
Chapter 6 Infinite Series

In the previous chapter we considered integrals which were improper in the sense that the
interval of integration was unbounded. In this chapter we are going to discuss a topic which
is somewhat similar, the topic of infinite series. An infinite series is a sum containing an
infinite number of terms. For example,

1 � 1 � 1 � 1 �. . .

1 � 1 � 1 � 1 � 1 �. . .

1 � 1
2 � 1

3 � 1
4 �. . .

are each examples of infinite series. Since the number of operations needed to compute
such a sum is infinite, it is not clear whether or not a finite value can be associated with the
sum. It is even less clear how the value of the sum can be found when it is known to be
finite. We will show how it can be decided if the series can be associated with a sum and, in
special cases, the value of the sum can be determined.

Infinite Series
Let �an� denote a sequence of real numbers, and define a new sequence, �SN� by

SN � �
n�1

N

an, N � 1, 2,�

Then

S1 � a1, S2 � a1 � a2, S3 � a1 � a2 � a3, etc.

We refer to the sequence, �an�, as the sequence of terms for the infinite

series S � �
n�1

�
an. We refer to the related sequence, �SN�, as the sequence of partial

sums for the infinite series. If the sequence of partial sums is a convergent sequence, then
the infinite series is said to be a convergent infinite series. If the sequence of partial sums is
not convergent then the infinite series is not convergent. Note that the sequence of partial
sums may fail to converge due to the presence of more than a single limit point or because
the sequence of partial sums is not bounded. In the latter case, we say the infinite series
diverges to infinity and in the case of a sequence of partial sums having more than a single
limit point, we say the infinite series simply fails to converge. In either case, we can say that
the infinite series diverges.

(a) Consider the following series, known as the harmonic series,

�
n�1

�
1
n � 1 � 1

2
� 1

3
� �

Note that for any positive integer, N,

SN � �
n�1

N
1
n � 1 � 1

2
� 1

3
� � � 1

N

S2N � �
n�1

2N
1
n � 1 � 1

2
� � � 1

N
� 1

N � 1
� � � 1

2N
.

Then
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S2N � SN � 1
N � 1

� � � 1
2N

� 1
2N

� � � 1
2N

� N 1
2N

� 1
2

.

Since S2N � SN � 1/2 for every N, the sequence of partial sums is not a Cauchy sequence.
It follows that the sequence of partial sums is not convergent and the infinite series is
divergent.

(b) Consider the series,

�
n�1

�
1
n2 � 1 � 1

22 � 1
32 � �

The method used in (a) fails to lead to a conclusion. We will show later that this series is
convergent.

(c) Consider the geometric series,

�
n�0

�
a rn � a � ar � ar2 � �

This geometric series has first term equal to a and ratio term equal to r. Note that

SN � a � ar � ar2 � � � arN

and rSN � ar � ar2 � � � arN � arN�1.

Then

SN � rSN � SN�1 � r� � a � arN�1,

and if r � 1, we find

SN � a � arN�1

1 � r
�

a
1 � r

if r � 1

� if r � 1
.

Evidently, if r � 1, the sequence of partial sums is convergent to a
1 � r

, hence the series is

also convergent and this is the value of the sum. If r � 1, then the series is just the sum
a � a � a � �, which is divergent. The geometric series is one of the very few infinite series
for which it is possible to express SN in terms of N and to then use this expression to
determine the convergence of the series.

Tests for Convergence
The convergence or divergence of an infinite series for which no explicit formula for SN is
available must be decided by indirect tests for convergence.

Theorem 6.1 (nth term test) If SN converges to a limit S, then an must converge to zero.

Proof: Note that an � Sn � Sn�1. Then if lim
n��

Sn � S, it is easy to see that
lim
n��

an � lim
n��

Sn � lim
n��

Sn�1 � S � S � 0.

Note that theorem 6.1 asserts that if an does not converge to zero then the sequence of
partial sums does not converge and the associated infinite series is divergent. The theorem
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does not say that if an tends to zero then the series converges.
The next result is a simple consequence of the arithmetic with limits theorem from the

chapter on sequences.

Theorem 6.2 If �
n

an, �
n

bn are convergent infinite series with sums A, B respectively, then

�
n
�an � �bn is also convergent to the sum �A � �B.

Positive Term Series
An infinite series for which the sequence of terms contains only positive numbers is called a
positive term series. The next two results are true for series whose terms are all positive.

Theorem 6.3 (Comparison test) If �an� and �bn� are two sequences of positive numbers such
that

i� for some integer N, an � bn for all n � N

then the convergence of the series �bn implies the convergence of �an and the
divergence of the series �an implies the divergence of �bn. If the condition i) is
replaced by

ii� lim
n��

an

bn
� L � �,

then the two series are either both convergent or both divergent.

The test i) is called the direct comparison test while ii) is referred to as the limit comparison
test. Clearly these results are related to the squeeze theorem for sequences.
The next result is based on the similarity between improper integrals and infinite series.

Theorem 6.4 (Integral test) Suppose a�x� is a continuous and monotonically decreasing
function that is positive on D � �1,��. Then the infinite series �

n
an, where an � a�n�,

and the improper integral �
1

�
a�x�dx, either both converge or both diverge.

Proof: Let P1 denote the partition �1, 2, 3,� � for D. Then, by drawing a sketch it is easy to
see that

�
n�2

�
an � s�a, P1 � � �

1

�
a�x�dx � S�a, P1 � � �

n�1

�
an

from which the result follows.

Example

(a) Consider the series of the previous example, part (b)

�
n�1

�
an � �

n�1

�
1
n2 � 1 � 1

22 � 1
32 � �

and note that an � a�n� defines the function a�x� � 1
x2 , on the domain, D � �1,��. Then

a�x� is positive, continuous and monotone decreasing on D so the integral test applies.
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Since,

�
1

� 1
x2 � lim

L��
�

1

L 1
x2 � lim

L��
�� 1

x |x�1
x�L� � lim

L��
1 � 1

L
� 1

it follows from theorem 6.4 that the series is convergent.

(b) More generally, consider

�
n�1

�
an � �

n�1

�
1
np � 1 � 1

2p � 1
3p � �

Then an � a�n� becomes a�x� � 1
xp , on D � �1,��, and

�
1

� 1
xp � lim

L��
�

1

L 1
xp � lim

L��
� x1�p

1 � p
|x�1
x�L� � 1

1 � p
lim
L��

�1 � L1�p�.

In this case,

lim
L��

�1 � L1�p� �
1 if p � 1

Div if p � 1

and theorem 6.4 leads to the result that the series converges if p � 1.

(c) We can apply the integral test to the harmonic series

�
n�1

�
an � �

n�1

�
1
n � 1 � 1

2
� 1

3
� �

In this case an � a�n� becomes a�x� � 1
x , on D � �1,��, and

�
1

� 1
x � lim

L��
�

1

L 1
x � lim

L��
�ln�x�|x�1

x�L� � lim
L��

ln�L� � �.

Since the improper integral is divergent, the infinite series is divergent as well. This has
already been proved by another argument.

Absolute and Conditional Convergence
Not every infinite series is a positive term series. If �an is an infinite series containing both
positive and negative terms, then we say that the series is absolutely convergent if the
associated positive terms series �|an| is convergent. Every series which is absolutely
convergent can be shown to be convergent, but the converse is false. A series which is
convergent but not absolutely convergent is said to be conditionally convergent. A series
that is conditionally convergent depends on the cancellation of positive and negative terms
for its convergence while an absolutely convergent series converges simply because the
terms decrease so rapidly that there is no need to rely on cancellation.

Example

The series

1 � 1
2

� 1
3

� 1
4

� 1
5

� � � �
n�1

�
��1�n�1 1

n

contains both positive and negative terms. Note that
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1 � 1
2

� 1
3

� 1
4

� 1
5

� 1
6

� 1
7

� 1
8

� � � 1
2n � 1

� 1
2n

1
2

1
12

1
30

1
56

1
2n�2n � 1�

and since
1

2n�2n � 1�
� 1

n2 if n � 1

we have

�
n�1

�
��1�n�1 1

n � �
n�1

�
1

2n�2n � 1�
� �

n�1

�
1
n2 .

Then the series is convergent by theorem 6.3. On the other hand, the series is not
absolutely convergent since we have already shown that the series whose terms are
|an | � ��1�n�1 1

n � 1
n , is divergent. Therefore the original series is conditionally

convergent but not absolutely convergent.

Theorem 6.5 If an infinite series is absolutely convergent then it is convergent.

The previous example illustrates that the converse of this theorem is false.

If �an� is a sequence of positive numbers then the series

�
n�1

�
��1�n�1an � a1 � a2 � a3 � a4 � �

is called an alternating series. The convergence of an alternating series is easily
determined.

Theorem 6.6 (Alternating Series Test) Suppose the positive term sequence �an� satisfies

an�1 � an for all n

lim
n��

an � 0

Then the alternating series �
n�1

�
��1�n�1an converges to a finite sum S, and for each N � 0

we have |S � SN | � aN�1 .

Proof: Note that for all N,

S2N�2 � S2N � a2N�1 � a2n�2

S2N�1 � S2N�1 � a2N � a2n�1

Since an�1 � an for all n, it follows that the even order partial sums �S2n� are a monotone
increasing sequence while the odd order partial sums are a monotone decreasing
sequence. In addition, for any m and n, such that 2n � 1 � 2m,

S2n�1 � S2m � �a2n�1 � a2n� � � � �a2m�3 � a2m�2� � a2m�1 � 0.

On the other hand, for any m and n, such that 2n � 1 � 2m,

S2m � S2n�1 � �a2m � a2m�1 � � � a2n�2 � a2n�1 � a2n � 0.
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In either case, S2m � S2n�1, which implies that the monotone increasing sequence of even
order sums is bounded above be every odd order sum, while the monotone decreasing
sequence of odd order sums is bounded below by every even order sum. Then the
monotone sequence theorem asserts that both sequences must converge. To see that they
converge to the same limit, note that

lim
n��

S2n�1 � lim
n��

S2n � lim
n��

�S2n�1 � S2n�

� lim
n��

a2n�1 � 0.

If we denote the limit of the sequence of partial sums by S, then
0 � S2n�1 � S � S2n�1 � S2n � a2n

0 � S � S2n � S2n�1 � S2n � a2n�1

which implies that for all n,

|S � Sn | � an�1.

i.e., we can approximate S by Sn with an error less than an�1.�

Suppose �
n�1

�
an is an infinite series, whose terms need not be positive, but for which

lim
n��

an�1
an

exists and equals r. This means that this series behaves ultimately like a
geometric series having ratio term r and we can show that if r � 1, the series is convergent,
(although we are not entitled to conclude that the sum equals 1

1 � r
�. Similarly, if r � 1, we

can conclude that the series is divergent. If r � 1 then we can only conclude that the series
does not behave like a geometric series and some other approach must be found to
determine the convergence or divergence. We can state this result in a theorem.

Theorem 6.7 (Ratio test) Suppose the sequence �an� satisfies

i� lim
n��

an�1
an

� r.

Then the infinite series �an is absolutely convergent if r � 1 and is divergent if r � 1.
If r � 1, the test fails.

The condition i) implies that the series behaves ultimately like a geometric series with ratio
term equal to r. The same result is true if the condition i) is replaced by the condition,

ii� lim
n��|an |1/n

� r.

Example

(a) Consider the alternating series

�
n�1

�

an � �
n�1

�

��1�n�1 n2

2n .

We are free to apply either theorem 6.6 or 6.7. Note that,

an�1
an

�
�n � 1�2

2n�1
2n

n2 � n
n � 1

2 1
2

,

and since

6



lim
n��

n
n � 1

2
� 1,

we have

lim
n��

an�1
an

� 1
2

� 1.

It follows from theorem 6.7 that the series is absolutely convergent. We can also use the

alternating series test which tells us that the series is convergent with |S � SN | � �N � 1�2

2N�1 .

(b) If we apply theorem 6.7 to the series

�
n�1

�

an � �
n�1

�
1
np

we find
an�1
an

�
�n � 1�p

np � n � 1
n

p
� 1 as n � �.

Then the ratio test fails to tell us anything about the convergence or divergence for this
series. As we have seen in a previous example the integral test implies the series
converges if p � 1.

Exercises
Test the following series for convergence.

1. �
n�0

�
e�n

n� 10

2. �
n�0

�
n� 10

n� 10

3. �
n�0

�
n

n3� 10

4. �
n�0

�
n2�1
n2�4

5. �
n�0

�
n2�1
n3�4

6. �
n�0

�
ln n2�2 �ln n2�1

n2�4

7. �
n�0

�
n2�1
2n�1

8. �
n�0

�
2n�1
n2�1

9. �
n�0

�
3�n

10. �
n�0

�
1
3

�n

11. �
n�1

�
��1�n�1 ln n

n
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12. �
n�1

�
��1�n�1 1

n

13. �
n�0

�
��1�n�1 n

n2�1

14. �
n�0

�
��1�n�1 n

n1�1/n

15. �
n�1

�
��1�n�1 1

n ln�n�1�

Power Series
For a given sequence of terms �an�, and a fixed real number c, define

F�x� � �
n�0

�
an�x � c�n

Then F�x� is a function whose domain, D, is the set of points x, where the infinite series
converges. We refer to this as a power series in x, expanded about the point x � c. In order
to determine D, it is often possible to use the ratio test.

(a) Consider the function F1 defined by the following power series

F1�x� � �
n�0

�
�n!��x � c�n.

Here we have

an�1
an

�
�n � 1�!

n!
�x � c�n�1

�x � c�n

� �n � 1�|x � c| �
0 if x � c

� if x � c

Then D1 consists of just the single point, x � c.

(b) Consider the function F2 defined by

F2�x� � �
n�0

�
1
2n �x � c�n

In this case,

an�1
an

� 2n

2n�1

�x � c�n�1

�x � c�n � 1
2

|x � c| � L

and L � 1 if |x � c| � 2. Therefore F2 has as its domain, D2 � �|x � c| � 2. �. This is an open
interval about x � c of radius 2 or total width 4.

�c� Let F3 be defined by

F3�x� � �
n�0

�
xn

n!
.

Here we have
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an�1
an

� n!
�n � 1�!

xn�1

xn �
|x|

n � 1
� 0 for all x.

Since L � 0 for any value of x, this series is convergent for all values of x; i.e.,
D3 � ��� � x � ��.

We observe from these examples that a power series is convergent on a set of the form
D � �|x � c| � R� where

1/R � L � lim
n��

an�1
an

.

The number R � 1/L is called the radius of convergence of the series and, as we see, R
can be 0, infinity or anything in between.

Note that formally, we have

F ��x� � �
n�0

�

ann �x � c�n�1

and �
c

x
F � �

n�0

�
an

n � 1
�x � c�n�1,

and, by the ratio test, these series have the same domain of convergence as does the
series for F�x�. Of course these are just formal remarks at this point, with no proof that
these representations are valid. However, if we let

FN�x� � �
n�0

N

an�x � c�n,

then for each integer N, FN�x� is a polynomial in x of degree N and it therefore continuous
with continuous derivatives of all orders. Then we can ask,

	 in what sense is it true that FN converges to F as N tends to infinity?
	 does it follow from this that FN

� converges to F � as N tends to infinity?
	 does it also follow that �

c

x
FN converges to �

c

x
F as N tends to infinity?

	 if FN does converge to F what properties of FN are carried over to F?

Answering these questions will occupy the rest of the time in this course. The following
examples show that the properties of the limit function are not necessarily the same as the
properties of the functions in the sequence.

(a) Let

fn�x� � x2

�1 � x2�n for x � R, n � 1, 2, . . .

and

F�x� � �
n�0

�

fn�x� � �
n�0

�
x2

�1 � x2�n .

Since fn�0� � 0 for each n, we have F�0� � 0. For x � 0, the series for F is just a geometric
series with r � �1 � x2��1

� 1, and it is easy to show that
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F�x� � �
n�0

�
x2

�1 � x2�n � 1 � x2 for x2 � 0.

Then

F�x� �
0 if x � 0

1 � x2 if x2 � 0

so a convergent series of continuous functions need not have a continuous sum.

(b) Let gn�x� � sin�n2x�/n for 0 � x � �, n � 1, 2, . . . . Then it is easy to show that gn�x�
converges to zero as n tends to infinity for every x in �0,��; i. e, gn�x� converges to g�x� � 0.
It is also clear that gn

� �x� � n cos�n2x�. and this sequence diverges at every x where cosx is
different from zero. Evidently differentiating a convergent sequence of differentiable
functions need not lead to a convergent sequence much less a sequence which converges
to the derivative of the limit of the original sequence.
(c) Let

hn�x� �

�2n�2x if 0 � x � 1
2n

4n � �2n�2x if 1
2n

� x � 1
n

0 if x � 1
n

Then

�
0

1
hn�x�dx � 1 for every n

but hn�x� � 0 as n tends to infinity. To see this note that for any c, 0 � c � 1, hn�c� � 0 if
1
n � c; i.e., if n � 1

c . . Thus the sequence of functions converges to the limit h�x� � 0 on
�0, 1� but the integrals of the hn

� s does not converge to the integral of h�x� � 0 .

3. Sequences of Functions
In order to answer the questions we have about power series, it will be necessary to first
consider an apparently simpler topic, convergence of sequences of functions.

Let �fn�x� : n � 1, 2, . . . � denote a family of functions on a common domain, D � �a, b�.
For each x0 in D, consider the sequence of real numbers, �fn�x0�� and let f�x0� denote the
limit of this sequence as n tends to infinity. Since the value of this limit will likely depend on
x0, we denote the limit by f�x0�. Then when we write

lim
n��

fn�x� � f�x�

what we mean is that for each x0 in D, the sequence of real numbers, �fn�x0�� converges to
a limit, denoted by f�x0�. More precisely, we mean that:

Definition lim
n��

fn�x� � f�x� if and only if for each x0 in D,and for each � � 0, there exists an
N � 0 such that |fn�x0� � f�x0�| � � for all n � N.

Example
(a)Consider
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fn�x� � nx
1� � n2x2

on D � ��1, 1�

Then we have fn�0� � 0, 	n and for 0 � |x0|� 1

| fn�x0�|�
nx0

1 � n2x0
2 � n|x0|

n2x0
2 � 1

n|x0|

Then

|fn�x0�| � 1
n|x0|

� � if n � 1
�|x0|

� N�x0,��.

This shows that for each x0 in ��1, 1�, and for each � � 0, there exists N � 0, such that
|fn�x0� � 0| � � for all n � N; i.e., fn�x� converges to the limit zero.

(b)Consider

gn�x� � xn

1 � x2n on D � �0,��.

We have gn�0� � 0 and gn�1� � 1
2

	n. In addition, for 0 � x0 � 1

gn�x0� �
x0

n

1 � x0
2n � x0

n.

Then for x0 � 1

gn�x0� �
x0

n

1 � x0
2n � x0

n

x0
2n

� 1
x0

n � � if n �
� log �
log x0

.

If 0 � x0 � 1, then

gn�x0� �
x0

n

1 � x0
2n � x0

n � � for n �
log �
log x0

This shows that for each x0 in �0,��, and for each � � 0, there exists N�x0� � 0, such that
|gn�x0� � 0| � � for all n � N�x0�; i.e., gn�x� converges to the limit

g�x� �
1/2 if x � 1

0 otherwise

(c)Consider

hn�x� � xn

1 � xn on D � �0,��

In this case we have hn�0� � 0 and hn�1� � 1
2

	n. In addition,

for 0 � x0 � 1,

hn�x0� �
x0

n

1 � x0
n � x0

n

and for x0 � 1

hn�x0� �
x0

n

1 � x0
n � 1

x0
�n � 1

Then
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hn�x0� 
 0 when 0 � x0 � 1

hn�x0� 
 1. when x0 � 1

hn�1� � 1
2

	n

hence

lim
n��

hn�x� �

0 if 0 � x � 1

1/2 if x � 1

1 if x � 1

(d)Consider

pn�x� �
1 if |x| � n

0 if |x| � n
on D � ���,��

By the definition of pn, for any x0, pn�x0� � 1 if n � |x0 |;
i.e.,

for any x0, and any � � 0

|pn�x0� � 1| � 0 � � if n � |x0 |.

Then for all x, lim
n��

pn�x� � 1.

(e) Consider the sequence,

qn�x� � xn

2n on D � �0, 1�.

Then for all n,

qn�0� � 0 and qn�x� � 1
2n for 0 � x � 1

It follows that lim
n��

qn�x� � 0; i.e., for all x � �0, 1�,

|qn�x� � 0| � 2�n � � if n �
� log �

log2
� N���.

Note that N here depends only on � and not on x.

Pointwise and Uniform Convergence
In these examples, we were able to show that |fn�x� � f�x�| � � for n � N�x,��. In each
example but the last, the integer N depended not just on � but on the point x in D. These
examples satisfy the condition in the definition of convergence of fn�x� to f�x�. We say for
each of these previous examples that the sequences converge pointwise to their limit
function.

For the last example sequence �qn�x��, for each � � 0, there exists N � 0 such that sup
x�D

|qn�x� � q�x�| � � for all n � N���. It is important to notice that in this example, N depends on
� but it does not depend on x � D. In such cases, we say the sequence �qn�x�� converges
uniformly to the limit function, q � 0.

Example
(a)Consider

12



fn�x� � �sin x�n on D � �0,��

Then fn��/2� � 1 for every n and, for
x � �/2, fn�x� � �sin x�n � rn with r � sin x � 1.Then for each x0 � �/2, r0 � sin x0 � 1,

| fn�x0� |� r0
n � � if n �

log�
logr0

� N��, r0�

and

lim
n��

fn�x� �
1 if x � �/2

0 if x � �/2

Since N��, r0� depends on � and on x0 (via r0 ), we conclude that the sequence converges
pointwise to its limit.

(b)Consider

gn�x� �
sin �nx�

n on D � �0,��

In this case,

gn�x� �
sin �nx�

n � 1
n on D

and

|gn�x� |� 1
n � � if n � 1

� � N���.

Since N does not depend on x, we conclude that gn converges uniformly to zero on D.

In general, to determine whether a given sequence of functions converges uniformly to a
limit, it is necessary to proceed as in the most recent example to see whether N can be
chosen independently of x.

For infinite series, there is a simple test which indicates uniform convergence.

Theorem 6.8 Let �fn�x� : n � 1, 2, . . . � denote a family of functions on a common domain,
D � �a, b�, and suppose there exists a sequence of positive constants �Mn� that satisfies
the following two conditions: i) for each n, |fn�x�| � Mn for all
x � D, and ii) �

n
Mn is convergent. Then �

n
fn�x� converges uniformly on D.

Proof To prove that �
n

fn�x� converges it will be sufficient to prove that the sequence of

partial sums, SN�x� � �
n

N

fn�x�, is a Cauchy sequence, uniformly in x. That is, it must be

proven that for every � � 0, there exists an integer N� � 0 (independent of x ) such that
|SN�x� � SM�x�| � � whenever, M, N � N� . To show this write

|SN�x� � SM�x�| � �
M

N

fn�x� � �
M

N

| fn�x�|� �
n

N

Mn.

Since �
n

Mn is convergent, for every � � 0, there exists an integer N� � 0 such that

�
n

N

Mn � �, and the result follows.
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Corollary Suppose the power series �
n�0

�
an�x � c�n has radius of convergence

R, 0 � R � �. Then the series converges uniformly on the set �|x � c| � R0� for every
R0 � R.

Proof Note that on the set �|x � c| � R0�, we have fn�x� � an�x � c�n satisfying

| fn�x�| � anR0
n. It is furthermore evident by applying the ratio test to the series �

n�0

�
anR0

n that

the series is convergent; ie. we compute,

lim
n��

an�1R0
n�1

anR0
n � R0 lim

n��
an�1
an

� R0 L � R0/R � 1,

and since the limit of the ratio of consecutive terms is less than one, the series converges.
Here we recall from the ratio test that the radius of convergence R is the reciprocal of the
limit, lim

n��
an�1
an

� L.

Consequences of Uniform Convergence
For infinite series of functions we can use theorem 6.8 to determine if the series converges
uniformly. On the other hand, we have no such simple approach to determine whether the
convergence of a sequence �fn�x�� of functions on a common domain D converges
uniformly or just pointwise. In general, to determine whether a given sequence of functions
converges uniformly to a limit, it is necessary to show that for each given � � 0, the
corresponding N can be chosen independently of x in D. As to why it is important to know
whether or not a sequence converges uniformly, consider the following theorem.

Theorem 6.9 Let �fn�x� : n � 1, 2, . . . � denote a family of continuous functions on a common
domain, D � �a, b�, and suppose the sequence fn converges uniformly on D to the limit
f. Then f is necessarily continuous on D.

Corollary Let �fn�x� : n � 1, 2, . . . � denote a family of continuous functions on a common

domain, D � �a, b�, and suppose the infinite series �
n�1

�
fn converges uniformly on D to

the sum, F�x�. Then F�x� is necessarily continuous on D.

With these results in hand, we can now answer each of the questions that were posed in
section 2.

Theorem 6.10 Let �fn�x� : n � 1, 2, . . . � denote a family of continuous functions on a common
domain, D � �a, b�, and suppose the sequence fn converges uniformly on D to the limit
f. Then

lim
n�� �a

b
fn � �

a

b
lim
n��

fn � �
a

b
f

Corollary Let �fn�x� : n � 1, 2, . . . � denote a family of continuous functions on a common

domain, D � �a, b�, and suppose the infinite series �
n�1

�
fn converges uniformly on D to
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the sum, F�x�. Then

�
n�1

�

�
a

b
fn � �

a

b

�
n�1

�

fn � �
a

b
F

Theorem 6.11 Let �fn�x� : n � 1, 2, . . . � denote a family of continuously differentiable
functions on a common domain, D � �a, b�, and suppose that: i) the sequence fn

converges uniformly on D to the limit f, and ii) the sequence of derivatives, fn
� converges

uniformly on D to the limit g. Then f is differentiable and f ��x� � g�x�

Corollary Let �fn�x� : n � 1, 2, . . . � denote a family of continuously differentiable functions

on a common domain, D � �a, b�, and suppose that: i) the infinite series �
n�1

�
fn

converges uniformly on D to the sum, F�x�, and ii) the differentiated infinite series

�
n�1

�
f n
� converges uniformly on D to the sum, G�x�. Then F � � G; i.e.,

F ��x� � d
dx �

n�1

�

fn�x� � �
n�1

�

f n
� �x� � G�x�.

Proof of theorem 6.8- Let �fn�x� : n � 1, 2, . . . � denote a family of continuous functions on a
common domain, D � �a, b�, and suppose the sequence fn converges uniformly on D to the
limit f. Let x, y denote arbitrary points in �a, b� and let � � 0 be given. Now write

|f�x� � f�y�| � |f�x� � fn�x� � fn�x� � fn�y� � fn�y� � f�y�|

� |f�x� � fn�x�| � |fn�x� � fn�y�| � |fn�y� � f�y�|.

Since fn converges uniformly on D to the limit f, there exists an integer N� � 0 such that

|f�x� � fn�x�| � �
3

,

and |f�y� � fn�y�| � �
3

for all n � N�

Note that we have used the uniform continuity here to ensure that the same N works for
both x and y. Now fix an n � N� and use the fact that every fn is continuous on D to
conclude that there exists a � � 0 such that

|fn�x� � fn�y�| � �
3

whenever |x � y| � �.

Then for any � � 0 there is a � � 0 such that

|f�x� � f�y�| � �
3

� �
3

� �
3

� � whenever |x � y| � �.

Exercises
Find the values of x for which the following power series converge:

1. �
n�1

�
nxn

2. �
n�1

�
�x�1�n

n
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3. �
n�1

�
�3x�n

2nn

4. �
n�1

�
ln n �2x�2�n

n

5. �
n�1

�
n �x�1�n

2n

6. �
n�1

�
��1�n n2�x�2�2n

3n

7. �
n�1

�
ln n �2x�2�n

n!

8. �
n�1

�
��1�n ln n �2x�4�n

n3n
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