
Chapter 3 Continuity

In this chapter we begin by defining the fundamental notion of continuity for real valued
functions of a single real variable. When trying to decide whether a given function is or is
not continuous, it is often helpful to have more than one way of characterizing continuity and
so we provide the original definition of continuity (which does not mention limits), the
definition in terms of function limits and, finally, a definition in terms of sequences. Of
course the definitions are equivalent but sometimes one of them is more convenient than
the others in order to prove a given function is or is not continuous at a particular point.

A function that is continuous on an interval has a number of special properties. Some of
the important consequences of continuity include:
� the bounded range theorem (corollary 3.7)
� the extreme value theorem (corollary 3.8)
� the intermediate value theorem
� persistence of sign

The notion of uniform continuity is also introduced. This notion will be of particular
importance in connection with the discussion of integration in a later chapter. Finally we will
introduce the related notions of injectivity and strict monotonicity for functions in connection
with the discussion of existence and continuity of an inverse function.

Functions
A real valued function of a single real variable can be defined as a rule which assigns to
each real number x in a subset D of the reals, a uniquely determined real number, y � f�x�.
The set D is called the domain of the function and the set of values y � f�x� obtained as x
varies over D is called the range of f. A function can also be defined as a set of ordered
pairs �x, y� of reals such that no two distinct pairs have the same first element. Then the
domain, D, is the set of all first entries for pairs in the set and the range of the function is
the set of all second entries. The graph of the function is the set of all the pairs, �x, f�x��,
considered to be a set in the plane.

Example Functions

1(a) The function f�x� � x2 having domain D equal to the closed interval �0, 2� assigns to
each x in D, the real number x2. The range of this function is then the set �0, 4�. The graph
of this function is the collection of points �x, x2�, 0 � x � 2, in the plane. These points form a
part of a parabola. Note that the domain D � �0, 2� is not the largest possible domain for this
function but has been chosen arbitrarily for purposes of discussion in this example.
1(b) The function f�x� � x � 3 with domain D equal to the unbounded interval �3,�� has for
its range the unbounded interval �0,��. Note that for x � 3, this function does not produce
real values. The set x � 3 is the largest possible domain for this function.
1(c) The function defined by

f�x� �
�1 if � 1 � x � 0

�1 if 0 � x � 1

for x in the domain D � ��1, 1� has for its range the set consisting of the two points y � 1 and
y � �1. The graph of this function is two unconnected horizontal line segments. Since the
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function is not given by a single formula that applies over the entire domain, we say the
function is piecewise defined.

Continuity
We begin with the first of several equivalent definitions for continuity:

Definition A function f�x� with domain D is said to be continuous at x0 � D if, for every
� � 0 there exists � � ���, x0� � 0 such that y � f�x� belongs to N��f�x0�� whenever x
belongs to N��x0 � � D.

If f is continuous at every point x0 in D then we say f is continuous on D, or when there is no
possibility of misunderstanding, we say f is continuous. A function that is not continuous is
said to be discontinuous.

Example Continuous Functions

2(a) For fixed constants, a � 0 and b, consider the linear function f�x� � ax � b with domain
D � R. We can use the definition of continuity to show that this function is continuous at
every point in its domain. To see this, let x0 be fixed but arbitrary. Then

|f�x� � f�x0�| � |�ax � b� � �ax0 � b�| � |a| |x � x0 |

and for any positive � it is easy to see that |f�x� � f�x0�| � |a| |x � x0 | � � whenever
|x � x0 | � � � �

|a|
. This is precisely the assertion that y � f�x� belongs to N��f�x0�� whenever

x belongs to N��x0 � � D, where ���� is given by � � �
|a|

. Since this argument did not require

x0 to have any particular value, it follows that f�x� � ax � b is continuous at every x0 in the
domain D � R.

2(b) Consider the function f�x� � x2 on D � ��1, 2�. Note first that for x, x0 two distinct points
in D, we can write

| f�x� � f�x0�| � |x2 � x0
2 | � |x � x0 | |x � x0 |

Now it is easy to see that |x � x0 | � 4 for all choices of x, x0 � D. Then to show that f�x� � x2

is continuous on D, we simply write

| f�x� � f�x0�| � |x � x0 | |x � x0 | � 4 |x � x0 |

and it follows immediately that for all choices of x, x0 � D, |f�x� � f�x0�| � � whenever
|x � x0 | � � � �

4
.

Since we can write,

�x3 � z3� � �x � z��x2 � zx � z2�

�x4 � z4� � �x � z��x3 � x2z � z2x � z3�

we can prove f�x� � x3 and f�x� � x4 are both continuous on D by a similar argument. In
fact, f�x� � xn is continuous for every n � N on every compact interval �a, b� by essentially
the same proof.

2(c) The following functions are continuous at every x � R,

P�x� � an xn � an�1xn�1 � � � a1x � a0 any polynomial

Sin�x�, Cos�x�, ex
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Each of the following functions is continuous at every point, x, where it is defined

r�x� �
P�x�
Q�x�

for polynomials P and Q

Tan�x�, Sec�x�, Cot�x�, Csc�x�

Log�x�

Using the definition to prove the continuity (or discontinuity) for a function can be awkward.
For that reason, we need alternative characterizations for continuity. Function limits and
sequences are two notions that lead to useful alternative characterizations for continuity.

Equivalent Definitions of Continuity

We are in a position to use function limits and sequence limits to give alternative definitions
for continuity.

Theorem 3.4 (Limit definition of continuity) The function f�x� on domain D is continuous at
the point x � c in D if and only if lim

x�c
f�x� � f�c�.

Note that this theorem makes several assertions:

� the limit point c belongs to D so that f�c� is defined
� the function f�x� tends to a limit, L, as x tends to c
� the limiting value, L, and the function value, f�c� are equal

If any of these assertions fails, then f�x� fails to be continuous at x � c. We can combine
theorems 3.1 and 3.4 to obtain the following characterization of continuity.

Theorem 3.5 (Sequence definition of continuity ) The function f�x� on domain D is continuous
at the point x � c in D if and only if for every sequence �an� in D that converges to c, it
follows that �f�an�� converges to f�c�.

Theorem 3.5 is most often used to show that a given function is discontinuous at a point. In
order to do this, all that is needed is a sequence �an� in D that converges to c, for which the
sequence of function values, �f�an�� fails to converges to f�c�.

Continuous functions may be combined in various ways to form new functions that are
also continuous. It is clear what role theorems 3.2 has in proving the following result.

Theorem 3.6 Suppose f�x� and g�x� are two real valued functions on domain D. Suppose also
that both f and g are continuous at x � c in D. Then af�x� � bg�x� and f�x�g�x� are

continuous at x � c as is the function
f�x�
g�x�

, provided g�c� � 0. Moreover, if F�x� is

defined and continuous in some neighborhood of the point b � f�c�, then the composed
function F�f�x�� is also continuous at x � c.

The theorems presented so far are all concerned with determining whether a given function
is continuous, either at a specified point or at all points of the domain D. Now we begin to
consider some of the consequences of continuity.
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Consequences of Continuity
There are a number of function properties that follow from continuity. We list the most
important of them here.

Theorem 3.7 A function that is continuous on a compact domain has a compact range.

Theorem 3.7 contains more information than at first meets the eye. The following two
results are contained in theorem 3.7 but are often stated separately in order to emphasize
their conclusions.

Corollary 3.8 (Bounded range theorem) A function that is continuous on a compact domain is
bounded

Corollary 3.9 (Extreme value theorem) If f�x� is continuous on a compact domain, D, then
there exist points c and d in D such that f�c� � f�x� � f�d� for all x in D.

The corollaries do not contain any information not already asserted by the theorem but they
expose the practical implications of the consequence of the theorem. In particular, corollary
3.8 asserts that a function that is continuous on a closed bounded interval is necessarily
bounded (above and below). The other corollary asserts in addition that there exist points in
the domain where the LUB and GLB of the range of function values are actually assumed.

Theorem 3.10 A function that is continuous on a connected domain has a connected range.

This is the statement of the result that remains true when discussing the more general
situation involving functions from Rn into Rm. In a one dimensional setting this result can be
stated more simply as follows:

Theorem 3.10 For any function that is continuous on a domain, D that is an interval, the
range is also an interval.

The implication of this theorem is often expressed as the statement that the graph of a
continuous function of one variable can be drawn without lifting one’s pen. More precisely, it
can be stated as the following result:

Corollary 3.11 (Intermediate value theorem) If f�x� is continuous on a domain, D, that is an
interval, then for any points p � q in D and any real number S lying between the values
f�p� and f�q�, there exists an s in D such that p � s � q and f�s� � S.

Uniform Continuity
The previously given definition of continuity asserts that f�x� is continuous at x � x0 if for
every � � 0 there exists � � ���, x0� � 0 such that y � f�x� belongs to N��f�x0�� whenever x
belongs to N��x0 � � D. Note that the � which is associated with a given � depends not just
on � but may depend on on the point x0 as well. In some cases, for each � a single choice of
���� serves for all x0 in D. We say then that the function is uniformly continuous on D. The
precise definition is stated as,

Definition A function f is said to be uniformly continuous on D if, for every � � 0 there
exists a ���� � 0 such that for all x1, x2 � D, |f�x1� � f�x2�| � � whenever
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|x1 � x2 | � ����; i.e., f�x2� belongs to N��f�x1�� whenever x2 belongs to N��x1 � � D.

Every function that is uniformly continuous on D is necessarily continuous at every point of
D but the converse is false unless D is compact (see solved problems 3.23 and 3.24).

Theorem 3.12 A function that is continuous at each point of a compact domain, D, is
uniformly continuous on D.

Theorem 3.13 Suppose f�x� is uniformly continuous on a domain, D. Then whenever �an� is a
Cauchy sequence in D it follows that �f�an�� is a Cauchy sequence in the range of f.

The converse of theorem 3.13 is also true; i.e., if f maps every Cauchy sequence in D into a
Cauchy sequence in rng�f� then f is uniformly continuous on D. However, it is not true that if
f is uniformly continuous on D and �f�an�� is a Cauchy sequence in rng�f� then �an� must be
a Cauchy sequence in D. To see this, consider the function f�x� � x2 which is continuous on
the compact domain D � ��1, 1�, and therefore uniformly continuous. For any c � �0, 1� let
�an� denote the sequence

an �

�
n � c if n is odd
�
n � c if n is even

where � � 0 is chosen so that �an� � D. This is a sequence with two limit points so it is not
a Cauchy sequence. On the other hand,

f�an� � c2 � 2�
n c � �

n
2
� c2

is convergent and thus Cauchy.

Definition A function f is said to be Lipschitz continuous on D if there exists M � 0 such
that for all x, y � D, |f�x� � f�y�| � M |x � y|.

It is evident that any Lipschitz continuous function is necessarily uniformly continuous
but the converse is false. The function f�x� � x on �0, 1� is an example of a function that is
uniformly continuous but not Lipschitz continuous on �0, 1�.

Inverse Functions
A real valued function f�x� is said to be one to one or injective if

for all x1, x2 � D, x1 � x2 implies f�x1� � f�x2�.

Recall that f is a function on D if the set of ordered pairs �x, y� : x � D, y � f�x� is such
that no two pairs have the same first element. If f is injective, then it is also true that no two
pairs have the same second element. Recall that f is a well defined function on D if any
vertical line through a point of D cuts the graph of f in only one point. Similarly, f is an
injective function on D if any horizontal line through a point of f�D� meets the graph of f in
only one point. In this case, the set of reversed pairs �y, x� : x � D, y � f�x� defines a
function x � g�y� with the property

y � f�x� if and only if x � g�y�
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We say that x � g�y� is the inverse of the function y � f�x�, and we write g � f�1.

Monotone Functions
A real valued function f�x� whose domain is the interval D is said to be:

� increasing on D if x1 � x2 implies f�x1� � f�x2�
� decreasing on D if x1 � x2 implies f�x1� � f�x2�

We say that f is monotone on D if f�x� is either increasing or decreasing on D. If the
inequality f�x1� � f�x2� is replaced by the strict inequality f�x1� � f�x2�, then we say that f is
strictly increasing on D. Strictly decreasing is defined in a similar fashion and we say that
f is strictly monotone if it is either strictly increasing or strictly decreasing. It is evident that
a strictly monotone function must be injective. Conversely we have

Theorem 3.14 If f�x� is injective and continuous on the interval I, then f�x� is strictly
monotone on I.

Theorem 3.15 (Continuity of the inverse) If f�x� is strictly monotone and continuous on the
interval I, then g � f�1 is strictly monotone and continuous on the interval J � f�I�.

Example Injectivity and Monotonicity

3(a) The function f�x� � ex is continuous and strictly increasing for all real x. The range of f
is the set of positive real numbers. Then theorem 3.15 implies f�1 is strictly monotone and
increasing on the set of positive real numbers. Here f�1�x� � ln x.
3(b) The continuous function f�x� � x2 is strictly increasing on the interval �0, b� for b � 0.
The piecewise defined function

g�x� �
x for 0 � x � 1

1 for x � 1

is increasing but not strictly increasing on �0, b� for b � 1. Then f�x� has a continuous
inverse given by f�1�x� � x , but g is not injective and has no inverse.
3(c) The function f�x� � x2 is continuous on ��3, 3� but it is not monotone on this domain.
Then theorem 3.14 implies that f is not injective. Of course this is clear since for each x,
0 � x � 3, f�x� � f��x�.
3(d) An example of an injective function which is not monotone is

h�x� �
x for 0 � x � 1

1 � x for x � 1

Of course this function is not continuous as is predicted by theorem 3.14.

Solved Problems

Continuity

Problem 3.1 Show that the function f�x� � 1
x on D � �0,�� is continuous at each x � D.

Solution: let c � D be fixed but arbitrary (note that this means c � 0 ). Fix any � � 0, and
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note that for any x such that x � �c/2, 3c/2�, i.e., for x � Nc/2�c�, we have
1
x � 1

c � x � c
xc �

|x � c|
c 	 c/2

� 2
c2 |x � c|.

Now let � denote the smaller of the two numbers c/2, �c2/2. Then � � c/2 and
� � �c2/2 which means that

1
x � 1

c � 2
c2 |x � c| � � whenever |x � c| � �.

According to the definition of continuity, this means f is continuous at x � c � 0.

Problem 3.2 Show that the functions Sin�x� and Cos�x� are continuous at each
x � D � ���,��.
Solution: We will need to use the following estimates for the sine and cosine functions:

|Sin�x�| � |x| and |Sin�x�|, |Cos�x�| � 1, for all x � R �1�

These estimates were proved in problem 2.23. We have also the following trigonometric
identities that hold for all real x and y :

Sin�x� � Sin�y� � 2Sin
x � y

2
	 Cos

x � y
2

, �2�

Cos�x� � Cos�y� � 2Sin
x � y

2
	 Sin

y � x
2

, �3�

Using (1) in (2) and (3), leads to the estimates

|Sin�x� � Sin�y�| � 2
x � y

2
	 1 � |x � y| �4�

|Cos�x� � Cos�y�| � 2
x � y

2
	 1 � |x � y| �5�

It is now evident from �4� and �5� that for all � � 0, we can choose � � � and have

	y � R, f�x� � N��f�y�� whenever x � N��y�

in either of the cases f�x� � Sin�x� or f�x� � Cos�x�.
The sine and cosine functions each satisfy an estimate of the form

|f�x� � f�y�| � M |x � y| for all x, y � D, �6�

For these functions, the constant M is equal to 1 and D � R. Any function that satisfies an
estimate of the form (6) is said to be Lipschitz continuous on its domain, D. From
examples 3.2(a,b), we can see that all linear functions are Lipschitz continuous on D � R,
and f�x� � x2 is Lipschitz continuous on any bounded domain, D � �a, b�.

Problem 3.3 Use the definition of continuity to show that the function

f�x� �
�1 for � 1 � x � 0

1 for 0 � x � 1
on D � ��1, 1�

is discontinuous at x � 0 � D
Solution: Since f�0� � 1, for any � � 0, to say that f�x� � N��f�0�� is the same as saying
|f�x� � 1| � �. But for any � � 0, the neighborhood N��0� contains both positive and negative
values for x. For the positive x values we have f�x� � 1, while for the negative x values, we
have f�x� � �1. Then for any 0 � � � 1, there can be no � � 0 such that f�x� � N��f�0��
whenever x � N��0�. This proves that f is not continuous at x � 0.
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Equivalent Definitions of Continuity

Problem 3.9 (Removable discontinuities) Let f�x� be defined on D � ��1, 1� by

f�x� �
x for x � 0

1 for x � 0

Show that f is not continuous at x � 0.

Solution: We can show that lim
x�0

f�x� � 0. Then the function limit at x � 0 exists but, since

f�0� � 1, the function limit does not equal the function value at x � 0. Then theorem 3.4
asserts that f�x� is not continuous at x � 0. This is an example of a removable
discontinuity. This is a discontinuity that can be removed by redefining the function at the
point of discontinuity. In this case, we can define f�0� to equal 0 in order to make the
redefined function continuous.

Problem 3.10 (Jump discontinuities) Let f�x� be defined on D � ��1, 1� by

f�x� �
0 for x � ��1, 0�

x2 � 1 for x � �0, 1�

Show that f is not continuous at x � 0.

Solution: We can show that f�x� tends to no limit as x tends to zero. Then theorem 3.4
asserts that f�x� is not continuous at x � 0.
To show that f tends to no limit at x � 0, we define a sequence of points �an� in D by

an �
��1�n

n � 1
for n � N.

Then an converges to zero as n tends to infinity but a2n�1 � 0 while a2n � 0. Then the
sequence of function values, �f�an�� is such that the subsequence �f�a2n�� converges to 1
while the subsequence �f�a2n�1�� converges to zero; i.e., the sequence �f�an�� fails to
converge by theorem 2.7.This function, f�x�, is said to have a finite jump discontinuity at
x � 0. We will discuss this notion further in the next problem.

Problem 3.11 (One sided limits) Let f�x� be a real valued function with domain D in R and
let c be an accumulation point for the set D� � �x � D : x � c�. Then we say that the one
sided limit for f�x� as x approaches c from the right, exists and equals L if for every � � 0
there exists a � � 0 such that |f�x� � L| � � whenever 0 � x � c � �. In this case we write
f�c�� � L. The one sided limit for f�x� as x approaches c from the left is defined similarly. If
this limit exists and equals L we write f�c�� � L.

Show that the function of the previous problem has one sided limits from the left and the
right but these limits are not equal.

Solution: For the f�x� in the previous problem, we have f�0 �� � 0 and f�0 �� � 1. To see
this, note that for all x in D� � ��1, 0�, we have f�x� � 0. Then for any � � 0

|f�x� � 0| � 0 � � for all x � D�such that 0 � |x � 0|� �,

and this holds for any � � 0. This proves f�0 �� � 0. To prove f�0 �� � 1, note that for all x in
D� � �0, 1�, we have f�x� � 1 � x2 hence for any � � 0

|f�x� � 1| � x2 � � for all x � D� such that 0 � x � 0 � � � � .
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Since both the left hand and right hand limits at x � 0 exist but are not equal, we say that f
has a jump discontinuity at x � 0. The difference f�0�� � f�0��, equals the magnitude of the
jump at x � 0.

Problem 3.12 (An everywhere discontinuous function) Consider the function defined by,

f�x� �
0 if x is irrational

1 if x is rational

Show that this function, called the Dirichlet function, is discontinuous at every x.

Solution:Let c denote any fixed, real number. Then it follows from corollaries 1.5 and 1.6
that there exist sequences �an� and �bn� where the an

� s are all rational and the bn
� s all

irrational and both sequences converge to c. Then the definition of f implies that f�an�
converges to the limit 1 while f�bn� converges to 0. But theorem 3. 5 asserts that if f is
continuous at x � c, then for every sequence that converges to c, the corresponding
sequence of function values must converge to f�c�. Then f is not continuous at x � c. Since
c was arbitrarily chosen, this shows that f is continuous at no points. It is everywhere
discontinuous.

Problem 3.13 Let the function f�x� be defined on D � �0,�� as follows:

f�x� �
1
x if x � 0

a if x � 0
a � R

Show that f is not continuous at x � 0 for any choice of the constant, a.

Solution: We showed in a previous example that 1/x tends to �� as x tends to 0 through
positive values. This could also be accomplished by let an � 1/n and noting then that
f�an� � n. In any case, it is clear that f�x� cannot tend to any real number a as x tends to
zero through positive values and f is therefore not continuous at x � 0. This function has an
infinite jump discontinuity or singularity at x � 0.

Problem 3.14 Let the function f�x� be defined on D � �0,�� as follows:

f�x� �
Sin 1

x if x � 0

a if x � 0
a � R.

Show that f is not continuous at x � 0 for any choice of the constant, a.

Solution: We define the sequence

an � 1
zn

� 1
�
2

� n�
, n � N.

Then

f�an� � Sin 1
an

� Sin�zn� �
�1 if n is odd

1 if n is even

from which it is evident that the sequence �f�an�� has two limit points and is therefore
divergent. Since f tends to no limit at x � 0, f is not continuous there. This discontinuity is
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neither a removable discontinuity nor a jump discontinuity. It is sometimes referred to as an
oscillatory discontinuity.

Consequences of Continuity

Problem 3.15: Prove that a continuous function with a compact domain has a compact
range.

Solution: Suppose f is continuous on the compact domain D, and that the range of f is
denoted by B. We will suppose that B is not compact and show that this leads to a
contradiction.

If B is not compact, then by the result of problem 2.19, B must contain a sequence �bn�
that contains no subsequence converging to a point of B. Since �bn� is in the range of f, it
follows that for each n, there is an an in D such that f�an� � bn. Since D is compact, �an�
must contain a subsequence �an �� such that an � converges to a point c in D. But f is
continuous on D so theorem 3.5 implies that f�an � � converges to f�c� in B. But this means
�bn �� is a subsequence of �bn� and bn � converges to f�c� in B. This contradiction shows that
every sequence in B must contain a subsequence converging to a point of B, which is to
say, B is compact.

Problem 3.16 Prove the Bounded range theorem: A function that is continuous on a
compact domain is bounded.

Solution: Suppose f is continuous on the compact domain D, and that the range of f is
denoted by B. By the result of the previous problem, B is compact, which is to say, B is
closed and bounded. But this means B is contained in a closed bounded interval, �a, b�,
which is just the assertion that a � f�x� � b for all x in D; i.e. f is bounded on D.

Problem 3.17 Prove the Extreme value theorem: If f�x� is continuous on a compact domain,
D, then there exist points c and d in D such that f�c� � f�x� � f�d� for all x in D.

Solution: Suppose f is continuous on the compact domain D. By the result of the previous
problem, the range of f , denoted by B is contained in a closed bounded interval �a, b�. Then
B has a greatest lower bound, a
, and a least upper bound, b
, and by theorem 1.12, these
bounds both belong to B. But since B is the range of f, it then follows that there exist points
c and d in D such that f�c� � a
 and f�d� � b
. Since a
 and b
 were the greatest lower
bound and least upper bound for B, respectively, it follows that f�c� � f�x� � f�d� for all x in
D. This theorem asserts that if f is continuous on a compact domain, then there are points
in the domain where f in fact assumes its maximum and minimum values.

Problem 3.18 Prove theorem 3.10: A function that is continuous on a connected domain
has a connected range.
Solution: Suppose f is continuous at each point c of the connected domain D � R.
Recalling that a connected subset of R must be an interval or a point, we realize that if D is
a single point c, then the range of f is the single point f�c� which is connected, so the result
is true in this degenerate case.

Now let us suppose that D is an interval of positive length and that the range of f is
denoted by B. If B is not connected, then B can be written as the union of sets B1 and B2

that are nonempty, disjoint and neither contains an accumulation point of the other. Let
D1 � �x � D : f�x� � B1� and D2 � �x � D : f�x� � B2�; i.e., f�D1� � B1 and f�D2� � B2.
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Clearly D1 and D2 are disjoint and nonempty, but since D is connected, at least one of them
must contain an accumulation point of the other. For example, suppose there is a point c in
D1 that is an accumulation point for D2. Then there is a sequence �cn� in D2 that converges
to c in D1. But f is continuous at every point of D and hence f�cn� must converge to f�c�. But
this implies that f�c� belongs to B1 and is an accumulation point for B2, in contradiction to
the assumption that B1 and B2 that are nonempty, disjoint and neither contains an
accumulation point of the other. Then B must be connected.

Theorem 3. 10 can be stated more simply in view of the fact that a connected subset of
R must be an interval or a point. We could just say that if f is continuous on an interval I,
then the range of f is an interval J such that x � I if and only if f�x� � J. This means that for
any two points p � q in I, as x increases from p to q, f�x� must assume every value
between f�p� and f�q�. For if not then we would produce the same contradiction used above.
Then for any value S that lies between f�p� and f�q�, there must exist a value s lying
between p and q such that f�s� � S. This is corollary 3.11, the so called intermediate value
theorem.

Here is a proof of corollary 3.11 based on the nested interval theorem. We have points
p � q in D with S lying between f�p� and f�q�, say f�p� � S � f�q�. Then we must show there
is an s, p � s � q, such that f�s� � S.

We define a sequence, first letting p1 � p, q1 � q and m1 � �p1 � q1�/2.

If f�m1� � S then let p2 � m1, q2 � q1

If f�m1� � S then let p2 � p1, q2 � m1

Let m2 � �p2 � q2�/2

Continue recursively,
If f�m2� � S then let p3 � m2, q3 � q2

If f�m2� � S then let p3 � p2, q3 � m2

Let m3 � �p3 � q3�/2

This generates a sequence of p�s and q�s such that

p � p1 � p2 � �pn � qn� � q2 � q1 � q

and

|qn � pn | �
q � p
2n�1 
 0 as n � �

Then the nested interval theorem implies that the intersection of all the intervals �pn, qn � is a
unique point, s, with the monotone sequences �pn� and �qn� each converging to s. Since f
is continuous on D, it follows that f�pn� and f�qn� each converge to f�s�. But the sequences
have been constructed so that, f�pn� � S � f�qn� for every n, and therefore f�s� � S.

Problem 3.19 Use the intermediate value theorem to prove that every polynomial of odd
degree must have at least one real zero.

Solution: Suppose P�x� denotes a polynomial of odd degree. Then the domain of P�x� is R
and the sign of P�x� as x tends to �� must be opposite to the sign of P�x� as x tends to ��.
Then it is always possible to find numbers p � q such that 0 lies between f�p� and f�q�. Then
the intermediate value theorem implies there exists a real number s between p and q such
that P�s� � 0.
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For example, suppose P�x� � xn � an�1xn�1 � � � a1x � a0, for n an odd positive integer.
Then P�p� � 0 � P�q� for p sufficiently large and negative and q sufficiently large positive.
Then there must exist some s between p and q where P�s� � 0.

This theorem is the basis of the following algorithm for finding zeroes of a function f�x�
that is continuous on an interval �a, b�. We select a step length h � b � a

M
and let

xm � a � mh for m � 1, 2. . . , M. Then we evaluate the product, f�xm�1�f�xm� for 1 � m � M, and
any m for which this product is negative indicates a zero of the function f between xm�1 and
xm.

Problem 3.20 (persistence of sign) Let f�x� be defined and continuous on an open interval
�a, b� containing the point c. If f�c� � 0, then show that there is a neighborhood of c
throughout which f has the same sign as f�c�.

Solution: Since �a, b� is an open interval containing the point c, there exists an h � 0 such
that Nh�c� � �a, b�. Suppose now that f�c� � 0 and let � � 1

2 f�c� � 0. Then by the continuity
of f, there exists a �, 0 � � � h, such that f�x� � N��f�c�� whenever x � N��c�. But this is
just the statement,

0 � 1
2 f�c� � f�c� � � � f�x� � f�c� � � � 3

2 f�c� for all x such that c � � � x � c � �.

Since � was chosen such that 0 � � � h, it follows that �c � �, c � �� is contained in �a, b�.
This shows that f remains positive throughout a neighborhood of any point where f is
positive. The proof for the negative case is similar. A related result holds when the interval I
is allowed to be closed and c is an endpoint. In this case the interval on which f maintains
the same sign as f�c� will lie on one side of c.

Problem 3.21 (A fixed point theorem) Let f�x� be defined and continuous the unit interval,
I � �0, 1� and suppose that 0 � f�x� � 1 for all x in I; i.e., the domain and range of f are both
equal to I . Then show that for some c in I, we have f�c� � c (we say that if f maps I
continuously into itself, then f has a fixed point).

Solution: If f�x� is continuous on I, then so too is the function g�x� � f�x� � x. In addition,
g�0� � f�0� � 0 and g�1� � f�1� � 1 � 0, �since f�0� and f�1� must lie in I � �0, 1��. If either
g�0� � 0 or g�1� � 0 then the fixed point is an endpoint of I. If neither g�0� nor g�1� is zero,
then we have g�1� � 0 � g�0� and it follows from the intermediate value theorem that there
exists a point c in I such that g�c� � 0; ie., such that f�c� � c.

Uniform Continuity
Problem 3.22 Give an example of a function f�x� that is continuous on D � �0,�� and a
sequence �an� in D such that �an� is a Cauchy sequence but �f�an�� is not Cauchy.

Solution: In problem 3.1, the function f�x� � 1
x was shown to be continuous at each point

in �0,��. The sequence an � 1
n is contained in D and an converges to 0 as n tends to

infinity. ( x � 0 is an accumulation point of D but does not belong to D�. Since the sequence
is convergent, it is Cauchy. On the other hand, the sequence of function values, f�an� � n is
not bounded, hence it is not Cauchy.

Problem 3.23 Prove theorem 3.13, that for f�x� uniformly continuous on D, �f�an�� is
necessarily a Cauchy sequence whenever �an� in D is Cauchy.
Solution: Suppose f is uniformly continuous on D and �an� is a Cauchy sequence in D. By
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the uniform continuity of f, we know that for any � � 0 there exists a � � 0 such that for all
x, y � D,

|f�x� � f�y�| � � whenever |x � y| � �.

Since �an� is a Cauchy sequence in D, we know that there exists M � N such that

|am � an | � � whenever m, n � M.

Then it follows that for all m, n � M, we have |f�am� � f�an�| � �, which is to say �f�an�� is a
Cauchy sequence.

Problem 3.24 Show that f�x� � Sin� 1
x � is not uniformly continuous on D � �0,��.

Solution: Let an � 2
n� , n � N. Then �an� is a Cauchy sequence in D that is converging to

0. However, the sequence of function values

f�an� �
�1 if n is odd

0 if n is even

has more than a single limit point and is therefore not a Cauchy sequence. Then theorem
3.13 implies that f is not uniformly continuous on D.

Problem 3.25 Show that:

�a� f�x� � 1
x is not uniformly continuous on D1 � �0, 1�

�b� f�x� � 1
x is uniformly continuous on D2 � �1,��

�c� g�x� � x2 is uniformly continuous on D1 � �0, 1�
�d� g�x� � x2 is not uniformly continuous on D2 � �1,��

Solution:
a) Consider the sequence of points xn � 1

n and yn � 1
n�1 in D1 � �0, 1� and note that

|f�xn� � f�yn�| � 1

but |xn � yn | � 1
n � 1

n � 1

� 1
n�n � 1�

� 1
n .

This means there are points in D1 which are as close to one another as we like but the
corresponding function values are separated by a constant distance of 1.

b) For x, y in D2, |f�x� � f�y�| � 1
x � 1

y � 1
xy |x � y|.

Note that if x, y � D2 � �1,��, then xy � 1, hence

|f�x� � f�y�| � |x � y| for all x, y � D2

Then f is Lipschitz continuous on D2 so it is uniformly continuous there.

c) For x, y in D1, |g�x� � g�y�| � |x2 � y2 | � |x � y||x � y|.
When x, y � D1 � �0, 1�, it follows that, |x � y| � 2, hence

|f�x� � f�y�| � 2|x � y| for all x, y � D1

This shows that g is Lipschitz continuous on D1 so g�x� is uniformly continuous there.
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d) Consider the sequence of points xn � n � 1
2n and yn � n � 1

2n in D2 and note that

|g�xn� � g�yn�| � n � 1
2n

2
� n � 1

2n

2
� 2 	n.

But for all n, |xn � yn | � 1
n , and this means there are points in D2 which are as close to one

another as we like but the corresponding function values are separated by a constant
distance of 2.

Does a) imply that f�x� is not continuous on D1? Not at all. Note that in order for x and y
to get closer together, they both must move closer to x � 0. If we fix one of the points, say
we fix y � c, we can make f�x� close to f�y� by moving x close to y � c. This is the continuity
of f�x� on D. which we showed in problem 3. 1. However, as the fixed point, y � c, is fixed
closer to x � 0 the moveable point, x, has to be moved even closer to y � c in order to
obtain closeness of f�x� to f�y�. This shows the lack of uniform continuity of f�x� on D1.

Problem 3.26 Prove that a function which is continuous on a compact domain is uniformly
continuous.
Solution: Suppose f�x� is continuous on the closed bounded interval I � �a, b�. If f is not
uniformly continuous on I, then there exists an � � 0 and sequences �an�, �bn� in I such
that

for each n, |an � bn | � 1
n and |f�an� � f�bn�| � �. �1�

Since I is compact, �an� must contain a subsequence �an �� that converges to a in I. Then

|bn � � a| � |bn � � an � | � |an � � a| � 1
n�

� |an � � a|

and it follows that the subsequence �bn �� of �bn� must also converge to a. Since f is
continuous on I, both of the sequences �f�an � �� and �f�bn � �� must converge to the limit f�a�
which contradicts (1). Then if f is continuous on a compact domain I, it follows that f must in
fact be uniformly continuous on I.

Note that this result implies f�x� � x is uniformly continuous on �0, 1�. On the other hand, f
is not Lipschitz continuous on �0, 1�. To see this, consider x, y such that 0 � x � 1 and y � 0.
Then

|f�x� � f�y�| � x � M|x � y| � Mx

is equivalent to x � 1
M2 .Since this is obviously not true for all x in �0, 1�, it follows that f is

not Lipschitz continuous on �0, 1�.

Inverse Functions
Problem 3.27 Prove that if f is continuous and one to one on I � �a, b�, then f must be
strictly monotone on I.
Solution; Note first that since f is one to one on I, f�a� � f�b�. Suppose then that
f�b� � f�a�. We will show then that f is strictly increasing on I; i.e., if we choose an x,
a � x � b, then we will show that f�a� � f�x� � f�b�.

To see this, suppose we had f�x� � f�a� � f�b�. Then applying the intermediate value
theorem to the interval �x, b� leads to the existence of a point c, x � c � b, such that
f�c� � f�a�. But this contradicts the assumption that f is one to one and we conclude that we
cannot have f�x� � f�a� � f�b� with a � x � b. Similarly, if we had f�a� � f�b� � f�x� with
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a � x � b, we would obtain the same contradiction and it follows that f�a� � f�x� � f�b� for
every x such that a � x � b.

Now choose y, a � x � y � b, and proceed as above to show first that f�a� � f�y� � f�b�.
Then one final application of this same argument leads to the result, f�x� � f�y� whenever
x � y. This establishes that f is strictly increasing. The same sort of argument can be used
to show f is strictly decreasing in the case that f�b� � f�a�.

Problem 3.28 Prove that if f is continuous and strictly monotone on I � �a, b�, then g � f�1

must be continuous on J � �c, d�.
Solution; Suppose that f is strictly increasing on I. The proof in the case where f is strictly
decreasing is similar.

Note first that if f is continuous and strictly increasing on I � �a, b�, then g � f�1 is
defined and has as its domain, J � �c, d� where c � f�a� and d � f�b�. In order to prove g�y�
is continuous, we shall suppose that g�y� is discontinuous at some point y0 in J and show
that this leads to a contradiction. If g�y� is discontinuous at some point y0 in J, it means that
there exists a sequence �yn� in J such that yn converges to y0 but g�yn� does not converge
to g�y0�. Let g�y0� be denoted by X0. Then f�X0� � y0.

Let xn � g�yn� and note that since xn � I � �a, b� for every n, this bounded sequence
must contain a subsequence, �xn �� converging to a limit, x0 in I. Since g�yn� does not
converge to g�y0�, it must be that x0 � g�y0� � X0.

Now the continuity of f on I implies that f�xn � � is convergent to f�x0�. But f�xn � � � yn � and
since this is a subsequence of �yn�, it must be that yn � converges to y0. Therefore,
f�x0� � y0. On the other hand, we have f�X0� � y0 and x0 � X0. This is in contradiction to the
assumption that f is strictly monotone (hence one to one) so our assumption that g�y� can
be discontinuous at some point in J leads to a contradiction, proving the result.

Exercises

1. Use the definition of function limit to find the following limits and prove they exist.

a. limx�2
1

1 � x

b. limx�2
x2 � x � 2

x2 � 2x � 8

c. limx�1
x

1 � x

d. limx�4
x � 2
x � 4

2. Find the following function limits
a. limx��

x
1 � x2

b. limx�� cosx

c. limx��
cosx

1 � x2
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d. limx�0� x � 4

e. limx�0� cos 1
x

3. For each of the following functions, find the points where they are discontinuous
or give a reason they are continuous for all x :

a. x3 � 1
x2 � 1

b. sin2x cosx

c. cosx � 1
x

d. x � 2
|x � 2|

4. The functions f�x� � x3 � 3x2 � 2
x2 � 1

and g�x� � x2 � 4x � 5
x3 � 2x2 � x

are each undefined at

two points. Are these singularities removable?
5. If F�x� � f�x� � g�x� � h�x�, G�x� � g�x� � 2h�x� and H�x� � 2g�x� � h�x�are all

continuous on �, then is it the case that f, g, and h are also all continuous on �?

6. Give an example of functions f and g that are both discontinuous at x � c but �i�
f � g is continuous at x � c �ii� fg is continuous at x � c.

7. Suppose f is continuous for all x and that f�x� � 0 for every rational x. Show that
f�x� � 0 for all x.

8. If f and g are continuous on � and f� p
q � � g� p

q � for all non-zero integers, p, q, then
is it true that f�x� � g�x� for all x � �?.

9. Suppose f�x� �
2x if x � rational

x � 3 if x � irrational
.Then find all the points where f is

continuous.
10. Suppose f is defined on �0, 1� and that |f�x�| � 1 for all x � �0, 1�. If lim

x�0
f�x� does

not exist then show there must be sequences an, bn converging to 0 for which the
sequences f�an� and f�bn� converge but to different limits.

11. Suppose f is continuous at all x and let P � �x : f�x� � 0�. If c � P then show that
there is an � � 0 such that N��c� � P.

12. Suppose f and g are continuous for all x and let S � �x : f�x� � g�x��. If c is an
accumulation point for S, show that c � S.

13. If f and g are continuous on �0, 1� and f�x� � g�x� for 0 � x � 1 then does there
exist a p � 0 such that f�x� � g�x� � p for 0 � x � 1.

14. If f and g are continuous on �0, 1� and f�x� � g�x� for 0 � x � 1 then there does
exist a p � 0 such that f�x� � g�x� � p for 0 � x � 1.

15. Let f�x� �
x � 1 if 0 � x � 1, x � 1

2

0 if x � 1
2

g�x� �
1
x if 0 � x � 1

0 if x � 0
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Explain how you would prove the continuity or lack of continuity for these two
functions; i.e., in each case, cite a theorem which supports your answer.

16. Let f�x� � x
x2 � 1

and let

A � f�1 � x � 8� � rng�f� M � f�1�. 2 � y �. 4� � dom�f�. In answering the
following questions, give reasons i.e., cite theorems or give examples for your
answers

a. Is A closed? Is it bounded?

b. Find the sup and the inf for A. Do these belong to the set?

c. Find the set of all y that belong to A

d. Find the set of all x that belong to M

e. Either prove that M is closed or show that it is not closed.

17. 1. Suppose A is an infinite subset of the reals and that p is the LUB for A but p
does not belong to A. Tell whether the following statements are true or false and
give coherent reasons for your answer.
a. p is an accumulation point for A
b. there is a ”largest value” x in A such that x � p.

18. State the compact range (extreme value, intermediate value) theorem. Give an
example where one of the hypotheses is not satisfied and the conclusion then
fails to hold.

19. State the persistence of sign theorem Explain the use of this theorem to prove the
following result:: If f and g are continuous on � and f�x� � g�x� for each rational
x, then f�x� � g�x� for all real x

a. State a condition on f�x�,and D that implies that f is uniformly
continuous on D

b. State a condition on f�x�, that implies that f is uniformly continuous on
�a, b�

c. Is f�x� � 1
1 � x2 uniformly continuous on �0,�� ?

20. Use the intermediate value theorem to tell how many real zeroes exist for the
function f�x� � sin x � cosx as well as to determine the approximate location of
these zeroes.

21. Suppose f and g are continuous on ���,�� and that f�x� � g�x� at every rational
value for x. Use the persistence of sign result to show that f and g must be equal
at every real value.

22. Given that the function f�x� � sin 1
x is continuous on �0, 1�, is f uniformly

continuous on �0, 1�? Given that the function g�x� � x is continuous on �0, 1�, is g
uniformly continuous on �0, 1�?

23. Let A denote the set of all the rational numbers between 0 and 1.
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a. Is this a closed set?
b. Is it an open set?
c. What are the accumulation points (boundary points, interior points) for

A?

24. For each of the following statements, first, tell whether the following are true or
false, then state a theorem which shows a statement is true or give a counter
example that shows it is false.
a. If f�x� is continuous and injective on �a, b� and f�a� � f�b�, then for all

x, y � �a, b�, x � y if and only if f�x� � f�y�.
b. There exist sequences �an� which are bounded but which contain no

convergent subsequences.
c. For every real value, x, there is a sequence of rational numbers that

converges to x.
d. If �an� in D converges to c � D, and �f�an�� converges to f�c�, then f

must be continuous at x � c.
e. If F is continuous on D where F�x� � f�x�g�x�, then f and g are

continuous on D.

25. Use the intermediate value theorem to tell how many real zeroes exist for the
function f�x� � sin x � cosx as well as to determine the approximate location of
these zeroes.

26. Use the intermediate value theorem to tell how many positive zeroes exist for the
function f�x� � sin x � 1

x as well as to determine the approximate location of these
zeroes.

27. Tell whether the following statements are true or false and cite a theorem to justify
your answer:
a. If f�x� is continuous and monotone on �a, b� then 	 x, y � �a, b�,

x � y implies f�x� � f�y�.

b. If �an� is a monotone sequence that does not converge then 1
an

must tend to zero as n tends to infinity..

c. If f�x� is continuous on ���,�� and f�x� � 0 if x is rational, then f�x� � 0
at every real x.

d. If A is an infinite subset of the reals and p � sup A but p is not in A then
there is no largest x in A such that x � p.

e. If F is continuous on D where F�x� � 5f�x� � 4g�x�, then f and g are
continuous on D.

28. Let f�x� � sin x
x

. Can f�0� be defined in such a way that f is uniformly continuous

on �0, 1�? Is f uniformly continuous on �0,��?

29. Suppose f�x� is continuous on �. Show that S � �x � �� f�x� � 0� is an open set.

30. A continuous function on a compact domain has a compact range. Give examples
to show that if either (a) the domain is not closed or (b) the domain is not
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bounded, then the range is not compact.

31. Can you use the compact range theorem to show that f�x� � 1/x on domain �0, 1�
is not continuous?

32. Suppose f�x� is continuous at x � a and f�a� � 0. Show � � � 0 such that f�x� � 0
	x � N��a�.

33. Suppose: f�x� is continuous on dom�f� and �xn� � dom�f� is such that
xn � � and f�xn� � 0 for each n. Show that: f��� � 0. Hint: Suppose f��� � 0
and show this leads to a contradiction.

34. Suppose f is continuous on �0, 2� and f�0� � f�2�. Show there exist points x and y
in �0, 2� such that |x � y| � 1 and f�x� � f�y�. Hint: Consider the function
g�x� � f�x � 1� � f�x� for x � �0, 1�

35. These functions are each undefined at two points. Are these singularities
removable?

f�x� � x3 � 4x � 5
x3 � 2x2 � x

g�x� � x3 � 3x2 � 2
x2 � 1

36. If
F�x� � f�x� � g�x� � h�x�

G�x� � g�x� � 2h�x�

H�x� � 2g�x� � h�x�

are all three continuous on the whole real line, then is it the case that f, g, h are
also continuous on the real line?

37. If f and g are continuous on � and f� m
n � � g� m

n � for all non-zero integers m, n, then
is it true that f�x� � g�x� 	x � �?

38. If f and g are continuous on �0, 1� and f�x� � g�x� for 0 � x � 1, then does there
exist a p � 0 such that f�x� � g�x� � p for 0 � x � 1?

39. Suppose f is continuous on �0, 1� and that f�x� � 0 for all x � � � �0, 1�. Then show
that f�x� � 0 for all x � �0, 1�.

40. Let S � �x : x2 � 4�. Show that if c is an accumulation point for S, then c belongs
to S.

41. Let T � �x : sin x � 0�. Show that every point of T is an interior point. What are the
boundary points of T?

42. Show that g�x� � f2�x� is continuous at every point where f�x� is continuous.

43. Prove that f�x� � |x| is continuous at all values of x. Does x � 0 require special
attention?

44. Let f�x� � sin x
x

. Can f�0�be defined in such a way that f is continuous for all x?
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