M 317 Problems Chapter 5

1. For $f(x)=1+x$ on $I=\{0 \leq x \leq 2\}$, let P denote a uniform partition of I with $N=4$. Then compute each of the quantities, $m|I|, \sigma[f, P], R S[f, P], \Sigma[f, P]$, and $M|I|$, where the tag points for the Riemann sum are the midpoints of the intervals I_{k} in the partition. Compare these numbers with $\int_{0}^{2} f$.
2. Using the results of problem 1, sketch the graph of f on I and indicate the quantities $m|I|, \sigma[f, P], R S[f, P], \Sigma[f, P]$, and $M|I|$, on the sketch.
3. Refine the partition P of the previous problem by adding the midpoint of the first interval in P. Call this refined partition P^{*}. Compute $\sigma\left[f, P^{*}\right]$, and $\Sigma\left[f, P^{*}\right]$.
4. Using the results of problem 3, sketch the graph of f on I and indicate the quantities $\sigma[f, P], \Sigma[f, P]$, and , $\sigma\left[f, P^{*}\right], \Sigma\left[f, P^{*}\right]$, on the sketch. Explain why $\sigma[f, P] \leq \sigma\left[f, P^{*}\right]$, and $\Sigma\left[f, P^{*}\right] \leq \Sigma[f, P]$. Explain why these results apply for any partitions P and P^{*} where P^{*} is a refinement of P.
5. Repeat problem 1 with $f(x)=3-x$ on $I=\{0 \leq x \leq 2\}$. How do the numbers $\sigma[f, P], R S[f, P], \Sigma[f, P]$ in this case relate to the same quantities in problem 1 ?
6. For $f(x)=1+x$ on $I=\{0 \leq x \leq 2\}$, let Q denote a uniform partition of I with $N=8$. Is Q a refinement of P ? Use a sketch as in problem 4 to explain why $\sigma[f, P] \leq \sigma[f, Q] \leq \Sigma[f, Q] \leq \Sigma[f, P]$. Explain why, $\sigma[f, Q] \leq \Sigma[f, P]$ holds for any partitions P and Q for I.
7. For $f(x)=1+x$ on $I=\{0 \leq x \leq 2\}$, let P denote a uniform partition of I with $N=4$. Compute $\sum_{k=1}^{4}\left(M_{k}-m_{k}\right)\left|I_{k}\right|$ and indicate on a sketch of the graph of the function f, what this sum represents. If we refine the partition P, will the corresponding sum increase, decrease, or stay the same.?
8. Let $f(x)=1$ if $x \in[0,2] \cap Q$ and let $f(x)=0$ for any irrational number in [0,2]. Compute $\sum_{k=1}^{4}\left(M_{k}-m_{k}\right)\left|I_{k}\right|$ for the uniform partition P of the previous problem. If we refine the partition P, will the corresponding sum in this case increase, decrease, or stay the same.?
9. Let $f(x)=1+x$ on $I=[0,2]$. Choose an arbitrary $\varepsilon>0$, and find a partition P of $I=[0,2]$ such that $S[f, P]-s[f, P]<\varepsilon$ Does this imply that f is integrable on I ?
10. Let $f(x)=3-x$ on $I=[0,2]$. For an arbitrary given $\varepsilon>0$, find a partition P of $I=[0,2]$ such that $S[f, P]-s[f, P]<\varepsilon$ Does this imply that f is integrable on I ?
11. Let $f(x)=\left\{\begin{array}{ll}2 x & \text { if } 0 \leq x<1 \\ 3 & \text { if } 1 \leq x \leq 2 \\ x & \text { if } 2<x<3 \\ 2(4-x)^{2} & \text { if } 3 \leq x \leq 4\end{array} \quad 0 \leq x \leq 4\right.$. Choose an $\varepsilon>0$, and find a partition P of $I=[0,4]$ such that $S[f, P]-s[f, P]<\varepsilon$ Does this imply that f is integrable on I ?
12. Suppose $f \in \mathbb{C}[a, b]$ is non-negative and not identically zero on $[a, b]$.

a. Prove that
 $$
\int_{a}^{b} f>0
$$

b. Is this result still true if we assume only that f is integrable but not continuous? If your answer is yes, prove it, if it is no, give a counterexample.
13. Suppose f is defined on $[a, b]$ and $|f(x)|$ is integrable on $[a, b]$. Does it necessarily follow that f is integrable on $[a, b]$? If your answer is yes, prove it, if it is no, give a counterexample.
14. Let $f(x)=\left\{\begin{array}{ccc}\frac{1}{2^{n}} & \text { if } x=\frac{j}{2^{n}} \text { for } j=\text { odd integer, } \\ 0 & 0<j<2^{n} & n=1,2, \ldots\end{array} \quad 0 \leq x \leq 1\right.$
a. sketch the graph of f and find where f is continuous and where it is discontinuous
b. determine whether f is integrable on $[0,1]$ and prove it.
15. Suppose f and g are continuous on $I=[a, b]$ and that $\int_{I} f=\int_{I} g$. Prove there exists c in I such that $f(c)=g(c)$
16. Compute the average value for $f(x)$ on $[0,1]$:
a. $\quad f(x)=x\left(1-x^{2}\right) \quad x \in[0,1]$
b. $\quad f(x)=\left\{\begin{array}{ccc}x & \text { if } x=\frac{1}{n}, & n \in \mathbb{N} \\ 0 & \text { otherwise } & .\end{array} \quad x \in[0,1]\right.$
17. Suppose: (i) $f \in C[a, b]$, (ii) $f(x) \geq 0 \quad \forall x \in I$, and (iii) $s[f]=0$. Then prove that $f(x)=0$ for all x in I.
18. . Suppose f is integrable on $I=[a, b]$ and $m \leq f(x) \leq M$ for all x in I
a. prove that $m(b-a) \leq \int_{a}^{b} f \leq M(b-a)$
b. if f is continuous on I prove there is a c in I such that $f(c)=\frac{1}{b-a} \int_{a}^{b} f$
19. Suppose f is continuous on $I=[a, b], f(x) \geq 0$ for all x in I
a. if, in addition, $s[f]=0$, then prove that $f(x)=0$ for all x in I.
b. if, instead of a we have $f(c)>0$ for some c in I, prove that $\int_{I} f>0$
20. Let $\left\{x_{1}, \ldots x_{M}\right\}$ denote a finite set of points in $[a, b]$ and let

$$
f(x)=\left\{\begin{array}{lll}
k & \text { if } & x=x_{k} \\
0 & \text { if } & x \neq x_{k}
\end{array}\right.
$$

Show that f is integrable on I and compute the integral.
21. Suppose f is integrable on $I=[a, b]$
a. Use the inequality $\| x|-|y|| \leq|x-y|$ to prove that $|f|$ is integrable on I
b. give an example of a function g that is not integrable on I but $|g|$ is integrable on I
22. Suppose f is integrable on $I=[a, b]$ and $m \leq f(x) \leq M$ for all x in I
a. prove that

$$
m(b-a) \leq \int_{a}^{b} f \leq M(b-a)
$$

b. if f is continuous on I prove there is a c in I such that

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f
$$

23. For f integrable on $I=[a, b]$ let $\quad F(x)=\int_{x}^{b} f$
a. show that $F(x)$ is uniformly continuous on I
b. show that at each x in I where f is continuous, $\lim _{h \rightarrow 0} D_{h} F(x)$ exists. What does the limit equal?
24. Let $f(t)=\left\{\begin{array}{ll}3-t & \text { if } 0 \leq t \leq 2 \\ 1 & \text { if } 2 \leq t \leq 3\end{array} \quad\right.$ and $\quad F(t)=\int_{0}^{t} f$
a. obtain an explicit formula for F
b. draw the graph of F and tell where you think F is differentiable
c. compute $F^{\prime}(t)$ at each point where the derivative exists.
25. Suppose $f \in C[0, \infty)$ and $f(x) \neq 0$ for all $x>0$. Then show that if $[f(x)]^{2}=2 \int_{0}^{x} f$ for $x>0$ then $f(x)=x$ for $x \geq 0$.
26. Suppose: $f \in C[a, b]$, and $\int_{a}^{b} f g=0$ for all $g \in C[a, b]$. Then prove that $f(x)=0$ for all x in I.
27. Let $\left\{x_{1}, \ldots, x_{M}\right\}$ denote a finite set of points in $[a, b]$ and suppose $f(x)=k$ if $x=x_{k}$ and $f(x)=0$ otherwise. Show that f is integrable and compute $\int_{I} f$.
28. Give an example of an f that is not integrable on I but $|f|$ is integrable.
29. Suppose f is integrable on I and $m \leq f(x) \leq M$ for all x in I.
a. Prove that $m(b-a) \leq I=\int_{I} f \leq M(b-a)$
b. If $f \in C[a, b]$ prove there is a $c \in I$ such that $f(c)(b-a)=\int_{I} f$. Is this result true if f is not continuous?
30. For f integrable on $I=[a, b]$ let $F(x)=\int_{x}^{b} f$
a. show that F is uniformly continuous on I
b. Show that at each x in I where f is continuous, we have $\lim _{h \rightarrow 0} D_{h} F(x)=f(x)$
31. Let $f(x)=\left\{\begin{array}{cc}3-t & \text { if } 0<t<2 \\ 1 & \text { if } \\ 2<t<3\end{array}\right.$ and $F(x)=\int_{a}^{x} f$
a. obtain an explicit formula for F
b. \quad sketch the graph of F and tell where F is differentiable
c. Compute $F^{\prime}(t)$ at each point where the derivative exists.
32. Calculate:

$$
\text { (a) } \lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} e^{-t^{2}} d t
$$

(b) $\lim _{h \rightarrow 0} \frac{1}{h} \int_{3}^{3+h} e^{-t^{2}} d t$
33. Let $G(x)=\int_{0}^{\sin x} f(t) d t$. Is G differentiable? If so, find $G^{\prime}(x)$.
34. Let $g:[0,1] \rightarrow[0,1]$ be continuous and strictly increasing on $[0,1]$. Use a sketch to explain why $\int_{0}^{1} g(x) d x+\int_{0}^{1} g^{-1}(y) d y=1$.
35. Compute the value of $\int_{0}^{\infty} x^{n} e^{-x} d x$
36. Suppose f is continuous and strictly decreasing on $[0, \infty)$. Explain why $\int_{0}^{\infty} f$ and $\sum_{n=1}^{\infty} f(n)$ are either both convergent or both divergent.

