1 Lecture 14

1.1 The SVE, SVD and Regularization

Reference: *Rank-Deficient and Discrete ill-posed problems* Christian Hansen, SIAM

A Fredholm integral equation of the first kind
Find \(f(t) \) such that
\[
\int_0^1 K(s, t)f(t)dt = g(s)
\]
with \(0 \leq s \leq 1 \) and \(\|K\|^2 \equiv \int_0^1 \int_0^1 K(s, t)^2dsdt \leq C \). Moreover \(g \) is the data and \(K(s, t) \) is the kernel arising from the mathematical model. Often, \(g \) is only known at discrete points \(s_1, \ldots, s_m \). This lead to
\[
\int_0^1 k_i(t)f(t)dt = b_i
\]
where \(K_i(t) = K(s_i, t) \) and \(b_i = g(s_i) \). The problem of determining \(f(t) \) in equation (1) and (2) is ill-posed.

Example:
Suppose \(f(t) = \sin(2\pi pt), \ p = 1, 2, \ldots \). Then \(g(s) = \int_0^1 K(s, t)\sin(2\pi pt)dt \). By Riemann-Lebesque lemma, \(\lim_{p \to \infty} g(s) = 0 \). But as \(p \to \infty \), \(\sin(2\pi pt) \) becomes highly oscillatory. So small changes in \(g \) can correspond to large changes in \(f \).

1.2 The Singular Value Expansion (SVE)

The SVE theorem says that any kernel \(K \) such that \(\|K\| \leq C \) can be written as
\[
K(s, t) = \sum_{i=1}^{\infty} s_i u_i(s) v_i(t)
\]
\(u_i \) and \(v_i \) are the singular functions of \(K \). They are orthonormal i.e \(\langle u_i, u_j \rangle = \langle v_i, v_j \rangle = 1 \) if \(i = j \) and 0 if \(i \neq j \). The \(s_i \) are the singular values of \(K \) with \(s_1 \geq s_2 \geq \ldots \geq 0 \) and \(\sum_{n=1}^{\infty} s_n^2 = \|K\|^2 \) (so \(s_n \) decays faster than \(1/\sqrt{n} \)).
Also
\[
\int_0^1 K(s, t)v_i(t)dt = s_i u_i(s), \quad i = 1, 2, \ldots
\]
Multiply equation (1) with $s_i u_i(s)$ to get

$$
\int_0^1 K(s,t)f(t)dt s_i u_i(s) = s_i u_i(s)g(s)
$$

$$
\int_0^1 \left(\sum_{j=1}^{\infty} s_j u_j(s)v_j(t)f(t)dt \right) s_i u_i(s) = s_i u_i(s)g(s)
$$

$$
\int_0^1 \sum_{j=1}^{\infty} s_j u_j(s)\langle v_j, f \rangle s_i u_i(s)ds = \int_0^1 s_i u_i(s)g(s)ds
$$

$$
s_i^2 \langle v_i, f \rangle = s_i \langle u_i, g \rangle
$$

$$
\langle v_i, f \rangle v_i(t) = \frac{\langle u_i, g \rangle}{s_i} v_i(t)
$$

$$
\sum_{i=1}^{\infty} \langle v_i, f \rangle v_i(t) = \sum_{i=1}^{\infty} \frac{\langle u_i, g \rangle}{s_i} v_i(t)
$$

Since the left side from the last equation is the projection of $f(t)$ onto the span $\{v_i\}_{i=1}^{\infty}$ we get

$$
f(t) = \sum_{i=1}^{\infty} \frac{\langle u_i, g \rangle}{s_i} v_i(t)
$$

Observations:

1. The smoother the kernel, the faster the s_i decay.
2. The smaller the s_i, the more oscillatory u_i and v_i will be.
3. The factor s_i^{-1} in (3) amplifies high frequency oscillations in g.

1.3 A Characterization of Ill-posedness

If there exist a positive real number α such that the singular values satisfy $s_i = O(n^{-\alpha})$, then α is called the **degree of ill-posedness**. If $\alpha \leq 1$, the problem is mildly ill-posed. If $\alpha \geq 1$, the problem is moderately ill-posed. If $s_i = O(e^{-\alpha n})$ the problem is **severely** ill-posed.

What is regularization? A method of incorporating further information about the desired solution to stabilize the problem. These can have lots(!) of different forms. The dominating approach is: Consider the **constrained** minimization problem, minimize $p(t)$ where $p(t) = \| \int_0^1 K(s,t)f(t)dt - g(s) \|_2$ subject to one of the following:

1. f belongs to a specified subset.
2. some measure of f (e.g. its norm or derivative) is less than some upper bound. i.e. $w(f) \leq \delta$
3. $p(t) \leq \alpha$
4. minimize a linear combination of $p(t)$ and a measure of f, $w(f)$, $\min\{p(t)^2 + \lambda^2 w(f)^2\}$.

Here δ, α, λ are called regularization parameters.