M 317 Problems Chapter 5

- 1. For f(x) = 1 + x on $I = \{0 \le x \le 2\}$, let *P* denote a uniform partition of *I* with N = 4. Then compute each of the quantities, m|I|, $\sigma[f,P]$, RS[f,P], $\Sigma[f,P]$, and M|I|, where the tag points for the Riemann sum are the midpoints of the intervals I_k in the partition. Compare these numbers with $\int_{0}^{2} f$.
- **2**. Using the results of problem 1, sketch the graph of *f* on *I* and indicate the quantities m|I|, $\sigma[f,P]$, RS[f,P], $\Sigma[f,P]$, and M|I|, on the sketch.
- **3**. Refine the partition *P* of the previous problem by adding the midpoint of the first interval in *P*. Call this refined partition P^* . Compute $\sigma[f, P^*]$, and $\Sigma[f, P^*]$.
- **4**. Using the results of problem 3, sketch the graph of *f* on *I* and indicate the quantities $\sigma[f, P]$, $\Sigma[f, P]$, and $\sigma[f, P^*]$, $\Sigma[f, P^*]$, on the sketch. Explain why $\sigma[f, P] \leq \sigma[f, P^*]$, and $\Sigma[f, P^*] \leq \Sigma[f, P]$. Explain why these results apply for any partitions *P* and *P*^{*} where *P*^{*} is a refinement of *P*.
- **5**. Repeat problem 1 with f(x) = 3 x on $I = \{0 \le x \le 2\}$. How do the numbers $\sigma[f, P], RS[f, P], \Sigma[f, P]$ in this case relate to the same quantities in problem 1?
- 6. For f(x) = 1 + x on $I = \{0 \le x \le 2\}$, let Q denote a uniform partition of I with N = 8. Is Q a refinement of P? Use a sketch as in problem 4 to explain why $\sigma[f,P] \le \sigma[f,Q] \le \Sigma[f,Q] \le \Sigma[f,P]$. Explain why, $\sigma[f,Q] \le \Sigma[f,P]$ holds for any partitions P and Q for I.
- 7. For f(x) = 1 + x on $I = \{0 \le x \le 2\}$, let *P* denote a uniform partition of *I* with N = 4. Compute $\sum_{k=1}^{4} (M_k m_k)|I_k|$ and indicate on a sketch of the graph of the function *f*, what this sum represents. If we refine the partition *P*, will the corresponding sum increase, decrease, or stay the same.?
- 8. Let f(x) = 1 if $x \in [0,2] \cap Q$ and let f(x) = 0 for any irrational number in [0,2]. Compute $\sum_{k=1}^{4} (M_k - m_k)|I_k|$ for the uniform partition *P* of the previous problem. If we refine the partition *P*, will the corresponding sum in this case increase, decrease, or stay the same.?
- **9**. Let f(x) = 1 + x on I = [0, 2]. Choose an arbitrary $\varepsilon > 0$, and find a partition *P* of I = [0, 2] such that $S[f, P] s[f, P] < \varepsilon$ Does this imply that *f* is integrable on *I*?
- **10**. Let f(x) = 3 x on I = [0, 2]. For an arbitrary given $\varepsilon > 0$, find a partition *P* of I = [0, 2] such that $S[f, P] s[f, P] < \varepsilon$ Does this imply that *f* is integrable on *I*?

11. Let
$$f(x) = \begin{cases} 2x & \text{if } 0 \le x < 1 \\ 3 & \text{if } 1 \le x \le 2 \\ x & \text{if } 2 < x < 3 \\ 2(4-x)^2 & \text{if } 3 \le x \le 4 \end{cases}$$
 $0 \le x \le 4$. Choose an $\varepsilon > 0$, and find a

partition *P* of I = [0,4] such that $S[f,P] - s[f,P] < \varepsilon$ Does this imply that *f* is integrable on *I*?

- **12**. Suppose $f \in \mathbb{C}[a, b]$ is non-negative and not identically zero on [a, b].
 - **a**. Prove that $\int_{a}^{b} f > 0$
 - **b**. Is this result still true if we assume only that *f* is integrable but not continuous? If your answer is yes, prove it, if it is no, give a counterexample.
- **13**. Suppose *f* is defined on [a,b] and |f(x)| is integrable on [a,b]. Does it necessarily follow that *f* is integrable on [a,b]? If your answer is yes, prove it, if it is no, give a counterexample.

14. Let
$$f(x) = \begin{cases} \frac{1}{2^n} & \text{if } x = \frac{j}{2^n} \text{ for } j = \text{odd integer}, \\ 0 < j < 2^n & n = 1, 2, \dots \\ 0 & \text{otherwise} \end{cases}$$
 $0 \le x \le 1$

- **a**. sketch the graph of *f* and find where *f* is continuous and where it is discontinuous
- **b**. determine whether f is integrable on [0, 1] and prove it.
- **15**. Suppose *f* and *g* are continuous on I = [a, b] and that $\int_{I} f = \int_{I} g$. Prove there exists *c* in *I* such that f(c) = g(c)
- **16**. Compute the average value for f(x) on [0, 1], :

a.
$$f(x) = x(1 - x^2)$$
 $x \in [0, 1]$

b.
$$f(x) = \begin{cases} x & \text{if } x = \frac{1}{n}, \quad n \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases} \quad x \in [0,1]$$

- **17.** Suppose: (i) $f \in C[a,b]$, (ii) $f(x) \ge 0 \quad \forall x \in I$, and (iii) s[f] = 0. Then prove that f(x) = 0 for all x in *I*.
- **18**. Suppose *f* is integrable on I = [a, b] and $m \le f(x) \le M$ for all *x* in *I*
 - **a**. prove that $m(b-a) \leq \int_{a}^{b} f \leq M(b-a)$
 - **b.** if *f* is continuous on *I* prove there is a *c* in *I* such that $f(c) = \frac{1}{b-a} \int_{a}^{b} f$
- **19**. Suppose *f* is continuous on $I = [a, b], f(x) \ge 0$ for all *x* in *I*
 - **a**. if, in addition, s[f] = 0, then prove that f(x) = 0 for all x in I.
 - **b**. if, instead of *a* we have f(c) > 0 for some *c* in *I*, prove that $\int_{I} f > 0$

20. Let $\{x_1, \dots, x_M\}$ denote a finite set of points in [a, b] and let

$$f(x) = \begin{cases} k & if \quad x = x_k \\ 0 & if \quad x \neq x_k \end{cases}$$

Show that *f* is integrable on *I* and compute the integral.

- **21**. Suppose *f* is integrable on I = [a, b]
 - **a**. Use the inequality $||x| |y|| \le |x y|$ to prove that |f| is integrable on *I*
 - **b**. give an example of a function g that is not integrable on I but |g| is integrable on I
- **22**. Suppose *f* is integrable on I = [a, b] and $m \le f(x) \le M$ for all *x* in *I*
 - a. prove that

$$m(b-a) \leq \int_{a}^{b} f \leq M(b-a)$$

b. if f is continuous on I prove there is a c in I such that

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(c) dc$$

23. For *f* integrable on I = [a, b] let $F(x) = \int_{x}^{b} f$

- **a**. show that F(x) is uniformly continuous on *I*
- **b**. show that at each *x* in *I* where *f* is continuous, $\lim_{h\to 0} D_h F(x)$ exists. What does the limit equal?

24. Let
$$f(t) = \begin{cases} 3-t & \text{if } 0 \le t \le 2\\ 1 & \text{if } 2 \le t \le 3 \end{cases}$$
 and $F(t) = \int_0^t f$

- a. obtain an explicit formula for F
- **b**. draw the graph of *F* and tell where you think *F* is differentiable
- **c**. compute F'(t) at each point where the derivative exists.
- **25.** Suppose $f \in C[0,\infty)$ and $f(x) \neq 0$ for all x > 0. Then show that if $[f(x)]^2 = 2 \int_0^x f(x) f(x) = x$ for x > 0.
- **26.** Suppose: $f \in C[a,b]$, and $\int_a^b fg = 0$ for all $g \in C[a,b]$. Then prove that f(x) = 0 for all x in I.
- **27**. Let $\{x_1, \ldots, x_M\}$ denote a finite set of points in [a, b] and suppose f(x) = k if $x = x_k$ and f(x) = 0 otherwise. Show that *f* is integrable and compute $\int_{T} f$.
- **28**. Give an example of an *f* that is not integrable on *I* but |f| is integrable.
- **29**. Suppose *f* is integrable on *I* and $m \le f(x) \le M$ for all *x* in *I*.
 - a. Prove that $m(b-a) \leq I = \int_{I} f \leq M(b-a)$

- **b**. If $f \in C[a,b]$ prove there is a $c \in I$ such that $f(c)(b-a) = \int_{I} f$. Is this result true if *f* is not continuous?
- **30**. For *f* integrable on I = [a, b] let $F(x) = \int_{x}^{b} f$
 - **a**. show that *F* is uniformly continuous on *I*
 - **b**. Show that at each x in *I* where f is continuous, we have $\lim_{h\to 0} D_h F(x) = f(x)$

31. Let
$$f(x) = \begin{cases} 3-t & \text{if } 0 < t < 2\\ 1 & \text{if } 2 < t < 3 \end{cases}$$
 and $F(x) = \int_a^x f(x) dx$

- a. obtain an explicit formula for F
- **b**. sketch the graph of *F* and tell where *F* is differentiable
- **c**. Compute F'(t) at each point where the derivative exists.
- **32.** Calculate: (a) $\lim_{x \to 0} \frac{1}{x} \int_0^x e^{-t^2} dt$ (b) $\lim_{h \to 0} \frac{1}{h} \int_3^{3+h} e^{-t^2} dt$
- **33**. Let $G(x) = \int_{0}^{\sin x} f(t) dt$. Is *G* differentiable? If so, find G'(x).
- **34**. Let $g : [0,1] \rightarrow [0,1]$ be continuous and strictly increasing on [0,1]. Use a sketch to explain why $\int_0^1 g(x)dx + \int_0^1 g^{-1}(y)dy = 1$.
- **35**. Compute the value of $\int_{0}^{\infty} x^{n} e^{-x} dx$
- **36**. Suppose *f* is continuous and strictly decreasing on $[0, \infty)$. Explain why $\int_0^\infty f$ and $\sum_{n=1}^\infty f(n)$ are either both convergent or both divergent.