Additional Problems Sequences

- 1. Consider the sequence of prime numbers, 1, 2, 3, 5, 7, 11, ... Is this really a sequence? How do you define a_n ?
- **2**. What is the next term in the sequence 3, 1, 5, 1, 7, ... Give a definition for a_n .
- **3**. Find an *N* such that $|a_n L| \le 10^{-3}$ for n > N

a.
$$a_n = \frac{2}{\sqrt{n+1}}$$

b. $a_n = 1 - \frac{1}{n^3}$
c. $a_n = 2 + 2^{-n}$

4. Prove convergence/divergence for $a_n = \frac{2n^2 + 5n - 6}{n^3}$

- 5. Prove convergence/divergence for $a_n = \frac{3n+5}{6n+11}$.
- 6. Prove convergence/divergence for $a_n = \frac{n\sqrt{n+2}+1}{n^2+4}$
- 7. Prove convergence/divergence for $a_n = \sqrt{n+1} \sqrt{n}$
- 8. Prove convergence/divergence for $a_n = \sqrt{n} (\sqrt{n+1} \sqrt{n})$
- **9**. Suppose a_n assumes only integer values. Under what conditions does this sequence converge?
- **10**. Show that the sequences a_n and $b_n = a_{n+10^6}$ either both converge or both diverge.
- 11. Let $s_1 = 1$ and $s_{n+1} = \sqrt{s_n + 1}$. List the first few terms of this sequence. Prove that the sequence converges to $(1 + \sqrt{5})/2$.
- **12**. A subsequence $\{a_{n_k}\}$ is obtained from a sequence $\{a_n\}$ by deleting some of the terms a_n , and retaining the others in their original order. Explain why this implies that $n_k \ge k$ for every k.
- **13**. Which statements are true? Explain your answer.
 - **a**. If $\{a_n\}$ is unbounded then either $\lim_n a_n = \infty$ or else $\lim_n a_n = -\infty$
 - **b**. If $\{a_n\}$ is unbounded then $\lim_n |a_n| = \infty$
 - **c**. If $\{a_n\}$ and $\{b_n\}$ are both bounded then so is $\{a_n + b_n\}$
 - **d**. If $\{a_n\}$ and $\{b_n\}$ are both unbounded then so is $\{a_n + b_n\}$
 - **e**. If $\{a_n\}$ and $\{b_n\}$ are both bounded then so is $\{a_nb_n\}$
 - f. If $\{a_n\}$ and $\{b_n\}$ are both unbounded then so is $\{a_nb_n\}$
- 14. Which statements are true? Explain your answer.
 - **a**. If $\{a_n\}$ and $\{b_n\}$ are both divergent then so is $\{a_n + b_n\}$
 - **b**. If $\{a_n\}$ and $\{b_n\}$ are both divergent then so is $\{a_nb_n\}$
 - **c**. If $\{a_n\}$ and $\{a_n + b_n\}$ are both convergent then so is $\{b_n\}$
 - **d**. If $\{a_n\}$ and $\{a_nb_n\}$ are both convergent then so is $\{b_n\}$
 - **e**. If $\{a_n\}$ is convergent then so is $\{a_n^2\}$

- f. If $\{a_n\}$ is convergent then so is $\{1/a_n\}$
- **g**. If $\{a_n^2\}$ is convergent then so is $\{a_n\}$
- **15**. Either give an example of a sequence with the following property or else state a theorem that shows why no such example is possible.
 - a. a sequence that is monotone increasing but is not bounded
 - **b**. a seqence that converges to 6 but contains infinitely many terms that are not equal to 6 as well as infinitely many terms that are equal to 6
 - c. an increasing sequence that is bounded but is not convergent
 - d. a sequence that converges to 6 but no term of the sequence actually equals 6.
 - e. a sequence that converges to 6 but contains a subsequence converging to 0.
 - f. a convergent sequence with all negative terms whose limit is not negative
 - **g**. an unbounded increasing sequence containing a convergent subsequence
 - h. a convergent sequence whose terms are all irrational but whose limit is rational.
- **16**. How are the notions of accumulation point of a set and limit point of a sequence related? How does this relate to the two formulations of the Bolzano-Weierstrass theorem?
- **17**. Prove: If the Cauchy sequence $\{a_n\}$ contains a subsequence $\{a_{n_k}\}$ which converges to limit *L*, then the original sequence must also converge to *L*.
- **18.** Show that $1 + a + a^2 + \dots + a^n = \frac{1 a^{n+1}}{1 a}$ for $a \neq 1$ and any positive integer *n*. Find $\lim_{n \to \infty} (1 + a + a^2 + \dots + a^n)$ for |a| < 1. What is the limit if $|a| \ge 1$?
- **19**. Let $\{s_n\}$ be such that $|s_{n+1} s_n| \le 2^{-n}$ for all $n \in N$. Prove that this is a Cauchy sequence. Is this result true under the condition $|s_{n+1} s_n| \le \frac{1}{n}$?
- **20**. Let $s_1 = 1$ and $s_{n+1} = \frac{1}{3}(s_n + 1)$ for $n \ge 1$. Find the first few terms of this sequence. Use induction to show that $s_n > \frac{1}{2}$ for all *n*. Show that this sequence is nonincreasing. Prove that the sequence converges and find its limit.
- **21.** Let $s_1 = 1$ and $s_{n+1} = \left(1 \frac{1}{4n^2}\right)s_n$ for $n \ge 1$. Determine if the sequence converges and, if it does, find the limit.
- **22**. For each of the following sequences state a theorem which establishes the convergence/divergence:

a.
$$a_n = n^{1/3}$$

b. $a_n = \frac{n^2 + 3}{n+2}$
c. $a_n = (2 + 10^{-n})(1 + (-1)^n)$

d. $a_n = \frac{1}{n^2 + 3n + 2}$ **e.** $a_n = 1 + 2^{-n}$ **f.** $a_n = \sqrt{n+1}$ **g.** $a_n = \sum_{k=1}^n \frac{1}{k}$ (hint: show that $a_{2n} - a_n$ does not tend to 0 as $n \to \infty$) **h.** $\{a_n\} = \{1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, 1, \frac{1}{5}, \dots\}$

23. Let

 $a_1 = 0.1$, $a_2 = 0.101$, $a_3 = 0.101001$, $a_4 = 0.1010010001$, $a_5 = 0.101001000100001$,... Show that this is a sequence of rational numbers that converges to a limit *L*. Is the limit *L* rational?

- 24. Which statements are true?:
 - a. a sequence is convergent if and only if all its subsequences are convergent.
 - b. a sequence is bounded if and only if all its subsequences are bounded.
 - c. a sequence is monotone if and only if all its subsequences are monotone.
 - d. a sequence is divergent if and only if all its subsequences are divergent.
- **25**. The sequence $\{a_n\}$ has the property, $\forall \varepsilon > 0$, $\exists N_{\varepsilon}$ such that $|a_{n+1} a_n| < \varepsilon$ when $n > N_{\varepsilon}$. Is the sequence necessarily a Cauchy sequence?