx2dx −∑n=1
N fn

2 +∑n=1
N fn

2 − 2∑n=1
N anfn +∑n=1

N an
2

= ∫
U

fx2dx −∑n=1
N fn

2 +∑n=1
N fn − an2.

This is the result (i). Since ∑n=1
N fn − an2 ≥ 0, we get the result (ii). This last result asserts

that among all linear combinations of the functions g1, ... ,gN, the one that is closest to f in
the L2U − norm, is the combination with an = fn = f,gn2, n = 1, ...,N.■

Theorem 5.2 Suppose g1x,g2x, ... , is an orthonormal family of functions in L2U,

12



and for an arbitrary f ∈ L2U, let fn = f,gn2. Then

1 (Bessel’s inequality) ∑n=1
∞ fn

2 ≤ ||f ||2
2 = ∫

U
fx2dx.

2 (Riemann-Lebesgue lemma) fn → 0 as n → ∞

Proof-(1) Choosing an = fn in the sum SNx, and using the results of the previous
proposition,

0 ≤ ∫
U
f − SN2dx = ∫

U
f2dx −∑n=1

N fn
2,

i.e.,
∑n=1

N fn
2 ≤ ∫

U
f2dx = ||f ||2

2.

Since this result holds for all positive integers N, and the right side of the estimate does not
depend on N, we are entitled to let N tend to infinity to obtain (1). Then the n-th term test
implies the result (2).■

In the special case that the orthogonal family is 1,cosx, sinx, cos2x, sin2x, ... in L20,2π
then the (2) takes the form

∫
0

2π
fx sinnx dx → 0, ∫

0

2π
fx cosnx dx → 0, as n → ∞.

This is what is often referred to as the Riemann-Lebesgue lemma.

The Bessel’s inequality implies that for an arbitrary f ∈ L2U, the sequence fn = f,gn2 of
generalized Fourier coefficients belongs to ℓ2. Then it is also evident that the sequence of
partial sums SNx, is a Cauchy sequence and therefore converges in L2U to some limit,
Sx. However, it is not necessarily the case that S = f. An orthonormal family with the
property that for every f ∈ L2U, the generalized Fourier series converges to f in L2U is
said to be a complete orthonormal family.

Theorem 5.3 Suppose g1x,g2x, ... , is an orthonormal family of functions in L2U,
and for an arbitrary f ∈ L2U, let fn = f,gn2.
Then the following assertions are all equivalent:

1. g1x,g2x, ... , is a complete orthonormal family

2. ∑n=1
∞ fn

2 = ||f ||2
2

3. fn = 0 ∀n, if and only if f = 0

4. ∀f,g ∈ L2U, f,g2 = ∑n=1
∞ fn gn

5. ||f − SN ||2 → 0 as N → ∞

As a result of this theorem, it follows that L2U is isometrically isomorphic to ℓ2.
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Theorem 5.4 Suppose g1x,g2x, ... , is a complete orthonormal of functions in L2U.
Then for an every f ∈ L2U, fn = f,gn2 belongs to ℓ2 with ||fn||ℓ2

= ||f ||2. Conversely,
for every fn ∈ ℓ2, the sequence SN = ∑n=1

N fn gn, converges to a unique limit, f, in L2U
and ||fn||ℓ2

= ||f ||2.

Just as the Fourier transform provided an alternative but equivalent representation for
functions in L2Rn, the sequence of generalized Fourier coefficients provides an alternative
but equivalent representation for functions in L2U. The functions in the complete
orthonormal family are the elements of a countable basis for L2U, and every function in
L2U can be expressed uniquely as a (possibly infinite) linear combination of these
elements. While it is relatively easy to find examples of orthonormal families of functions in
L2U, it is not clear how to determine whether or not a family is complete. We shall see
now one source of complete orthonormal families.

Sturm-Liouville Systems
Consider the problem of finding all scalars λ for which there exist nontrivial solutions to the
following boundary value problem

−d/dxpxdu/dx + qxux = λrxux, a < x < b,
5.1

C1ua + C2u′a = 0, C3ub + C4u′b = 0,

Clearly the trivial solution satisfies 5.1 for all choices of the parameter λ. Any value λ
which leads to a nontrivial solution will be called an eigenvalue of the problem and the
corresponding nontrivial solution will be called an eigenfunction of the problem,
corresponding to the eigenvalue λ. Note that if u = ux is an eigenfunction corresponding
to the eigenvalue λ, the for every nonzero constant k, the function kux is also an
eigenfunction for the same eigenvalue. A problem of the form (5.1) is called a
Sturm-Liouville problem.

Theorem 5.5 Suppose the coefficients in the Sturm-Liouville problem (5.1) satisfy

px, p ′x, qx and rx are all continuous on [a,b]

px > 0, rx > 0 for all x ∈ a,b

C1
2 + C2

2 > 0, and C3
2 + C4

2 > 0,

Then
i) the Sturm-Liouville problem (5.1) has countably many real eigenvalues

λ1 ≤ λ2 ≤ ... ≤ λn → +∞

ii) for each eigenvalue there is a single independent eigenfunction, and
eigenfunctions corresponding to distinct eigenvalues satisfy

∫
a

b
ux,λjux,λk rxdx = 0 j ≠ k.

iii) The family of normalized eigenfunctions ux,λn are a complete
orthonormal family in L2a,b for the weighted inner product

14



f,g2 = ∫
a

b
fxgx rxdx.

The proof of the Sturm-Liouville theorem is beyond the scope of this course. Instead we will
list several examples of S-L problems and the associated eigenvalues and eigenfunctions.
In each of the following examples we have px = rx = 1, qx = 0, on a,b = 0,1.
Then since rx = 1, the weighted inner product of the theorem reduces to the usual L2

inner product.

Scales of Hilbert Spaces
When a complete orthonormal family un in L2U is given, we can use it to build a so
called scale of Hilbert spaces that are nested in L2U and which can be used to describe
the regularity of the functions they contain in the same way that the nested spaces

CmU ⊂ Cm−1U ⊂ .... ⊂ C1U ⊂ C0U

contain continuous functions with more and more continuous derivatives with increasing m.
We define the scale of Hilbert spaces as follows. For every f ∈ L2U, the sequence
fn = f,un2 belongs to ℓ2. For s ≥ 0 we define HsU to consist of those functions in
L2U for which

∑n1 + λnsfn
2 < ∞;

i.e.,
HsU = f ∈ L2U : 1 + λns/2fn ∈ ℓ2 .

Here, λn denotes the eigenvalue associated with the eigenfunction un. Since all the
eigenfunctions we are going to encounter come from a S-L problem, the eigenvalue will
always be known when un in L2U is given. Note that

HsU ⊂ ... ⊂ H2U ⊂ H1U ⊂ H0U = L2U .

Roughly speaking, HsU consists of those functions in L2U whose derivatives of order m
are also in L2U, for m ≤ s.

6. Weak Derivatives
We want to weaken the notion of derivative so that it can be defined on all of LpU. In order
to do this, it will be convenient to define a new linear space that is slightly larger than LpU.
We define

u ∈ Lp
locU if, for every compact set K in U, there exists a positive constant CK

such that

∫
K
|ux|pdx ≤ CK < ∞.

The linear space Lp
locU is not a normed linear space but we can describe the convergence

in this space as follows,

un converges to u in Lp
locU if and only if un converges to u in LpV for all V ⊂⊂ U.

Here, the notation V ⊂⊂ U means V is an open subset of U. It is clear that the derivative is
not defined on all of Lp

locU but for a function u ∈ C1Ū ⊂ Lp
locU we have
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∫
U
∂juxφxdx = ∫

∂U
uφ n̄j dS − ∫

U
u∂jφdx for all test functions φ

= 0 − ∫
U

u∂jφdx ∀φ ∈ Cc
∞U

More generally, for u ∈ CkŪ ⊂ Lp
locU we have

∫
U

Dαuxφxdx = −1 |α| ∫
U

uxDαφxdx ∀φ ∈ Cc
∞U

Here we are using the following notation,

α = multi-index α1,…,αn αj = integer

Dαu = ∂1α1⋯∂nαnux where ∂j =
∂
∂xj

and ∂j
α j = ∂α j

∂xj
α j

.

Motivated by this result, we can define the weak derivative on Lp
locU,

for u ∈ Lp
locU, we say v = Dαu if

∫
U

vxφxdx = −1 |α| ∫
U

uxDαφxdx ∀φ ∈ Cc
∞U

Note that the weak derivative is unique since if v1 = Dαu = v2, for v1,v2 ∈ Lp
locU, then

∫
U

v1xφxdx = −1 |α| ∫
U

uxDαφxdx = ∫
U

v2xφxdx ∀φ ∈ Cc
∞U

That is,

∫
U
v1x − v2xφxdx = 0 ∀φ ∈ Cc

∞U

and this implies that v1 = v2 almost everywhere in U.

Example 6.1

1. Let U = 0,2 and u1x =
x if 0 < x ≤ 1

1 if 1 < x < 2

Then

∫
U

u1
′ xφxdx

def
= − ∫

U
u1xφ′xdx = − ∫

0

1
xφ′xdx − ∫

1

2
φ′xdx

= −xφx|x=0
x=1 + ∫

0

1
φxdx − φ2 − φ1

= −φ1 + φ1 + ∫
0

1
φxdx;

That is,

∫
U

u1
′ xφxdx = − ∫

0

2
u1xφ′xdx = ∫

0

2
v1xφxdx = ∫

0

1
φxdx

hence

v1x = u1
′ x =

1 if 0 < x ≤ 1

0 if 1 < x < 2
.

Note that in this case, v1 = u1
′ belongs to Lp

locU for p ≥ 1.
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2. Let U = 0,2 and u2x =
x if 0 < x ≤ 1

a if 1 < x < 2
for a ≠ 1.

Then

∫
U

u2
′ xφxdx

def
= − ∫

U
u2xφ′xdx = − ∫

0

1
xφ′xdx − a ∫

1

2
φ′xdx

= −xφx|x=0
x=1 + ∫

0

1
φxdx − aφ2 − φ1

= a − 1φ1 + ∫
0

1
φxdx;

That is,

∫
U

u2
′ xφxdx = − ∫

0

2
u2xφ′xdx = ∫

0

2
v2xφxdx = a − 1φ1 + ∫

0

1
φxdx.

Now we can show that there is no v2 in Lp
locU such that v2 = u2

′ . We choose a sequence of
test functions φmx such that

● ● 0 ≤ φmx ≤ 1 for each m and all x ∈ 0,2
● φm1 = 1 for each m
● φmx converges pointwise to 0 for all x ≠ 1.

Then

∫
0

2
v2xφmxdx = a − 1φm1 + ∫

0

1
φmxdx.

By the dominated convergence theorem

∫
0

2
v2xφmxdx → 0 and ∫

0

1
φmxdx → 0

and since φm1 = 1 for each m, we get the contradiction, a − 1 = 0.
In this case, u2

′ x = u1
′ x + a − 1δx − 1, from which we see that while the weak

derivative is defined for every function in Lp
locU, it is not necessarily the case that the weak

derivative belongs to Lp
locU. The space to which all the derivatives of Lp

locU functions
must belong is the space of distributions which will be discusses later. We can, however,
define

Wk,pU= u ∈ LpU : Dαu ∈ LpU for all α, |α| ≤ k

Here Dαu denotes the weak derivative.

7. Properties of Wk,pU
For U an open subset of Rn, and 1 ≤ p < ∞, we have defined Wk,pU as the set of all
functions in LpU whose derivatives of order less than or equal to k are again in LpU.
That this is a linear space follows immediately from the fact that LpU is a linear space. If
we define

||u||k,p = ∑
|α|≤k

||Dαu||p
p

1/p

then we can show this is a norm on Wk,pU and that Wk,pU is complete for this norm.
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Lemma 7.1 For each k, and 1 ≤ p < ∞, the function ||u||k,p defines a norm on Wk,pU

Proof- The only part of the statement that is not easy is the triangle inequality. So write

||u + v||k,p = ∑
|α|≤k

||Dαu + Dαv||p
p

1/p

≤ ∑
|α|≤k

||Dαu||p + ||Dαv||p
p

1/p

Minkowski

≤ ∑
|α|≤k

||Dαu||p
p

1/p

+ ∑
|α|≤k

||Dαv||p
p

1/p

discrete Minkowski

= ||u||k,p + ||v||k,p■

Lemma 7.2 For each k, and 1 ≤ p < ∞, Wk,pU is complete for the norm ||u||k,p

Proof- Suppose um is a Cauchy sequence in the norm ||u||k,p. This just means that for
each α, |α| ≤ k, Dαum is a Cauchy sequence in LpU. Since LpU is complete, it follows
that there exist unique functions Uα ∈ LpU such that ||Dαum − Uα ||p → 0. In particular,
||um − U0||p → 0. and U0 ∈ LpU. Now, for any test function φx in U, write

∫
U

U0 Dαφdx = lim
m→∞

∫
U

Um Dαφdx = lim
m→∞−1 |α| ∫

U
DαUm φdx = −1 |α| ∫

U
Uα φdx

But this asserts that Uα = DαU0 and since Uα ∈ LpU for each α, |α| ≤ k,we have shown
that U0 has all its weak derivatives of order α, |α| ≤ k, in LpU. But then
||um − U0||k,p → 0 and U0 ∈ Wk,pU.■

Example 7.1
For U = x ∈ Rn : ||x|| < 1, let r = x1

2 + ⋯ + xn
21/2 and

ux = ur = 1
rα for r > 0.

Note that for r > 0 we can compute

∂jux = −α 1
r1+α

xj
r = −α xj

rα+2 ,

and

|∇ux| = ∑
j=1

n

∂jux
2

1/2

=
|α|

rα+1 .

For  > 0 fixed, let U denote the open set obtained by removing the ball of radius  about
the origin from U. Then

∫
U

|∇ux|dx ≤ C ∫


1 1
α+1 rn−1dr ≤ C1 − n−α−1.

and

∫
U
|∇ux|dx = lim

→0
∫

U
|∇ux|dx < ∞,

provided n > α + 1;i.e., |∇ux| ∈ L1U if 0 < α < n − 1. More generally, |∇ux| ∈ LpU if
n > α + 1p which is to say, u ∈ W1,pU if 0 < α <

n − p
p . Thus, membership in W1,pU

does not preclude singular behavior, it does impose a limit on how bad the singularity can
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be.

Lemma 7.3 Suppose u,v ∈ Wk,pU and |α| ≤ k. Then

a) Dαu ∈ Wk−|α|,pU and DαDβu = DβDαu = Dα+βu for |α| + |β| ≤ k

b) u ∈ Wk,pV for every open set V contained in U

c) for any test function φ in U, φu ∈ Wk,pU and

Dαφu = ∑
β≤α

α
β DβφDα−βu

This last result shows that the weak derivative behaves in most respects like the classical
derivative.

8. The Hilbert-Sobolev Spaces
The spaces Wk,pU are Banach spaces such that for p fixed, Wk+1,pU ⊂ Wk,pU, and for k
fixed, Wk,qU ⊂ Wk,pU if q > p ≥ 1. In particular, Wk,pU ⊂ Wk,1U for all p > 1. When
p = 2, Wk,pU is a Hilbert space. In this case we use the notation

HkU = Wk,2U = u ∈ L2U : Dαu ∈ L2U, |α| ≤ k .

Then H0U = L2U is a Hilbert space for the following inner product and norm,

u,v0 = ∫
U

uxvxdx ||u||0 = u,u0
1/2.

Similarly,
H1U = u ∈ L2U : ∂ju ∈ L2U 1 ≤ j ≤ n

is a Hilbert space for the norm and inner product defined by,

u,v1 = u,v0 + ∫U
∇u ⋅ ∇v dx = ∫

U
uv + ∇u ⋅ ∇vdx

||u||1
2 = ||u||0

2 + ∫
U
|∇u|2dx

More generally, HkU is a Hilbert space for the norm and inner product defined by,

u,vk = ∑
|α|≤k

Dαu,Dαv0 and ||u||k
2 = ∑

|α|≤k
||Dαu||0

2

Of course these are special cases of Wk,pU and therefore continue to have all the recently
proved properties of these spaces.

Define
H0

kU = the completion of Cc
∞U in the norm of HkU.

Then H0
kU is a closed subspace of HkU, and in general, it is a proper closed subspace.

We will discuss this in more detail later. Our interest in H0
kU is motivated by the

observation that for u ∈ H0
kU, there exists a sequence of test functions φm such that

||φm − u||k → 0, and since each φm vanishes on the boundary of U, we can think of the
functions in H0

kU as the functions in HkU that vanish on the boundary of U in some
generalized sense. This too, will be discussed in detail later.

Lemma 8.1 (Poincare Inequality) For U ⊂ Rn open and bounded, there exists a constant
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C > 0 depending on U such that

||u||0 ≤ C ||∇u||0 for all u ∈ H0
1U

Proof- We will give the proof in the case n = 2. Extension to general n is straightforward.
Suppose U is contained in the rectangle a,b × c,d and that φ ∈ Cc

∞U. Then

φx,y = ∫
−∞

x
∂xφs,yds = ∫

a

x
∂xφs,yds for x ≤ b.

Then

|φx,y|2 = ∫
a

x
∂xφs,yds

2
≤ ∫

a

x
|∂xφs,y|2 ds

≤ ∫
U

12dx ∫
a

x
|∂xφs,y|2 ds ≤ b − a ∫

a

b
|∂xφs,y|2 ds

and ∫
a

b
|φx,y|2dx ≤ b − a2 ∫

a

b
|∂xφs,y|2 ds

∫
c

d ∫
a

b
|φx,y|2dxdy ≤ b − a2 ∫

c

d ∫
a

b
|∂xφs,y|2 dsdy

≤ b − a2 ∫
c

d ∫
a

b
|∂xφ|2 + |∂yφ|2 dsdy;

i.e.,
||φ||0

2 ≤ b − a2 ||∇φ||0
2.

Since this holds for any φ ∈ Cc
∞U, and the test functions are dense in H0

1U, the result
extends to all of H0

1U.■

It follows from this lemma that for all u ∈ H0
1U,

||u||1
2 = ||u||0

2 + ∫
U
|∇u|2dx ≤ b − a2 + 1 ∫

U
|∇u|2dx ≤ b − a2 + 1 ||u||1

2

which implies that |u|1
2 = ∫

U
|∇u|2dx

defines a norm on H0
1U that is equivalent to the norm ||u||1; i.e., sequences in H0

1U which
are convergent in one of these norms must also converge in the other norm as well. By
induction we can extend this arguement to show that

|u|k
2 = ∑

|α|=k
||Dαu||0

2

is equivalent on H0
1U to the norm

||u||k
2 = ∑

|α|≤k
||Dαu||0

2

Lemma 8.2 For U ⊂ Rn open and bounded, H0
1U is a closed proper subset of H1U.

Proof-For U ⊂ Rn open and bounded, the function 1x that is identically equal to 1 is an
element of H1U with ||1||1 = ||1||0 = |U|. For any φ ∈ Cc

∞U,

||1 − φ||1 ≥ ||1 − φ||0 ≥ ||1||0 − ||φ||0;

i.e.,
||1 − φ||1 + ||φ||0 ≥ ||1||0 = |U| > 0
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Also, by the Poincare inequality,

||φ||0 ≤ C||∇φ||0 = C||∇1 − φ||0 ≤ C||1 − φ||1

so that

||1 − φ||1 ≥ |U|
1 + C

> 0.

This implies that there is no test function φ that is close to the function 1 in the norm of
H1U; i.e., 1 does not belong to H0

1U.■

Lemma 8.3 For U = Rn H0
1U = H1U.

Proof-We begin by defining a ”cutoff” function, that is a test function that is identically one
inside a bounded set and is zero outside some neighborhood of the set. More precisely, let

φr ∈ Cc
∞Rn and φrx =

1 if |x| ≤ r

0 if |x| > r + 1

Then this is a smooth function that decreases smoothly from 1 to 0 in an annular region of
fixed thickness so it follows that for each fixed integer, k, and all indices, α, |α| ≤ k, we have

sup
r

||Dαφr ||∞ ≤ Cα ≤ Ck

Then for every ψ ∈ Cc
∞Rn, ||φrψ − ψ||0 → 0, as r → ∞, since φrψx = ψx for r > R

where the support of ψx is contained in BR0. Now it follows that ||φru − u||0 → 0, as
r → ∞, for all u ∈ H0Rn.

For u ∈ H1Rn, consider the derivative term

||∂xφru − u||0 ≤ ||∂xφru − φr∂xu||0 + ||φr∂xu − ∂xu||0

and note that

||φr∂xu − ∂xu||0 = 0 for r sufficiently large since ∂xu ∈ H0Rn

||∂xφru − φr∂xu||0 = ||u∂xφr ||0 ≤ ||u − ψ∂xφr ||0 + ||ψ ∂xφr ||0

where, for  > 0, we choose the test function ψx so that ||u − ψ||0||∂xφr ||∞ ≤ . In
addition, since the support of ψ is contained in some ball, BR0, R > 0, we have
ψ ∂xφr = 0 for r > R. Combining all this, we conclude that Cc

∞Rn is dense in H1Rn, which
is to say, H0

1Rn = H1Rn.■

Evidently the difference between H1Rn and H1U for U bounded is that the norms of the
derivatives of the approximating test functions grow with out bound as we approach the
boundary of U. When U = Rn there is no boundary and the derivatives of φr remain
bounded.
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