
Variational Principles for
Equilibrium Physical Systems

1. Variational Principles
One way of deriving the governing equations for a physical system is the express the
relevant conservation statements and constitutive laws in terms of a set of state variables to
obtain a system of differential equations. A second approach is to postulate a variational
principle for the physical system. In this approach, one characterizes a scalar variable, one
that is often related to the energy of the system, in terms of the system state variables. The
variational principle then is the statement that the system will assume the state in which the
”energy” is minimized. Aside from any other reasons for considering the variational
approach to the derivation of governing equations, this approach provides a means for
weakening the formulation of the equations that govern the behavior of the physical system.
We will illustrate the approach with examples. First, we recall some notation and define an
alternative norm for the space H0

1�U�.

Equivalent Norms on H01�U�
Throughout this chapter we are going to use the notation that for a bounded set U,

�u,v�0 � �
U
uvdx � L2 � inner product and ||u||02 � �u,u�0

�u,v�1 � �
U
�uv � �u � �v� � H1 � inner product and ||u||12 � �u,u�1 � ||u||02 � ||�u||02

We recall also that the Poincare inequality asserts the existance of a constant C
depending only on U such that,

||u||02 � C ||�u||02 for all u � H0
1�U�, .

It follows from this inequality that for all u � H0
1�U�,

1
1 � C ||u||12 � ||�u||02 � ||u||12.

This means that |u|1 � ||�u||0 defines a new norm on H0
1�U� and this new norm is

equivalent to the old norm ||u||1 in the sense that any sequence that is convergent in one of
the norms is also convergent in the other. It follows that H0

1�U� is a Hilbert space for the new
inner product and norm given by

�u,v�1 � �
U
�u � �vdx and |u|12 � �u,u�1 for u,v � H0

1�U�.

This is sometimes referred to as the Poincare inner product and norm on H0
1�U�. Note

that since |C|1 � 0 for any constant, this is not a norm on H1�U�.

Transverse Deflection of an Elastic Membrane
Consider an elastic membrane, stretched over a rigid frame lying in the plane. Suppose the
frame forms a simple closed curve containing a region U in its interior. Then the curved
frame forms the boundary of the domain U containing the membrane.

In its relaxed state the membrane lies in the plane. If we denote the out of plane
deflection of the membrane by u � u�x,y� then u � 0 corresponds to the relaxed state. Now
suppose the membrane is subjected to a transverse loading having force density described
by the function f � f�x,y�. Then the potential energy stored in the stretched membrane
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whose deformation state is u�x,y� corresponding to the load f�x,y� can be shown to be
given by the expression

E�u�x,y�� � �
U

1
2 T�x,y��u � �u � u�x,y�f�x,y� dxdy     (1.1)

Here T � T�x,y� denotes a bounded and strictly positive function representing the tension in
the membrane. If we suppose T�x,y� is piecewise continuous, and f � f�x,y� is in L2�U�,
then E�u� is a functional whose domain could be taken to be the linear subspace H0

1�U� in
the Sobolev space of order one H1�U�. Clearly E�u� is well defined on this subspace and
the condition that the boundary of the membrane is fixed to the rigid frame lying in the plane
(i.e., u�x,y� � 0 for �x,y� � �U ) is incorporated into the definition of the domain of the
functional. The space H1�U�, is often reffered to as the ”energy space” since it contains
functions u�x,y� for which the energy (1.1) is finite. In general, functions in L2�U� do not
have finite energy and would therefore not be feasible candidates for functions that describe
the deformation state of this membrane.

The problem of finding the deformation state u�x,y� corresponding to a given loading
f�x,y� � L2�U� can be stated as a variational principle

Find u � H0
1�U�, such that E�u� � E�v� for all v � H0

1�U�     (1.2)

Physically, this is equivalent to the assertion that in a state of elastic equilibrium, the
membrane will assume the deflection state that minimizes the energy E�u� over all
admissible deformation states, u. Without speculating on why this should be true, we accept
this statement as a postulate. Our purpose is to consider the mathematical consequences
of the problem that ensues.

Note that E�u� � 1
2 a�u,u� � F�u�

where
a�u,v� � �

U
T�x,y��u � �vdxdy

and
F�u� � �

U
u�x,y�f�x,y�dxdy � �u, f�0.

Clearly a�u,v� is bilinear and F�u� is linear on H0
1�U�. Moreover, if the coefficient T�x,y�

satisfies,
T1 � T�x,y� � T0 � 0 for �x,y� � U,

then
|a�u,v�| � �

U
|T�x,y��u � �v|dxdy � T1||�u||0||�v||0 � T1||u||1||v||1

and
|F�u�| � ||f||0 ||u||0 � ||f||0 ||u||1

from which it is evident that a�u,v� is a bounded bilinear functional and F�u� is a bounded
linear functional on H0

1�U�. In addition,

a��,�� � T0 ||��||0
2
� T0 |�|1

2
�
T0
2C ||�||1

2 for all � � D�U�

and since the test functions are dense in H0
1�U�, the estimate extends to all u � H0

1�U�.
Then the bounded, symmetric bilinear form a�u,v� is also positive on H0

1�U� and it follows
from lemma 3.1 that the problem of minimizing E�u� over H0

1�U� is equivalent to the
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following problem

find u � H0
1�U� such that a�u,v� � F�v� for all v � H0

1�U�     (1.3)

This equation asserts that u � u�x,y� satisfies
a�u,�� � �

U
T�x,y��u � ��dxdy � F�v� � �

U
��x,y�f�x,y�dxdy �� � D�U� � H0

1�U�.

Formal integration by parts leads to

�
U
T�x,y��u � ��dxdy � �

�U
��T�u� � ndS � �

U
���T�x,y��u�dxdy, �� � D�U� � H0

1�U�

Since � � 0 on �U for all test functions �, the boundary integral vanishes and we see that
u�x,y� satisfies

�
U
� ���T�x,y��u� � f�x,y��dxdy � 0 �� � D�U� � H0

1�U�     (1.4)

This is just the assertion that
��T�x,y��u� � f�x,y� � 0 in the sense of distributions on U.

Since the test functions are dense in H0
1�U�, it is evident that (1.4) holds not just for all test

functions but for all functions in H0
1�U� as well and then (1.4) asserts that

��T�x,y��u� � f�x,y� � 0 in a somewhat stronger sense than the distributional sense. In
addition, the fact that u � H0

1�U� means that u is the limit in the H1�U� � norm of a
sequence of test functions (which all vanish on the boundary of U) so, in some sense u
can be said to vanish on the boundary of U. If it were known in addition that
u � H0

1�U� 	 C0�Ū� then it would follow that u�x� � 0 at each point x � �U. Without such
additional information we have to be content to say that u satisfies the boundary condition in
some generalized sense.Thus we would say that u � H0

1�U� satisfying (1.2) or (1.3) is a
distributional solution of the problem

� ��T�x,y��u� � f�x,y� in U TCItag 

u � 0 on �U

    

In more advanced courses on PDE’s it is shown how to infer additional smoothness for the
solution u from smoothness assertions about the data f. If the solution has additional
smoothness then the solution of (1.2)-(1.3) may satisfy the abstract boundary value
problem (1.5) in some sense stronger than the distributional sense. We refer to (1.2), (1.3)
and (1.5) respectively as the variational formulation, the weak formulation and strong
formulation of the Dirichlet boundary value problem for the elliptic operator
L�u� � ���T�x,y��u�

Next consider the variational problem

Find u � H1�U�, such that E�u� � E�v� for all v � H1�U�     (1.6)

where we minimize the energy over the space H1�U� instead of the closed subspace,
H0

1�U�. Physically, this corresponds to releasing the condition that the membrane is
attached to the rigid frame on the boundary of U. Here the solution space, H1�U�, contains
no mention of the boundary conditions and it remains to be seen what conditions, if any,
apply on the boundary.

We continue to have E�u� � 1
2 a�u,u� � F�u� with a�u,v� and F�u� both bounded on the

new domain, H1�U�. Note, however, that
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a�u,u� � T0 ||�u||02 for u � H1�U�
does not imply that a�u,v� is positive on H1�U�, since constants belong to H1�U� and
a�C1,C1� � 0 for any constant, C1. We remove this difficulty by letting Ĥ1�U� denote the
quotient space of equivalence classes of functions in H1�U� where two functions belong to
the same equivalence class if they differ by a constant. Then the Poincare norm is a norm
on this quotient space and we have

a�u,u� � T0 ||�u||02 � T0|u|12 � 0 for u � Ĥ1�U�, u 
 0.

Now it follows that problem (1.6) (with H1�U� replaced by Ĥ1�U�) is equivalent to the
problem

find u � Ĥ1�U� such that a�u,v� � F�v� for all v � Ĥ1�U�     (1.7)

To see what the strong version of this problem is, write
�
U
T�x,y��u � �vdxdy � �

U
v�x,y�f�x,y�dxdy �v � Ĥ1�U�.

Formal integration by parts (i.e., Green’s second identity) leads to
�
U
T�x,y��u � �vdxdy � �

�U
v�T�u� � ndS

� �
U
v��T�x,y��u�dxdy, �v � Ĥ1�U� �1.8�

First choose v � Ĥ1�U� to be an arbitrary test function. The test functions are not dense in
Ĥ1�U� but they are contained in the space so this is perfectly legal. For v � v�x,y� a test
function, the boundary integral vanishes and we are left with

�
U
T�x,y��u � �vdxdy � � �

U
v��T�x,y��u�dxdy, �v � Cc��U�,

and for u solving (1.7) this implies
�
U
v ���T�x,y��u� � f�x,y�� dxdy � 0, �v � Cc��U�.

This is just the statement that
� ��T�x,y��u� � f�x,y� in the sense of distributions on U.

Now returning to �1.7�, we have
a�u,v� � F�v� � �

�U
v�T�u� � ndS � �

U
v ���T�x,y��u� � f� dxdy � 0 �v � Ĥ1�U�.

Now the integral over U is zero if v � Ĥ1�U� is chosen to be a test function. Then this
integral must also vanish if v � Ĥ1�U� is chosen to be an arbitrary function in C��U�, since
the boundary is a set of measure zero and cannot alter the value of the integral. Then this
last equation becomes

a�u,v� � F�v� � �
�U
v�T�u� � ndS � 0 �v � C��U� � Ĥ1�U�.

Now the subspace C��U� is dense in Ĥ1�U� so this last equation implies that
�T�u� � n � 0 on �U, at least in some generalized sense we will not be able to precisely
define. At any rate, it appears that the equivalent problems, (1.6)-(1.7), are the variational
and weak formulations of the following strong problem

� ��T�x,y��u� � f�x,y� for �x,y� � U TCItag 

�T�u� � n � 0 on �U
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which we recognize as the Neumann problem for the elliptic operator, L�u� � ���T�x,y��u�.
Note that the Neumann boundary conditions were not built into the definition of the solution
space but appeared only later as a necessary consequence of being a weak or variational
solution of the problem. Boundary conditions that must be incorporated into the definition of
the solution space, like the Dirichlet boundary condition of the first example, are called
stable boundary conditions. Conditions that are not built into the definition of the solution
space but appear naturally, like the Neumann boundary conditions, are called natural
boundary conditions. In the context of the elastic membrane, the Neumann boundary
condition means that the edges of the membrane are free to move in the out of plane
direction since there is no constraining force exerted at the boundary.

We have considered the problem of minimizing the quadratic functional E�u� over H0
1�U�

and over the larger space, H1�U�. In the first case the variational problem is equivalent to
the weak form of the Dirichlet boundary value problem, while in the second case it is the
weak form of the Neumann boundary value problem that is equivalent to the variational
problem. Now consider a space, V, that is ”between” H1�U� and H0

1�U�, in the sense that
H0

1�U� � V � H1�U�. We have in mind the space obtained by completing, in the norm of
H1�U�, the subspace of infinitely differentiable functions which vanish on a part of �U. More
precisely, let �U be comprised of two disjoint pieces �U1 and �U2; i.e., �U � �U1 � �U2.
Then let V denote the H1�U� � closure of the infinitely differentiable functions which are
zero on �U1. When �U1 � �U, �U2 � empty, we have V � H0

1�U� and, when
�U1 � empty, �U2 � �U, we have V � H1�U�. We will suppose that neither �U1 nor �U2 is
empty so that V is strictly between H0

1�U� and H1�U�. Then we consider the problem

Find u � V, such that E�u� � E�v� for all v � V.     (1.10)

Now it is not hard to show that the Poincare norm defines a norm on V since V does not
contain any nonzero constants. Then a�u,v� is symmetric bounded and positive on V and
(1.10) is equivalent to the weak problem,

Find u � V such that a�u,v� � F�v� for all v � V     (1.11)

Since V contains the test functions Cc��U� it follows that a solution of (1.11) satisfies the
equation ���T�x,y��u� � f, in the sense of distributions on U. Then it also follows that

a�u,v� � F�v� � �
�U
v�T�u� � ndS � 0 �v � C��U� 	 v � 0 on �U1 � V.

But for v � C��U� 	 v � 0 on �U1 the integral over �U1 vanishes,

�
�U
v�T�u� � ndS � �

�U1
v�T�u� � ndS � �

�U2
v�T�u� � ndS � �

�U2
v�T�u� � ndS � 0,

and since the behavior of the smooth function v on �U2 is completely free, we can conclude
that �T�u� � n must equal zero on �U2 in some generalized sense. Then the problems
(1.10),(1.11) are the variational and weak formulations of the following strong boundary
value problem,

� ��T�x,y��u� � f�x,y� in U  TCItag 

u � 0 on �U1

�T�u� � n � 0 on �U2

    

Note that the Dirichlet condition is incorporated into the definition of the solution space V,
while the Neumann boundary condition is a natural boundary condition and is automatically
satisfied by solutions of the weak and variational problems.
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2. Weak Formulations
We have just seen that the following problems are alternative formulations of the same
problem:

1� Find u � H0
1�U�, such that E�u� � E�v� for all v � H0

1�U�
2� Find u � H0

1�U� such that a�u,v� � F�v� for all v � H0
1�U�

3� � ��T�x,y��u� � f�x,y� in U and u � 0 on �U

Similarly, the following are alternative formulations of one problem:
4� Find u � Ĥ1�U�, such that E�u� � E�v� for all v � Ĥ1�U�
5� find u � Ĥ1�U� such that a�u,v� � F�v� for all v � Ĥ1�U�
6� � ��T�x,y��u� � f�x,y� in U and �T�u� � n � 0 on �U,

as are:
7� Find u � V, such that E�u� � E�v� for all v � V
8� find u � V such that a�u,v� � F�v� for all v � V
9� � ��T�x,y��u� � f�x,y� in U, u � 0 on �U1 and �T�u� � n � 0 on �U2,

Recall that in problems 3),6) and 9), we are interpreting the partial differential equation in
the distributional sense and the boundary condition in some unspecified sense that is
weaker than the pointwise sense. Of course, it may be the case that both the equation and
the boundary condition are valid in some stronger sense but we have not done the analysis
needed to establish this.

Problems 1,2,3 are the variational, weak and strong formulations for the Dirichlet
problem, while 4,5,6 are the variational, weak and strong formulations for the Neumann
problem. Problems 7,8,9 are the variational, weak and strong formulations for a mixed BVP
with Dirichlet conditions on part of the boundary and Neumann conditions on the remainder
of the boundary. The weak and variational problems are equivalent in all three examples
and the strong form of the problem is related to the other two in that if u � u�x,y� is a strong
solution then it is also a weak and variational solution but the converse does not necessarily
hold. Lemma 3.1 implies the existence of a unique solution to the variational/weak problems
in these examples. We have no information in any of the examples about whether a strong
solution exists or, what is the same thing, if the weak solution is also a strong solution. That
a weak solution is, in fact, also a strong solution can be proved under appropriate
hypotheses on the data but it requires techniques that are beyond the scope of this class.

In order to see whether it is always the case that a problem has all three formulations,
consider the following strong formulation:

Find u � u�x,y� such that L�u�x,y�� � f�x,y� in U
and u � 0 on �U.

where
L�u�x,y�� � ���T�x,y��u� � c��x,y� � �u � b�x,y�u

and c��x,y� � �u � c1�x,y��xu � c2�x,y��yu.
This strong problem has a corresponding weak formulation but it does not have a
variational formulation. To obtain the weak formulation, multiply both sides of the PDE by
an arbitrary function v � v�x,y� � H0

1�U�, and integrate over U. Then
�
U
v�x,y�����T�x,y��u� � c��x,y� � �u � bu�dx � �

U
f vdx,
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and
� �

�U
v�T�x,y��u� � n�dS � �

U
�T �u � �v � v c� � �u � buv�dx � �

U
f vdx.

Now the boundary integral vanishes for v � H0
1�U�, and then we have

a�u,v� � F�v� for v � H0
1�U�,

where
a�u,v� � �

U
�T �u � �v � v c� � �u � buv�dx, for u,v � H0

1�U�.

Note that, because of the term, v c� � �u, the bilinear form a�u,v� is not symmetric; i.e.,
a�u,v� 
 a�v,u�. For a nonsymmetric bilinear form there can be no quadratic functional
whose gradient equals a�u,v� � F�v�. To see why this happens, recall that the quadratic
functional

��u� �
1
2 a�u,u� � F�u��C

satisfies
��u � tv� � ��u� � t�a�u,v� � F�v�� � 1

2 t
2a�u,u�

� ��u� � t d��u,v� � 1
2 t

2d2
��u,u�.

Evidently, when the quadratic functional is defined from a bilinear form, then d��u,v�, the
”gradient of the functional at u in the direction v” is equal to a�u,v� � F�v�. On the other
hand, any bilinear form can be written as the sum of a symmetric and an antisymmetric part
as follows,

a�u,v� �
1
2 �a�u,v� � a�v,u�� �

1
2 �a�u,v� � a�v,u�� � aS�u,v� � aA�u,v�.

But then a�u,u� � aS�u,u� � 0 so the antisymmetric part of the bilinear form cannot
contribute to the quadratic functional. Now u minimizes the functional ��u� over H0

1�U� if
and only if u satisfies

aS�u,v� � F�v� for all v � H0
1�U�,

and this is not the same as
a�u,v� � F�v� for all v � H0

1�U�
unless a�u,v� � aS�u,v�; i.e., unless a�u,v� is symmetric.

Even when the bilinear form is not symmetric so there is no variational formulation for
the problem, the weak problem

Find u � H0
1�U� such that a�u,v� � F�v� for v � H0

1�U� �2.2�
is still uniquely solvable. We assume that the coefficients satisfy,

0 � T0 � T�x,y� � T1,
0 � b0 � b�x,y� � b1, �x,y� � Ū, �2.3�

|c��x,y�| � c0

We will show first that the bilinear form a�u,v� is bounded. Write
|a�u,v�| � �

U
|T �u � �v � v c� � �u � buv| dx

� T1||�u||0||�v||0 � |c�| ||v||0||�u||0 � |b| ||v||0||u||0
� �T1 � c0 � b1� ||u||1||v||1 for u,v � H0

1�U�.

This establishes that the bilinear form is bounded on H0
1�U� � H0

1�U�. Next, write
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|a�u,u�| � | �
U
�T �u � �u � uc� � �u � bu 2�dx|.

|a�u,u�| � T0||�u||02 � c0 �U |u| |�u|dx � b0 ||u ||02.

Now for all real numbers A and B and � � 0,

� A � B
2 �

2

� �A2 � AB �
B2

4� � 0.

It follows that
�
U

|u| |�u|dx � �||�u||02 � 1
4� ||u||02,

and then we have

|a�u,u�| � �T0 � c0�� ||�u||02 � b0 �
c0
4� ||u||02.

If we choose � � T0/c0, then under certain additional assumptions on the coefficients in the
problem, there exists a positive constant a0 such that

|a�u,u�| � a0||u||12 �u � H0
1�U�.

This shows that the nonsymmetric bilinear form is positive or coercive.

Problem 1 Show that if the coefficients T, b, and c are such that
4T0b0 � c0

2 �2.4�
then � can be chosen such that for some constant a0,

T0 � c0� � a0 � 0 and b0 �
c0
4� � a0 � 0. �2.5�

It now follows from (2.5) that for coefficients satisfying (2.4) the nonsymmetric bilinear form
a � a�u,v� satisfies the hypotheses of the Lax-Milgram lemma. In addition,

F�v� � �f,v�0 for v � H0
1�U�

is a bounded linear functional on H0
1�U�. Then the Lax-Milgram lemma implies that for each

f � L2�U�, there exists a unique weak solution for (2.1). That is, there exists a unique
u � H0

1�U� satisfying (2.2).

3. Additional Variational Problems
It becomes evident at some point that the fundamental ingredient in the variational
formulation of boundary value problems is the Green’s identity. This identity makes it
possible to reduce certain partial differential equations and associated boundary conditions
to a corresponding variational statement. Of course not every boundary value problem can
be treated in this way but the class of problems to which it applies includes a large number
of problems of practical importance.

Interface Problems
Consider a domain U � Rn composed of complementary subdomains, U1 � U2 � U, and
let � denote the interface between U1 and U2. Let 	1 � �U1\� and 	2 � �U2\� denote the
”non-interfacial” portions of the boundary of U1 and U2 respectively. Now consider the
problems
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For k � 1,2 ���Ak�x��uk� � fk�x� x � Uk �3.1�
uk � 0 on 	k

and
u1 � u2 on �.

�A1�x��u1 � A2�x��u2��n � 0 on � �3.2�
Here Ak�x� denotes an n by n matrix whose entries are in H0

1�Uk� and fk � H0�Uk�. This
type of problem corresponds to an elliptic problem in which the domain is composed of two
parts having distinctly different physical properties.

Define spaces H � H0�U1� � H0�U2�,
V � H1�U1� � H1�U2�,
V0 � H0

1�U1� � H0
1�U2�,

and, for u� � �u1,u2 �, v� � �v1,v2 � in V, define

a�u�,v�� � a1�u1,v1� � a2�u2,v2� � �
U1

�v1 � A1�u1 dx � �U2
�v2 � A2 �u2 dx.

Then, for u� � �u1,u2 �, v� � �v1,v2 � in C��U� � C��U�, the Green’s identity leads to

a�u�,v�� � � �
U1
v1 ��A�u1�dx � �

�U1\�
v1 n�1 � A1�u1dS � �

�
v1 n�1 � A1�u1dS

� �
U2
v2 ��A�u2� dx � �

�U2\�
v2 n�2 � A2�u2 dS � �

�
v2 n�2 � A2�u2 dS.

Now let
W � u� � �u1,u2 � � V : uk � 0 on �Uk\�, k � 1,2 and u1 � u2 on � .

Then
V0 � W � V � H,

and, for any u�, v� � W 	 C��U�,

a�u�,v�� � � �
U1
v1 ��A�u1�dx � �U2

v2 ��A�u2� dx � �
�
v2 n�1 � �A1�u1 � A2�u2� dS,

because v1 � 0 on �U1\�, v2 � 0 on �U2\�, n�1 � �n�2 on �.

Now it follows that u� � �u1,u2 � � W is a weak solution of the transmission problem,
(3.1),(3.2) if

a�u�,v�� � � �
U1
v1 f1 dx � �U2

v2 f2 dx � f�,v�
0

�v� � W.

Then, since �u1,u2 � � W, it follows that in some generalized sense which we have not
clearly defined,
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uk � 0 on �Uk\�, k � 1,2 and u1 � u2 on �.

In addition, based on the previous calculations, it is clear that we have,
���Ak�x��uk� � fk in Uk, k � 1,2 ,

where the equality here is in the sense of distributions. Finally, we can show in the usual
way that the weak solutions satisfy the natural boundary condition,

n�1 � �A1�u1 � A2�u2� � 0 on �.

The precise sense in which this equality holds has not been defined.

Problem 2 Show that W is a Hilbert space for the H1�U� � norm.
Use the Poincare inequality to show that the Poincare norm is equivalent to the V norm on
W.
Is W a Hilbert space for the Poincare norm?

Problem 3 Show that a�u�,v�� is a bounded bilinear form on W (which norm must you
use?)

Problem 4 Show that a�u�,u�� � C |u�|2 for all u � W (which norm must you use?)

Problem 5 Use the results of problems 3 and 4 to show that the weak form of the
transmission problem is uniquely solvable for all f� � �f1, f2 � � H

A Higher Order Equation
Consider the following boundary value problem for the so called biharmonic equation

� �2�2u�x� � f�x� in U � Rn,
�3.3�

u � 0 and n� � �u � 0 on �U.

In R2, �2�2u�x,y� � �xxxxu�x,y� � 2�xxyyu�x,y� � �yyyyu�x,y�
Problem (3.3) is the Dirichlet problem for the biharmonic equation. We will now
consider the weak formulation of this problem.
The weak/variational solution of this fourth order problem will reside in the Hilbert space

H2�U� � u � H0�U� : ��u�x� � H0�U�, |�| � 2 ;

It is the space of all functions in H0�U� whose distributional derivatives of order less than or
equal to two are also in H0�U�. This linear space is a Hilbert space for the inner product
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�u,v�2 � � |� |�2��
�u,��v�0 and ||u||22 � � |� |�2||��u||0

2.

In the case n � 1 this becomes

�u,v�2 � �u,v�0 � �u�,v��0 � �u”,v”�0 and ||u||22 � ||u||02 � ||u� ||0
2
� ||u”||02.

The proof that H2�U� is complete is a slight generalization of the proof that showed H1�U� is
complete.

Let H0
2�U� denote the completion of the test functions in the norm ||�||2. A Poincare

inequality holds for H0
2�U�

� |� |�2||��u||0
2
� C ||u||2 �u � C0

��U�. �3.4�

This inequality can be proved by a slight extension of the proof used for the Sobolev space
of order one. Since we didn’t give this proof, we can, without loss of generality, skip this
proof as well. The inequality implies that the Poincare norm,

|u|22 � � |� |�2||��u||0
2, u � H0

2�U�,

defines a norm on H0
2�U�. In 2 dimensions this becomes

|u|22 � ||�xxu||0
2
� ||�xyu||0

2
� ||�yyu||0

2 u � H0
2�U�.

The functions in H0
2�U� are those functions in H2�U� that satisfy (in some sense, not

specified here), u � �Nu � 0 on �U.
In addition to the Poincare inequality, (3.4), we also have a Green’s identity for the

biharmonic operator,

�
U
v �2�2u dx � �

�U
�v�N��2u� � �Nv�2u	dS � �

U
�2v �2u dx �u,v � C��U�. �3.5�

Now let
H � H0�U�, V � H2�U�

and V0 � H0
2�U� � completion of test functions in the H2�U� � norm.

Then
C0

��U� � V0 � V � H,

and we can define a weak solution of (3.3) to be a function u � V0 such that

a�u,v� � �
U
�2v �2u dx � �f,v�0 �v � V0 �3.5�

The associated variational problem is to minimize
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E�u� � 1
2 a�u,u� � F�u� � �

U
� 1

2 | �2u |2 � f u� dx

over V0. In order to apply the Hilbert space lemma to prove existence of a unique solution,
we have to show that the bilinear form is bounded and positive.

Problem 6 Show that for u � H0
2�U�,

a) ||�xyu||0
2
� ||�xxu||0||�yyu||0 � 1

2 ||�xxu||0
2
� ||�yyu||0

2

b) |��xxu,�yyu�0 | � |��xyu,�xyu�0 |

Problem 7 Show that for u,v � H0
2�U�, |a�u,v�| � C |u|2 |v|2

Problem 8 Use the result of problem 6b) to show that for u � H0
2�U�,

a�u,u� � ||�xxu||0
2
� 2||�xyu||0

2
� ||�yyu||0

2
� C |u|22

Problem 9 What strong boundary value problem is solved by the solution of the variational
problem obtained by minimizing E�u� over the space H2�U� 	 H0

1�U�?

Problem 10 What strong boundary value problem is solved by the solution of the
variational problem obtained by minimizing E�u� over the space H2�U� ?

4. Approximation Methods
The conditions under which it is possible to construct an analytical (exact) solution for a
BVP are rather special and it is often the case that no analytical solution is possible. In such
cases the only option is then to try to construct an approximate solution to the BVP (after
first ascertaining by abstract methods that the problem has a unique solution in a specific
solution class).

Finite difference methods are one way of approximating the solution to a BVP for which
analytic methods fail. These methods replace derivatives by difference quotients, thereby
changing a differential equation plus boundary conditions into a system of algebraic
equations. However, this is not the only way in which a BVP can be transformed into a
system of algebraic equations. We will consider three apparently different but ultimately
equivalent ways for approximating the solution of a BVP.

The Rayleigh-Ritz Method
The Rayleigh-Ritz method applies only to problems with a variational formulation.
Therefore, consider the variational problem,

Find u � V, such that E�u� � E�v� for all v � V �4.1�

where H0
1�U� � V � H1�U�. Let ��1,
,�N	 denote N linearly independent functions in V,

and let M � span��1,
,�N �. Then consider the following approximation to the problem (4.1)
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Find uM � M, such that E�uM � � E�v� for all v � M � V �4.2�

We refer to M as the approximating subspace and the functions �k are called ”trial
functions” or ”shape functions”. The approximate solution, uM, belongs to M, and since the
functions �k�x� span M, we can write

uM�x� � �
k�1

N
Ck �k�x�.

Now we can define a function of N real variables, C1, ...,CN, by F�C1, ...,CN� � E�uM � and
seek to minimize the function F over all of RN. This will have the effect of minimizing E�uM �
over M as required by (4.2). Since we are minimizing F over all of RN, all minima for F must
be interior minima hence we must have

�F
�Ck

Ĉ1, ...,ĈN � 0 for k � 1, ...,N �4.3�

This is a system of N linear equations for the N unknowns Ĉ1, ...,ĈN. To see what these
equations might look like, recall that quadratic functional, E�u�, in the variational problem
has the form,

E�u� � 1
2 a�u,u� � �f,u�2.

Then
E�uM � � 1

2 a�uM,uM� � �f,uM�2

�
1
2 a �

j�1

N
Cj �j�x�,�

k�1

N
Ck �k�x� � f,�

k�1

N
Ck �k�x�

2

�
1
2 �
j�1

N
�
k�1

N
CjCk a��j�x�,�k�x�� ��

k�1

V
Ck�f, �k�x��2

i.e., F�C1, ...,CM� �
1
2 �
j�1

N
�
k�1

N
CjCk Ajk ��

k�1

N
Ck Fk,

where
Ajk � a��j�x�,�k�x�� � Akj and Fk � �f, �k�x��2.

Then (1.3) is equivalent to the system

�F
�Ck

�
1
2 �
k�1

N
AjkCk � 1

2 �
j�1

N
AjkCj � Fk

� �
k�1

N
AjkCk � Fk � 0, k � 1, ...,N. �4.3��

If the bilinear form a�u,v� is positive then the matrix A is positive definite and the system
(4.3’) has a unique solution. The corresponding uM is then the Rayleigh-Ritz approximation
to the solution of the variational problem, (4.1).

Problem 11 Show that if the bilinear form a�u,v� is positive and symmetric, then the matrix
�Ajk� � �a��j,�k�� is symmetric and positive definite.

The Galerkine Procedure
Since not every BVP has a variational formulation, the Rayleigh-Ritz procedure can not
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always be applied. Consider then the following weak formulation of a BVP
Find u � V such that a�u,v� � �f,v�2 � F�v� for all v � V �4.4�

Let ��1,
,�N	 and M be as they were defined in the previous example and let uM denote
the solution of the problem,

Find uM � M such that a�uM,v� � F�v� for all v � M. �4.5�

Obviously, (4.5) is equivalent to
Find uM � M such that a�uM,�k� � F��k� for k � 1, ...,N. �4.5��

Now uM�x� � �
k�1

N
Bk �k�x�

satisfies a �
j�1

N
Bj �j�x�,�k � F��k�,

i.e.,

�
j�1

N
Bj a��j,�k� � �

j�1

Mn
Ajk Bj � Fk, for k � 1, ...,N.

Clearly these are the same equations as the system (4.3’). The Rayleigh-Ritz procedure
only applies to problems having a variational formulation, while the Galerkine procedure
applies to the weak formulation whether or not there is a variational formulation. In the case
that there is no variational formulation, the matrix �Ajk� is not symmetric. However, if the
original bilinear form a�u,v� is positive, then the matrix will be positive definite and the
approximate problem is uniquely solvable.

The Method of Weighted Residuals
Consider the following strong formulation of a BVP

� ��T�x,y��u� � c��x,y� � �u � b�x,y�u � f�x,y� in U
u � 0 on �U1

�T�u� � n � 0 on �U2

We can write this as
Find u � V such that L�u�x,y�� � f�x,y� �4.6�

Where �U is comprised of two disjoint pieces �U1 and �U2; i.e., �U � �U1 � �U2, and V
denotes the H1�U� � closure of the infinitely differentiable functions which are zero on
�U1. We will suppose that neither �U1 nor �U2 is empty so that V is strictly between
H0

1�U� and H1�U�. To construct an approximate solution by the method of weighted
residuals, the trial functions ��1,
,�N	 are chosen to be N linearly independent functions in
V with the additional constraint that L��k� � L2�U� for each k. Then let S denote the
N-dimensional subspace spanned by the trial functions. In the previous two methods the
trial functions were not required to have this additional smoothness.

With these trial functions, let uS�x� � �
k�1

N
ck �k�x�

be define by
�L�uS �,�j�2 � �f,�j�2 for j � 1, ...,N �4.7�
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Note that �L�uS �,�k�2 � L �
k�1

N
ck �k�x� ,�j

2
� �
k�1

N
ck�L��k�,�j�2,

and
�L��k�,�j�2 � a��k,�j� for �k,�j � S � V.

Then (4.7) is equivalent to

�
k�1

N
Akj ck � Fj, for j � 1, ...,N �4.7��

Evidently, the method of weighted residuals leads to the same equations as the other two
methods although the trial functions carry an extra smoothness constraint that is not
required of the Galerkine and Rayleigh-Ritz trial functions.

The success of these approximation methods depends on making a good choice of trial
functions. If the trial functions are chosen from families of piecewise polynomials called
finite element spaces then several advantages arise:

� it is possible to deal systematically with irregular regions, even ones having curved
boundaries

� the accuracy of the approximation can be estimated in a systematic way in terms of
the adjustable parameters characterizing the finite element family

� the ingredients of the approximation problem, including the coefficient matrix �Ajk�
and the data vector �Fk� in the system of algebraic equations and even the mesh
decomposition of the region can be efficiently generated by packaged software.

Employing one of these three approximation techniques in concert with a finite element
family of trial functions is referred to as the ”finite element method”.

We should note that the Hilbert space H1�U� is the ”best” solution space in which to look
for solutions to second order elliptic boundary value problems for several reasons:
� an elliptic BVP of order 2 may fail to have any solution in a smaller space (e.g.
H2�U� ). For example, this could be due to irregularities in �U

� solutions in a space larger than H1�U� may not make sense physically. For example,
the functions may fail to have finite energy.

� it is easy to build finite dimensional subspaces of H1�U� which are convenient for
constructing approximate solutions to the BVP. This is less easy for spaces like
H2�U� or C�Ū�.

We should also be aware that there are various possible formulations we could imagine for
a weak solution to the problem,

��2u � F in U, u � 0 on �U.
(a) Ultra-regular Weak solution Find u � H2�U� 	 H0

1�U� such that
�
U
��2u � F�vdx � 0 for all v � L2�U�

(b) Weak solution Find u � H0
1�U� such that

�
U
�u � �vdx � �

U
Fvdx for all v � H0

1�U�

15



(c) Ultra-Weak solution Find u � L2�U� such that
�
U
��2v � F�udx � 0 for all v � H2�U� 	 H0

1�U�.

In formulation (a) we are obliged to construct a family �Vn	 of approximate solution spaces
which approach H2�U� 	 H0

1�U� with increasing n. Then the family �Wn	 of test function
spaces is just L2�U� for every n. In formulation (c) the situation is reversed with the space
Vn of approximate solutions equal to L2�U� for all n and the family �Wn	 of test function
spaces approaching H2�U� 	 H0

1�U� with increasing n. In case (b) we make the choice
�Vv	 � �Wn	 and these spaces must approach H0

1�U� with increasing n. This compromise
leads to an approximate problem with a symmetric and positive definite matrix as an
approximation to the operator in the BVP. This does not happen in the other two cases.
This fact, coupled with the difficulty in building a sequence of finite dimensional spaces
tending to H2�U� 	 H0

1�U�, suggests that (b) is the optimal weak formulation of the BVP.
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