Problems Chapter 4 Differentiation

1. Use the definition to find the derivative of the following functions:
a. x^{4}
b. $\frac{1}{x^{2}}$
c. $\frac{1}{\sqrt{x}}$
d. $\cos x$
2. Use the rules for derivatives to find the derivative of the following functions:
a. $\frac{x}{1+x^{2}}$
b. $\sqrt{x^{2}-3 x+1}$
c. $\tan \left(x^{2}\right) \quad|x|<\pi / 2$
d. $\quad \cos ^{-1}(x)$
3. Which of the following functions is differentiable at $x=0$? Which of the following functions is differentiable for $x \neq 0$? Where the derivative exists, is it continuous?
a. $\quad x|x|$
b. $\quad|x+1|+|x-1|$
c. $\quad x \cos \left(\frac{1}{x}\right)$
d. $\quad x^{2} \cos \left(\frac{1}{x}\right)$
e. $\quad f(x)=\left\{\begin{array}{lll}x^{2} & \text { if } & x \in Q \\ 0 & \text { if } & x \notin Q\end{array}\right.$
4. Let $f(x)= \begin{cases}x^{2} & \text { if } x \geq 0 \\ \alpha x & \text { if } x<0\end{cases}$
a. \quad for which values of α is f continuous at $x=0$?
b. \quad for which values of α is f differentiable at $x=0$?
c. When f is differentiable at $x=0$, does $f^{\prime \prime}(0)$ exist?
5. . Find all the points where $f(x)=\sqrt{1-\cos x}$ is not differentiable. Explain why the derivative fails to exist.
6. Let $H(x)=1$ for $x>0$ and $H(x)=0$ for $x \leq 0$.
a. For what values of $p \in R$ is the function $F(x)=x^{p} H(x)$ continuous at $x=0$?
b. For what values of $p \in R$ is the function $F(x)=x^{p} H(x)$ differentiable at $x=0$?
c. Compute $F^{\prime}(x)$ for each p and at each x where the derivative exists.
7. Find a function $f(x)$ such that

$$
\begin{aligned}
& f^{\prime}(-1)=f^{\prime}(0)=f^{\prime}(+1)=0 \\
& f^{\prime \prime}(-1)>0 \quad f^{\prime \prime}(0)<0 \quad f^{\prime \prime}(+1)>0
\end{aligned}
$$

8. Give an example of a function $f(x)$ that is continuous on $[-1,1]$ such that:
a. $\quad f$ has a maximum at some $c \in(-1,1)$ but $f^{\prime}(c) \neq 0$
b. $\quad f^{\prime}(c)=0$ at some $c \in(-1,1)$ but c is neither the max nor the min for f on $[-1,1]$.
c. $\quad f^{\prime}$ is zero at both the max and the min for f on $[-1,1]$
9. Suppose f is continuous and differentiable on $[-1,1]$ and that $f^{\prime}(x)$ is continuous on $[-1,1]$ as well. Show that f is Lipschitz continuous.
10. A function $F(x)$ is said to be periodic with period L if $F(x+L)=F(x)$ for all x. Suppose F is periodic and continuous on R. Then show that F is bounded and uniformly continuous on R.
11. Using 580 feet of fence wire, build a rectangular pen of maximum area by making use of the fixed walls of length 200 feet and 400 feet, respectively as shown.below. Note that there are 3 different configurations that make use of the fixed walls. In each of these configurations, the area is equal to $x_{j} y_{j}$ but in each case, x_{j} and y_{j} satisfy a different condition (e.g. in the second case the condition is, $x_{2}+y_{2}=580$).
a. In each of the three configurations:express y in terms of x; what are the max and min values for x and y in each configuration? express the area in terms of x
b. determine the maximum area that can be achieved and explain how the Max-min theorem must be used in finding the maximum area in this problem.
c. plot the graph of $A(x)$ versus x and show where the max occurs.

12. Find all real values of a for which the function $f(x)=x^{3}+a x^{2}+3 x+15$ is strictly increasing on $(0,1)$.
13. Give an example of a function $f(x)$ which is differentiable with a differentiable derivative $f^{\prime}(x)$ but whose second derivative $f^{\prime \prime}(x)$ is discontinuous.
14. Suppose f is differentiable at every x. Prove $g(x)=f(x)^{2}$ is differentiable at every x.
15. Suppose f is differentiable at every x. Prove $g(x)=f(x-1) f(x+1)$ is differentiable at every x.
16. Find all the critical points for $f(x)=x^{x}$
17. Suppose $f \in C[a, b] \cap D(a, b)$ and $\left|f^{\prime}(x)\right| \leq 2$ on $[a, b]$. Prove that f is uniformly continuous on $[a, b]$. Give an example of a function that is uniformly continuous on $[a, b]$ but its derivative is not bounded on $[a, b]$.
18. Suppose $f \in C[a, b] \cap D(a, b)$ and f has an absolute max at an interior point $c \in$ (a, b). Does this imply $f^{\prime}(c)=0$? If $f^{\prime}(c)=0$ at an interior point $c \in(a, b)$, does this imply that $f(x)$ has a max or a min at $x=c$?
19. If $x(t)=a \cos t$ and $y(t)=b \sin t$, find the extreme values for $\frac{d y}{d x}$, and $\frac{d^{2} y}{d x^{2}}$ and locate the points on the path where they occur.
20. Consider the function, $f(x)=1-(x-1)^{2 / 3}$ on [0,2]. Does Rolle's theorem apply in this case? Explain.
21. Show that between any two zeroes of $e^{x} \sin x=1$, there is at least one real zero of $e^{x} \cos x=-1$.
22. Show that if $0<a<b$, then $(1-a / b)<\ln (b / a)<b / a-1$.
23. Prove that $\frac{\sin x}{x}$ is strictly decreasing on $(0, \pi / 2)$. Then prove that $0 \leq \sin x \leq 2 x / \pi$ for $0 \leq x \leq \pi / 2$.
24. If $\alpha \beta>0$ then show that $x^{3}+\alpha x^{2}+\beta=0$ has one real root.
25. If $f^{\prime}(x)>c>0$ for all $x \geq 0$, show that $\lim _{x \rightarrow \infty} f(x)=\infty$
26. If $f \in C^{2}(R)$ and $f(x)=0$ has 3 real roots, show that there is some $z \in R$ where $f^{\prime \prime}(z)=0$
27. Suppose $f \in C[a, b] \cap D(a, b)$ Let S denote the set of slopes of all possible secant lines for $y=f(x)$ for $x \in(a, b)$ and let D denote the set of all possible values for $f^{\prime}(x)$ for $x \in(a, b)$. Show that $S \subset D$ but D need not equal S.
28. Show that the conclusions of the mean value theorem may fail if we drop the condition that f is differentiable at every point of (a, b). What if we allow f to be discontinuous at a or b ?
29. Show that if $f \in C[a, b]$ and f has first and second derivatives at each point of (a, b), then there exists a $c \in(a, b)$ such that $f(b)=f(a)+f^{\prime}(a)(b-a)+\frac{1}{2!} f^{\prime \prime}(c)(b-a)^{2}$.
30. If $f\left(\frac{x+y}{2}\right)=\frac{f(x)-f(y)}{x-y}$ for $x \neq y$, what can you say about $f(x)$?
31. Use what you know about geometric series and Taylor series to obtain the result, $\frac{1}{1+x}=1-x+x^{2}-x^{3}+x^{4}-x^{5}+\xi^{6}$ for $0<\xi<x$.
32. Use the result of the previous problem to obtain,
$\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\frac{x^{6}}{6}+\frac{\xi^{7}}{7}$ for $0<\xi<x$.
33. Use the result of problem 31 to obtain
$\frac{1}{(1+x)^{2}}=1-2 x+3 x^{2}-4 x^{3}+5 x^{4}-6 x^{5}+7 \xi^{6}$ for $0<\xi<x$.
34. We say $f(x)=O\left(x^{p}\right)$ as $x \rightarrow 0$, if $f(x) x^{-p}$ tends to a finite limit as $x \rightarrow 0$. In this case we say $f(x)$ vanishes to order p at $x=0$. Find the order for $f(x)=\sin ^{2} 2 x$ and $g(x)=1-\cos 3 x$.
35. Find $O\left(x^{p}\right)$ for $f(x)=x^{3}-\sin ^{3} x$ and $g(x)=x-\ln (1+x)-1+\cos x$.
36. Find real numbers A and α such that
a. $\quad \operatorname{Lim}_{x \rightarrow 0} \frac{1-\cos x}{A x^{\alpha}}=1$
b. $\quad \operatorname{Lim}_{x \rightarrow 0} \frac{\sin x-x}{A x^{\alpha}}=1$
37. Can we use L'Hopital's rule be used to determine the limit of the sequence, $a_{n}=n^{3} e^{-n^{2}}$.
38. Can L'Hopital's rule be used to find $\lim _{x \rightarrow 0} \frac{x^{2} \sin (1 / x)}{\sin x}$
39. Suppose f is such that for some $C>0,|f(x)-f(y)| \leq C|x-y|^{2}$. Prove that f is a constant function.
40. Attack or defend the statement "if f is differentiable at all x and $f^{\prime}(a)=0$ at some point $x=a$, then f is not injective.
41. Show $f(x)=x^{3}+x^{2}+8$ has an inverse and find the derivative of f^{-1}.
42. Suppose $f, g \in D(R)$ and $f(0)=g(0)$. Show that if $f^{\prime} \leq g^{\prime}$ on R then $f(x) \leq g(x)$ for all $x \geq 0$.
43. Suppose $f \in D(R)$ and $f(0)=0$. Show that if $1 \leq f^{\prime}(x) \leq 2$ on R then $x \leq f(x) \leq 2 x$ for all $x \geq 0$.
44. Suppose $f \in D(R)$ and $\left|f^{\prime}(x)\right|<1 \forall x$ For $s_{0} \in R$ define $s_{n}=f\left(s_{n-1}\right)$ for $n=1,2, \ldots$ Show that $\left\{s_{n}\right\}$ is a Cauchy sequence.
45. Evaluate the following limit: $\lim _{x \rightarrow 0}\left[\frac{1}{\sin x}-\frac{1}{x}\right]$
46. Evaluate the following limit: $\quad \lim _{x \rightarrow 0}[\cos x] \frac{1}{x^{2}}$
47. Evaluate the following limit: $\lim _{x \rightarrow 0}\left[\frac{e^{2 x}-\cos x}{\sin x}\right]$
48. Evaluate the following limit: $\lim _{x \rightarrow \infty}\left[x+e^{x}\right]^{\frac{1}{x}}$
49. Evaluate the following limit: $\lim _{x \rightarrow \infty}\left[1+\frac{1}{x}\right]^{2 x}$
50. Show that if $f(x)=\left\{\begin{array}{ccc}e^{-1 / x} & \text { if } & x>0 \\ 0 & \text { if } & x \leq 0\end{array}\right.$ then $f^{(n)}(0)=0$ for $n=1,2, \ldots$
