
Abstract Hilbert Space Results
We have learned a little about the Hilbert spaces L2�U� and �2 and we have at least defined
H1�U� and the scale of Hilbert spaces Hp�U�. Now we are going to develop additional facts
that are true about any Hilbert space. Later these facts will be helpful in formulating and
solving partial differential equations in a Hilbert space setting.

1. Subspaces
A subset M of Hilbert space H is a subspace of it is closed under the operation of forming
linear combinations;i.e.,

�x,y � M, C1x � C2y � M, � C1,C2 � R.

The subspace M is said to be closed if it contains all its limit points; i.e., every sequence of
elements of M that is Cauchy for the H-norm, converges to an element of M. In a Euclidean
space every subspace is closed but in a Hilbert space this is not the case.

Example 1.1-
1. If U is a bounded open set in RN then H � L2�U� is a Hilbert space containing M � C�U�
as a subspace. It is easy to find a sequence of functions in M that is Cauchy for the H norm
but the sequence converges to a function in H that is discontinuous and hence not in M. For
example, if N � 1, and U � ��1,1� the sequence

un�x� �

nx if |x| � 1/n
1 if 1/n � x � 1
�1 if � 1 � x � �1/n

can be shown to converge in the L2 � norm to u�x� � sgn�x�. Here sgn�x� � L2��1,1� but
sgn�x� � C��1,1�; i.e., the limit does not belong to the subspace of continuous functions.
This proves that M � C��1,1� is not closed in H � L2��1,1�.
2. Every finite dimensional subspace of a Hilbert space H is closed. For example, if M
denotes the span of finitely many elements �x1, ....xN� in H, then the set M of all possible
linear combinations of these elements is finite dimensional (of dimension N), hence it is
closed in H.
3. Let M denote a subspace of Hilbert space H and let M� denote the orthogonal
complement of M.

M�
def
� �x � H : �x,y�H � 0,�y � M�.

Then M� is easily seen to be a subspace and it is closed, whether or not M itself is closed.
To see this, suppose �xn� is a Cauchy sequence in M� converging to a limit x � H. For
arbitrary y � M, �xn,y�H � 0 for every n, and hence

�x,y�H � �x � xn,y�H � �xn,y�H � �x � xn,y�H � 0 � 0, as n tends to infinity.
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Then the limit point x is orthogonal to every y in M which is to say, x is in M�, and M� is
closed.

If M is a subspace of H that is not closed, then M is contained in a closed subspace M�
of H, consisting of M together with all its limit points. M� is called the closure or completion
of M and M is said to be dense in M� . This means that for every x in M� there is a sequence
of elements of M that converge to x in the norm of H. Equivalently, to say M is dense in
M� means that for every x in M� and every � � 0, there is a y in M such that �x � y�H � �.
Then we can show,

Lemma 1.1 Let M denote a subspace of Hilbert space H. Then �M��� � M� .
Lemma 1.2 A subspace M of Hilbert space H is dense in H if and only if M� � �0�.

Example 1.2
1.Recall the Hilbert-Sobolev space of order one,

H1�U� � u�x� � L2�U� : �xiu�x� � L2�U� for i � 1, ...,n

where �xiu�x� denotes the distributional derivative of u�x� with respect to xi.We defined an
inner product on H1�U� as follows,

�u,v�1 � �
U
�u�x�v�x� � �u � �v�dx for u,v � H1�U�.

and showed that H � H1�U� is complete for the norm induced by this inner product. The
linear space C��U�, of infinitely differentiable functions is contained in H1�U� and is
therefore a subspace of H1�U�. We can show, using a technique called regularization, that
M � C��U� is dense in H; i.e., the completion of C��U� in the norm of H1�U� is the whole
Hilbert space. Then, according to the previous lemma, only the zero function is orthogonal,
in the H1�U� � inner product, to every function in C��U�.

2. The linear space of test functions M � Cc��U� is also a subspace of H1�U� The closed
subspace M� obtained by completing the test functions in the norm of H1�U� is denoted by
H01�U� and we refer to this closed subspace as the H1�U� functions that ”vanish on the
boundary of U”. In fact, what we can show is that for every g � H01�U�, and for every point
p � �U, the integral of g over the ball, B��p�, tends to zero as � tends to zero. This says that
if g � H01�U�, then g has zero mean value near every point on �U.

We will show now that the closed subspace H01�U� is not equal to H1�U�. To do this, we
need an inequality known as the Poincaré inequality. This inequality asserts that for any
bounded subset U � Rn there exists a constant, C depending only on U, such that

||�||0
2
� C ||��||0

2
�� � Cc��U� ||�||0 � �

U
�2dx

1/2

or, equivalently
||�||1

2
� C ||��||0

2
�� � Cc��U�
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The proof of this inequality will be given later. We will use it to show there are functions in
H1�U� that are not in H01�U�. For example, let 1�x� � H1�U� denote the constant function
having value one at every point. Then

||1 � �||1
2 � ||1 � �||0

2 � ||��1 � ��||0
2 � ||1 � �||0

2 � ||��||0
2

�� � Cc��U�.

Clearly then ||1 � �||1
2
	 ||1 � �||0

2 and ||1 � �||1
2
	 ||��||0

2.

The first of these results implies ||1 � �||1
2
	 ||1||02 � ||�||0

2 which leads to

||1 � �||1
2 � ||�||0

2
	 ||1||02 � �

U
1dx � |U| � area of U

Then the Poincaré inequality implies ||1 � �||1
2 � C ||��||0

2
	 |U|,

and finally, �1 � C�||1 � �||1
2
	 |U|.

It is clear from this inequality that there is no sequence of test functions �n which can
converge to 1�x� in the norm of H1�U�. Then 1�x� does not belong to H01�U� although it
does belong to H1�U�.

2. Projections
A Hilbert space H is said to be separable if H contains a countable dense subset �hn�. In
this case, for every x in H and every � � 0 there exists an integer N� and scalars �an� such
that

x ��n�1
N anhn H

� � for N � N�

If H is a separable Hilbert space, then the Gram-Schmidt procedure can be used to
construct an orthonormal basis for H out of a countable dense subset. Recall that an
orthonormal basis for H is a set of mutually orthogonal unit vectors, ��n� in H with the
following property:

1) For f � H, ��n, f�H � 0 �n 	 f � 0

When the orthonormal set ��n� has property 1, then it is said to be dense or complete in
H. Of course, not every orthonormal set in H is complete. Recall that other equivalent ways
of characterizing completeness for orthonormal sets can be stated as follows:

2) For all f in H and every � � 0, there exists an integer N�such that

f ��n�1
N

�f,�n�H �n H
� � for N � N�
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3) For every f in H, �n�1
� fn2 � �f�H2 where fn � �f,�n�H

Hilbert Space Projection Theorem
In a Euclidean space,E, where all subspaces M are closed, it is a fact that for each y � E
there is a unique z � M such that �y � z�E is minimal. This element z, which is just the
orthogonal projection of y onto M, is the ”best approximation to y from within M”. In an
infinite dimensional Hilbert space, a similar result is true for closed subspaces but for
subspaces that are not closed there may fail to be a ”best” approximation in M.

Hilbert Space Projection Theorem Let M be a closed subspace of Hilbert space H and
let y in H be given. Then

(i) there exists a unique xy in M such that �y � xy�H � �y � z�H for all z in M
(xy is the unique point of M that is closest to y, the best approximation to y in M )

(ii) �y � xy, z�H � 0 for all z in M; i.e., y � xy 
 M

(iii) every y in H can be uniquely expressed as y � xy � zy
where

Py � xy � M, Qy � zy � M�

and
�y�H2 � �Py�H2 � �Qy�H2 i.e., H � M � M�.

The proof of this result will be given later.

3. Linear Functionals and Bilinear Forms
A real valued function defined on H, is said to be a functional on H. The functional, L, is
said to be:

(a) Linear if, for all x and y in H, L�C1x � C2y� � C1Lx � C2Ly, for all scalars C1,C2.

(b) Bounded if there exists a constant C such that |Lx| � C�x�H for all x in H

(c) Continuous if �xn � x�H 	 0 implies that |Lxn � Lx| � 0

It is not difficult to show that the only example of a linear functional on a Euclidean space E
is Lx � �x, z�E for some z in E, fixed. For example, if F is a linear functional on E, then for
arbitrary x in E,

F�x� � F �i�1
n xiē i � �i�1

n xiF�ē i� � �i�1
n xiFi � �x, zF�E � x�zF

where �ei� denotes the standard basis in E and z�F denotes the n-tuple whose i-th
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component is Fi � F�ē i�. This displays the isomorphism between functionals F and
elements, zF, in E. This isomorphism also exists in an abstract Hilbert space.

Riesz Representation Theorem For every continuous linear functional f on Hilbert
space H there exists a unique element, zf in H such that f�x� � �x, zf�H for all x in H.

Proof- Let Nf � �x � H : f�x� � 0�.Then Nf is easily seen to be a closed subspace of H. If
Nf � H then zf � 0 and we are done. If Nf � H then H � Nf � Nf� by the Hilbert space
projection theorem. Since Nf is not all of H, Nf� must contain nonzero vectors, and we
denote by z0 an element of Nf� such that �z0�H � 1. Then for any x in H,

w � f�x�z0 � f�z0�x,
belongs to Nf hence w 
 z0. But in that case,

�f�x�z0 � f�z0�x, z0�H � f�x��z0, z0�H � f�z0��x, z0�H � 0.

This leads to, f�x� � f�z0��x, z0�H � �x, f�z0�z0�H which is to say zf � f�z0�z0.
To see that zf is unique, suppose that

f�x� � �zf,x�H � �wf,x�H �x � H
Subtracting leads to the result that

�zf � wf,x�H � 0 �x � H.
In particular, choosing x � zf � wf leads to ��zf � wf�H � 0.


A real valued function a�x,y� defined on H 
 H is said to be:

(a) Bilinear if, for all x1,x2,y1,y2 � H and all scalars C1,C2

a�C1x1 � C2x2,y1� � C1a�x1,y1� � C2a�x2,y1�

a�x1,C1y1 � C2y2� � C1a�x1,y1� � C2a�x1,y2�

(b) Bounded if there exists a constant b � 0 such that,

|a�x,y�| � b�x�H�y�H for all x,y in H

(c) Continuous if xn � x, and yn � y in H, implies a�xn,yn� � a�x,y� in R

(d) Symmetric if a�x,y� � a�y,x� for all x,y � H

(e) Positive or coercive if there exists a constant a0 � 0 such that

a�x,x� 	 a0�x�H2 for all x in H

It is not hard to show that for both linear functionals and bilinear forms, boundedness is
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equivalent to continuity. If a�x,y� is a bilinear form on H 
 H, and F�x� is a linear functional
on H, then ��x� � 1

2 a�x,x� � F�x� � Const is called a quadratic functional on H. In a
Euclidean space a quadratic functional has a unique extreme point located at the point
where the gradient of the functional vanishes. This result generalizes to the infinite
dimensional situation.

Lemma 3.1 Suppose a�x,y� is a positive, bounded and symmetric bilinear form on Hilbert
space H, F�x� is a bounded linear functional on H and C is a constant. Consider the
following problems

(a) minimize ��x� � 1
2 a�x,x� � F�x� � C over H

(b) find x in H satisfying a�x,y� � F�y� for all y in H.

Then
i) x in H solves (a) if and only if x solves (b)

ii) there is at most on x in H solving (b)

iii) there is at least one x in H solving (a)

Proof- For t in R and x,y fixed in H, let f�t� � ��x � ty� . Then f�t� is a real valued function
of the real variable t and it follows from the symmetry of a�x,y� that

f�t� � 1
2 t
2 a�y,y� � t�a�x,y� � F�y�� � 1

2 a�x,x� � F�x� � C
and

f ��t� � t a�y,y� � �a�x,y� � F�y��

It follows that ��x� has a global minimum at x in H if and only if f�t� has a global minimum at
t � 0; i.e.,

��x � ty� � ��x� � tf ��0� � t2/2 a�x,x� 	 ��x�, �t � R and �y � H

if and only if
f ��0� � a�x,y� � F�y� � 0. �y � H.

This establishes the equivalence of (a) and (b).

To show that �b� has at most one solution in H, suppose

a�x1,y� � F�y� and a�x2,y� � F�y� for all y in H.

Then a�x1,y� � a�x2,y� � a�x1 � x2,y� � 0 for al l y in H. In particular, for y � x1 � x2
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0 � a�x1 � x2,x1 � x2� 	 a0�x1 � x2�H2 ; i.e., x1 � x2.

To show that ��x� has at least one minimum in H, let � � infx�H��x�. Now

��x� � 1
2 a�x,x� � F�x� 	 1

2 a0�x�H
2 � b�x�H

and it is evident that ��x� tends to infinity as �x�H tends to infinity. This means
� � � (i.e.,” the parabola opens upward rather than downward”). Moreover since � is an
infimum, there exists a sequence xn in H such that ��xn� � � as n tends to infinity. Note
that

2�a�xn,xn� � a�xm,xm�� � a�xn � xm,xn � xm� � a�xm � xn,xm � xn�

which leads to the result,

��xm� � ��xn� � 1
4 a�xm � xn,xm � xn� � 2 ���xm � xn�/2� 	 1

4 C�xm � xn�H2 � 2�.

But ��xm� � ��xn� tends to 2� as n tends to infinity and in view of the previous line, the
minimizing sequence �xn� must be a Cauchy sequence with limit x in the Hilbert space H.
Finally, since ��x� is continuous, ��xn� � ��x� � �.


Applications of the lemma-
1. Lemma 3.1 can now be used to prove the Hilbert space projection theorem.
For M a closed subspace in H it follows that M is itself a Hilbert space for the norm and

inner product inherited from H.
For y a fixed but arbitrary element in H, we can define

a�z,x� � �z,x�H �x, z � M
F�z� � �y, z�H �z � M,

and ��z� � 1
2 a�z, z� � F�z� �

1
2 �y�H

2
�z � M.

Note that �x � M

1
2 �x � y�H

2 � 1
2 �x � y,x � y�H

� 1
2 ��x�H

2 � 2�x,y�H � �y�H2 � � ��x�

Clearly a�z,x� is a positive, bounded and symmetric bilinear form on M, F is a bounded
linear functional on M. Then it follows from the lemma that there exists a unique element
xy � M which minimizes ��z� over M. It follows also form the equivalence of problems (a)
and (b) that xy satisfies

a�xy, z� � F�z�, �z � M; i.e., �xy, z�H � �y, z�H �z � M.
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But this is just the assertion that

�xy � y, z�H � 0 �z � M; i.e., xy � y 
 M.

Finally, for y in H, fixed, let the unique element xy in M be denoted by Py � xy � M. Then

y � Py 
 M, and z � y � Py � M�.

To see that this decomposition of elements of H is unique, suppose

y � xy � z, xy � M, z � M�,
and y � Xy � Z, Xy � M, Z � M�,

Then xy � z � Xy � Z, and xy � Xy � Z � z.
But xy � Xy � M, Z � z � M�, M � M� � �0�,
and it follows that xy � Xy � Z � z � 0.


2. Recall that for U open and bounded in Rn, the Hilbert Sobolev space of order one,
H1�U� � H is a Hilbert space which contains C��U� as a dense subspace and also contains
the closed subspace H01�U�, obtained by completing the subspace of test functions in the
H1-norm. We showed in an earlier example, that H01�U� is not equal to H1�U�.Then by the
projection theorem, every y in H can be uniquely expressed as a sum, y � xy � z, with
xy � H01�U�, and z � �H01�U��

�. To characterize the subspace �H01�U��
�, choose arbitrary

� � C0��U� and � � C��U� and write

��,��H � �
U
��� � �� � ���dx � �

U
��� � �2��dx � �

�U
��N�dS

� ��,� � �2��0 � 0. (Here �u,v�0 denotes the H0�U� � L2�U� inner product).

Now suppose � � C��U� � �H01�U��
�. Then ��,��H � 0, for all � � C0��U�,and since C0��U� is

dense in H01�U�, �u,��H � 0, for all u � H01�U�. That is, �u,� � �2��0 � 0 � u � H01�U�. But
this implies that � � C��U� � �H01�U��

� satisfies � � �2� � 0, in H0�U�. Then, since C��U� is
dense in H � H1�U� it follows that

�H01�U��
�

� �z � H1�U� : z � �2z � H0�U�, and z � �2z � 0 �.

The Lax-Milgram Lemma
Lemma 3.1 requires that the bilinear form a�x,y� be symmetric. For application to existence
theorems for partial differential equations, this is an unacceptable restriction. Fortunately,
the most important part of the result remains true even when the form is not symmetric.
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Lax-Milgram Lemma- Suppose a�u,v� is a bounded and positive bilinear form on Hilbert
space H; i.e., for positive constants a0,a1

i) |a�u,v�| � a1�u�H�v�H �u,v � H
ii) a�u,u� 	 a0�u�H2 �u � H.

Suppose also that F�v� is a bounded linear functional on H. Then there exists a unique
uF � H such that

a�uF,v� � F�v� �v � H.

Proof- For each fixed u � H, the mapping v � a�u,v� is a bounded linear functional on H.
It follows that there exists a unique zu � H such that

a�u,v� � �zu,v�H �v � H.

Let Au � zu; i.e., a�u,v� � �Au,v�H �u � H. Clearly A is a linear mapping of H into H, and
since

�Au�H2 � |�Au,Au�H | � |a�u,Au�| � a1�u�H�Au�H

it is evident that A is also bounded. Note further, that

a0�u�H2 � a�u,u� � �Au,u�H � �Au�H�u�H

i.e., a0�u�H � �Au�H �u � H.

This estimate implies that A is one-to one and that RA, the range of A, is closed in H.
Finally, we will show that RA � H. Since the range is closed, we can use the projection
theorem to write, H � RA � RA� . If u � RA� , then

0 � �Au,u�H � a�u,u� 	 a0�u�H2 ; i.e., RA� � �0�.

Since F�v� is a bounded linear functional on H, it follows from the Riesz theorem that there
is a unique zF � H such that F�v� � �zF,v�H for all v � H. Then the equation
a�u,v� � F�v� can be expressed as

�Au,v�H � �zF,v�H �v � H; i.e., Au � zF.

But A has been seen to be one-to-one and onto and it follows that there exists a unique
uF � H such that AuF � zF.
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Convergence in H
In RN convergence of xn to x means

�xn � x�RN � �i�1
N
��xn � x� � ei�2

1/2
� 0 as n � .

Here ei denotes the i-th vector in the standard basis.This is equivalent to,

�xn � x� � ei � 0 as n � , for i � 1, ...,N,

and to �xn � x� � z � 0 as n � , for every z � RN

In an infinite dimensional Hilbert space H, convergence of xn to x in H means
�xn � x�H � 0 as n � .

This is called strong convergence in H and it implies that
�xn � x,v�H � 0 as n �  �v � H.

This last mode of convergence is referred to as weak convergence and, in a general
Hilbert space, weak convergence does not imply strong convergence. Thus while there is
no distinction between weak and strong convergence in a finite dimensional space,
the two notions of convergence are not the same in a space of infinite dimensions.

In RN the so called Bolzano-Weierstrass theorem asserts that every bounded
sequence �xn� contains a convergent subsequence. The theorem is proved by noting that
�xn � e1� is a bounded sequence of real numbers and hence contains a subsequence
�xn,1 � e1� that is convergent. Similarly, �xn,1 � e2� is also a bounded sequence of real
numbers and thus contains a subsequence �xn,2 � e2� that is convergent. Proceeding in this
way, we can generate a sequence of subsequences, �xn,k� � �xn� such that �xn,k � ej� is
convergent for j � k. Then the diagonal sequence �xn,n� is such that �� xn,n � ej� is
convergent for 1 � j � N, which is to say, �xn,n� is convergent. In a general Hilbert space
we have a weaker result,

In H every bounded sequence �xn� contains a subsequence that is weakly convergent.

To see this, suppose that �xn� � M for all n and let ��j� denote a complete orthonormal
family in H. Proceeding as we did in RN, let �xn,k� � �xn� denote a subsequence such
that ��xn,k,�j�H� is convergent (in R) for j � k. Then for each j, �xn,j,�j�H converges to a
real limit aj as n tends to infinity. It follows that the diagonal subsequence �xn,n� is such that
�xn,n,�j�H converges to aj for j 	 1. Now define

F�v� � Limn �xn,n,v�H for v � H.

Then |F�v�| � |Limn�xn,n,v�H | � M�v�H

from which it follows that F is a continuous linear functional on H. By the Riesz theorem,
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there exists an element, zF in H such that

F�v� � �zF,v�H for all v in H.
But F�v� � F � i�v,�i�H�i � limn�xn,n,� i�v,�i�H�i�H

� � i limn�xn,n,�i�H�v,�i�H � � i ai�v,�i�H ;

That is, F�v� � �zF,v�H � � i ai�v,�i�H for all v in H.
Then by the Parseval-Plancherel identity, it follows that

zF � � i ai�i
and

�xn,n,v�H � �zF,v�H for all v in H.
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