Additional Problems Sequences

1. Consider the sequence of prime numbers, $1,2,3,5,7,11, \ldots$ Is this really a sequence? How do you define a_{n} ?
2. What is the next term in the sequence $3,1,5,1,7, \ldots$ Give a definition for a_{n}.
3. Find an N such that $\left|a_{n}-L\right| \leq 10^{-3}$ for $n>N$
a. $\quad a_{n}=\frac{2}{\sqrt{n+1}}$
b. $\quad a_{n}=1-\frac{1}{n^{3}}$
c. $a_{n}=2+2^{-n}$
4. Prove convergence/divergence for $a_{n}=\frac{2 n^{2}+5 n-6}{n^{3}}$
5. Prove convergence/divergence for $a_{n}=\frac{3 n+5}{6 n+11}$.
6. Prove convergence/divergence for $a_{n}=\frac{n \sqrt{n+2}+1}{n^{2}+4}$
7. Prove convergence/divergence for $a_{n}=\sqrt{n+1}-\sqrt{n}$
8. Prove convergence/divergence for $a_{n}=\sqrt{n}(\sqrt{n+1}-\sqrt{n})$
9. Suppose a_{n} assumes only integer values. Under what conditions does this sequence converge?
10. Show that the sequences a_{n} and $b_{n}=a_{n+10^{6}}$ either both converge or both diverge.
11. Let $s_{1}=1$ and $s_{n+1}=\sqrt{s_{n}+1}$. List the first few terms of this sequence. Prove that the sequence converges to $(1+\sqrt{5}) / 2$.
12. A subsequence $\left\{a_{n_{k}}\right\}$ is obtained from a sequence $\left\{a_{n}\right\}$ by deleting some of the terms a_{n}, and retaining the others in their original order. Explain why this implies that $n_{k} \geq k$ for every k.
13. Which statements are true? Explain your answer.
a. If $\left\{a_{n}\right\}$ is unbounded then either $\lim _{n} a_{n}=\infty$ or else $\lim _{n} a_{n}=-\infty$
b. If $\left\{a_{n}\right\}$ is unbounded then $\lim _{n}\left|a_{n}\right|=\infty$
c. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are both bounded then so is $\left\{a_{n}+b_{n}\right\}$
d. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are both unbounded then so is $\left\{a_{n}+b_{n}\right\}$
e. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are both bounded then so is $\left\{a_{n} b_{n}\right\}$
f. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are both unbounded then so is $\left\{a_{n} b_{n}\right\}$
14. Which statements are true? Explain your answer.
a. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are both divergent then so is $\left\{a_{n}+b_{n}\right\}$
b. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are both divergent then so is $\left\{a_{n} b_{n}\right\}$
c. If $\left\{a_{n}\right\}$ and $\left\{a_{n}+b_{n}\right\}$ are both convergent then so is $\left\{b_{n}\right\}$
d. If $\left\{a_{n}\right\}$ and $\left\{a_{n} b_{n}\right\}$ are both convergent then so is $\left\{b_{n}\right\}$
e. If $\left\{a_{n}\right\}$ is convergent then so is $\left\{a_{n}^{2}\right\}$
f. If $\left\{a_{n}\right\}$ is convergent then so is $\left\{1 / a_{n}\right\}$
g. If $\left\{a_{n}^{2}\right\}$ is convergent then so is $\left\{a_{n}\right\}$
15. Either give an example of a sequence with the following property or else state a theorem that shows why no such example is possible.
a. a sequence that is monotone increasing but is not bounded
b. a seqence that converges to 6 but contains infinitely many terms that are not equal to 6 as well as infinitely many terms that are equal to 6
c. an increasing sequence that is bounded but is not convergent
d. a sequence that converges to 6 but no term of the sequence actually equals 6 .
e. a sequence that converges to 6 but contains a subsequence converging to 0 .
f. a convergent sequence with all negative terms whose limit is not negative
g. an unbounded increasing sequence containing a convergent subsequence
h. a convergent sequence whose terms are all irrational but whose limit is rational.
16. How are the notions of accumulation point of a set and limit point of a sequence related? How does this relate to the two formulations of the Bolzano-Weierstrass theorem?
17. Prove: If the Cauchy sequence $\left\{a_{n}\right\}$ contains a subsequence $\left\{a_{n_{k}}\right\}$ which converges to limit L, then the original sequence must also converge to L.
18. Show that $1+a+a^{2}+\cdots+a^{n}=\frac{1-a^{n+1}}{1-a}$ for $a \neq 1$ and any positive integer n. Find $\lim _{n \rightarrow \infty}\left(1+a+a^{2}+\cdots+a^{n}\right)$ for $|a|<1$. What is the limit if $|a| \geq 1$?
19. Let $\left\{s_{n}\right\}$ be such that $\left|s_{n+1}-s_{n}\right| \leq 2^{-n}$ for all $n \in N$. Prove that this is a Cauchy sequence. Is this result true under the condition $\left|s_{n+1}-s_{n}\right| \leq \frac{1}{n}$?
20. Let $s_{1}=1$ and $s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)$ for $n \geq 1$. Find the first few terms of this sequence. Use induction to show that $s_{n}>\frac{1}{2}$ for all n. Show that this sequence is nonincreasing. Prove that the sequence converges and find its limit.
21. Let $s_{1}=1$ and $s_{n+1}=\left(1-\frac{1}{4 n^{2}}\right) s_{n}$ for $n \geq 1$. Determine if the sequence converges and, if it does, find the limit.
22. For each of the following sequences state a theorem which establishes the convergence/divergence:
a. $\quad a_{n}=n^{1 / 3}$
b. $\quad a_{n}=\frac{n^{2}+3}{n+2}$
c. $\quad a_{n}=\left(2+10^{-n}\right)\left(1+(-1)^{n}\right)$
d. $\quad a_{n}=\frac{1}{n^{2}+3 n+2}$
e. $a_{n}=1+2^{-n}$
f. $\quad a_{n}=\sqrt{n+1}$
g. $\quad a_{n}=\sum_{k=1}^{n} \frac{1}{k}$ (hint: show that $a_{2 n}-a_{n}$ does not tend to 0 as $n \rightarrow \infty$)
h. $\left\{a_{n}\right\}=\left\{1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, 1, \frac{1}{5}, \ldots\right\}$
23. Let
$a_{1}=0.1, a_{2}=0.101, a_{3}=0.101001, a_{4}=0.1010010001, a_{5}=0.101001000100001, \ldots$ Show that this is a sequence of rational numbers that converges to a limit L. Is the limit L rational?
24. Which statements are true?:
a. a sequence is convergent if and only if all its subsequences are convergent.
b. a sequence is bounded if and only if all its subsequences are bounded.
c. a sequence is monotone if and only if all its subsequences are monotone.
d. a sequence is divergent if and only if all its subsequences are divergent.
25. The sequence $\left\{a_{n}\right\}$ has the property, $\forall \varepsilon>0, \exists N_{\varepsilon}$ such that $\left|a_{n+1}-a_{n}\right|<\varepsilon$ when $n>N_{\varepsilon}$. Is the sequence necessarily a Cauchy sequence?
