Hilbert Space Problems

1. Let

$$
u_{n}(x)=\left\{\begin{array}{c}
-1 \text { if }-1 \leq x \leq-1 / n \\
n x \text { if }-1 / n \leq x \leq 1 / n \\
+1 \text { if } 1 / n \leq x \leq 1
\end{array}\right.
$$

(a) show that $\left\{u_{n}(x)\right\}$ is a sequence in $L_{2}[-1,1]$ that is Cauchy in the norm of $L_{2}[-1,1]$.
(b) show that $u_{n}(x)$ converges (in the norm of $L_{2}[-1,1]$) to

$$
\operatorname{sgn}(x)=\left\{\begin{array}{c}
-1 \text { if }-1 \leq x<0 \\
+1 \text { if } 0<x \leq 1
\end{array}\right.
$$

(c) how does this example show that $C[-1,1]$ is a subspace of $L_{2}[-1,1]$ that is not closed?

2 Let M denote a subspace of Hilbert space H .
Show that $\bar{M}=\left(M^{\perp}\right)^{\perp}$.
hint: Show first that $\bar{M} \subset\left(M^{\perp}\right)^{\perp}$,
Then show that if $x \neq 0, x \in\left(M^{\perp}\right)^{\perp}$
and. $x \notin \bar{M}$,

$$
\text { then } \quad x \in\left(M^{\perp}\right)^{\perp} \cap M^{\perp} \text {, }
$$

Show that $\quad x \in\left(M^{\perp}\right)^{\perp} \cap M^{\perp}$ imlies $x=0$.
3. Let F denote a linear functional on Hilbert space H. Show that if F has any one of the following properties, it has all of them.
(a) Continuous at zero: $x_{n} \rightarrow 0$ in $H \quad \Rightarrow \quad F\left(x_{n}\right) \rightarrow 0$ in R
(b) Continuous on H: $\quad x_{n} \rightarrow x$ in $H \quad \Rightarrow \quad F\left(x_{n}\right) \rightarrow F(x)$ in R
(c) Bounded: There exists $C>0$ such that $|F(x)| \leq C\|x\|_{H} \quad \forall x \in H$
4. Suppose F is a bounded linear functional an Hilbert space H. Show that $N_{F}=\{x \in H: F(x)=0\}$ is a closed subspace in H.
5. Let $a(u, v)$ denote a bilinear functional on Hilbert space H.

Suppose there are positive constants a_{0}, a_{1} such that

$$
\begin{array}{ll}
|a(u, v)| \leq a_{1}\|u\|_{H}\|v\|_{H} & \forall u, v \in H \\
a(u, u) \geq a_{0}\|u\|_{H}{ }^{2} & \forall u, \in H
\end{array}
$$

(a) Show $\quad x_{n} \rightarrow 0$ in $H \quad \Rightarrow \quad a\left(x_{n}, y\right) \rightarrow 0$ in $R \quad \forall y \in H$
$y_{n} \rightarrow 0$ in $H \quad \Rightarrow \quad a\left(x, y_{n}\right) \rightarrow 0$ in $R \quad \forall x \in H$
(b) Show $x_{n} \rightarrow x$ in $H \quad \Rightarrow a\left(x_{n}, y\right) \rightarrow a(x, y)$ in $R \quad \forall y \in H$

$$
y_{n} \rightarrow y \quad \text { in } H \quad \Rightarrow \quad a\left(x, y_{n}\right) \rightarrow a(x, y) \text { in } R \quad \forall x \in H
$$

6. Suppose that
$a(x, y)$ is a positive, bounded and symmetric bilinear form on Hilbert space H, $F(x)$ is a bounded linear functional on H and C is a constant.

Let

$$
\Phi(x)=\frac{1}{2} a(x, x)-F(x)+C
$$

(a) Show that for $\left\{x_{n}\right\} \subset H$,

$$
2\left[a\left(x_{n}, x_{n}\right)+a\left(x_{m}, x_{m}\right)\right]=a\left(x_{n}-x_{m}, x_{n}-x_{m}\right)+a\left(x_{m}+x_{n}, x_{m}+x_{n}\right)
$$

(b) Show that if $\alpha=\inf _{x \in H} \Phi(x)$, then

$$
\Phi\left(x_{m}\right)+\Phi\left(x_{n}\right)=\frac{1}{4} a\left(x_{m}-x_{n}, x_{m}-x_{n}\right)+2 \Phi\left[\frac{x_{m}+x_{n}}{2}\right] \geq \frac{1}{4} a_{0}\left\|x_{m}-x_{n}\right\|_{H}^{2}+2 \alpha
$$

7. We have a lemma that says a quadratic functional on a Hilbert space has a global minimum at a point x_{0} if and only if its gradient vanishes at x_{0}. This is a generalization of a similar result for R^{n} where the role of the bilinear form is played by a symmetric matrix and the role of the bounded linear functional is played by a vector. The bilinear form $a(u, v)$ in the Hilbert space setting had to be symmetric, positive and bounded.

Let A denote an n by n symmetric real matrix, and let \vec{b} denote a fixed vector in R^{n}. Define a quadratic functional from R^{n} to R. by $Q(\vec{x})=\frac{1}{2} \vec{x} \cdot A \vec{x}-\vec{b} \cdot \vec{x}=Q\left(x_{1}, \ldots x_{n}\right)$
(a) Compute expressions for $\frac{\partial \vec{x}}{\partial x_{j}}, \frac{\partial(\vec{b} \cdot \vec{x})}{\partial x_{j}}$ and $\frac{\partial(A \vec{x})}{\partial x_{j}}$ and use them to derive an expression for $\frac{\partial Q}{\partial x_{j}}, j=1, \ldots, n$
(b) Show that $\operatorname{grad} Q(\vec{x})=\left[\frac{\partial Q}{\partial x_{1}}, \ldots, \frac{\partial Q}{\partial x_{n}}\right]=A \vec{x}-\vec{b}$
(c) Show that if A is positive definite, then Q has an absolute minimum at the point where $A \vec{x}=\vec{b}$.
8. Suppose $a=a(x, y)$ is a positive, bounded symmetric bilinear form on Hilbert space H and F denotes a bounded linear functional on H. Let

$$
\Phi(x)=\frac{1}{2} a(x, x)-F(x)+C
$$

(a) Show that $\forall x, y \in H \quad 2[a(x, x)+a(y, y)]=a(x-y, x-y)+a(x+y, x+y)$
(b) Use (a) to show that $\quad \Phi(x)+\Phi(y)=\frac{1}{4} a(x-y, x-y)+2 \Phi\left(\frac{x+y}{2}\right)$

Problems on $H^{1}(U)$ and $H_{0}^{1}(U)$

1. $H^{1}(a, b)=\left\{f(x) \in L_{2}(a, b): f^{\prime}(x) \in L_{2}(a, b)\right\}$ is a special (1-dimensional) special case of $H^{1}(U)$ for $U \subset R^{n}$. Modify the proof that $H^{1}(U)$ is complete for the norm

$$
\|u\|_{1}=\sqrt{\|u\|_{0}^{2}+\|\nabla u\|_{0}^{2}}
$$

in order to show that $H^{1}(a, b)$ is complete for the norm

$$
\|f\|_{1}^{2}=(f, f)_{0}+\left(f^{\prime}, f^{\prime}\right)_{0}=\int_{a}^{b}\left[f(x)^{2}+f^{\prime}(x)^{2}\right] d x
$$

2. Let $H^{2}(a, b)=\left\{f(x) \in L_{2}(a, b): f^{\prime}(x)\right.$ and $\left.f^{\prime \prime}(x) \in L_{2}(a, b)\right\}$.Modify the proof that $H^{1}(a, b)$ is complete for the norm

$$
\|f\|_{1}^{2}=(f, f)_{0}+\left(f^{\prime}, f^{\prime}\right)_{0}=\int_{a}^{b}\left[f(x)^{2}+f^{\prime}(x)^{2}\right] d x
$$

in order to show that $H^{2}(a, b)$ is complete for the norm

$$
\|f\|_{2}^{2}=(f, f)_{0}+\left(f^{\prime}, f^{\prime}\right)_{0}++\left(f^{\prime \prime}, f^{\prime \prime}\right)_{0}=\int_{a}^{b}\left[f(x)^{2}+f^{\prime}(x)^{2}+f^{\prime \prime}(x)^{2}\right] d x
$$

3. If $f \in H^{1}(a, b)$ then for $a \leq x<y \leq b$,

$$
f(y)=f(x)+\int_{x}^{y} f^{\prime}(s) d s
$$

(a) show that $\quad f \in C[a, b] \quad$ and $\quad|f(y)-f(x)| \leq\|f\|_{1} \sqrt{|y-x|}$
(b) $\quad\|f\|_{\infty}=: \max _{x \in[a, b]}|f(x)| \leq\|f\|_{1}$
4. Suppose $f \in H^{1}(a, b)$ and $f(a)=0$, or $f(b)=0$, or both. Then show that

$$
\|f\|_{0}^{2}=\int_{a}^{b} f(x)^{2} d x \leq C \int_{a}^{b} f^{\prime}(x)^{2} d x
$$

where $C>0$ does not depend on f.

