1 Lecture 10

Recall, a problem is said to be well-posed if

1. there exists a solution
2. the solution is unique
3. the solution depends continuously on the data.

In terms of an operator equation \(A\phi = f \) where \(A : U \rightarrow V \), \(U,V \) subsets of normed space \(X \) and \(Y \), respectively, this means \(A : U \rightarrow V \) is bijective and \(A^{-1} : V \rightarrow U \) is continuous. So there are 3 types of ill-posedness

1. If \(A \) is not surjective (onto), then \(A\phi = f \) is not solvable for all \(f \in V \) (nonexistence of a solution).
2. If \(A \) is not injective (one to one), then \(A\phi = f \) may have more than one solution (nonuniqueness).
3. If \(A^{-1} \) exists, but is not continuous, then the solution does not depend continuously on the data (instability).

These properties are not completely independent.

Theorem 1 If \(A : X \rightarrow Y \) is a bounded linear operator mapping a Banach space \(X \) bijectively into a Banach space \(Y \), then \(A^{-1} : Y \rightarrow X \) is bounded and therefore continuous.

Theorem 2 Let \(A : U \subset X \rightarrow Y \) be a compact operator. Then \(A\phi = f \) is ill-posed if \(\dim U \) is not finite.

Proof: (by contradiction) Suppose \(\dim U = \infty \) and \(A^{-1} : Y \rightarrow U \) exists and is continuous. Since \(I = A^{-1}A \), \(I \) is the product of a compact operator and a continuous operator and is therefore compact. But the identity operator on an \(\infty \)-dimensional Banach space is not compact. Hence \(\dim U < \infty \).

Theorem 3 If \(K \in \mathcal{L}(H) \) is compact and \(\{e_n\} \) is a orthonormal basis for \(H \), then \(Ke_n \rightarrow 0 \) as \(n \rightarrow \infty \).

Proof: Suppose not. Then there exists \(\epsilon_0 > 0 \) and a subsequence \(n_j \) of \(\mathbb{N} \) such that \(\|Ke_{n_j}\| \geq \epsilon_0 \) for all \(j \in \mathbb{N} \). Since \(\|e_n\| = 1 \) for all \(j \) and \(K \) is compact there exists a subsequence \(\{f_i = e_{n_{i_j}}\}_{i=1}^{\infty} \) of \(\{e_{n_i}\} \) such that \(Kf_i \rightarrow u \) as \(i \rightarrow \infty \) for some \(u \in H \). Since \(\|Kf_i\| \geq \epsilon_0 \) for all \(i \) and \(u \neq 0 \). Also note \((Kf_i, u) = (f_i, K^*u) = (f_i, z) \rightarrow 0 \) since \(\{f_i\} \) is an orthonormal set. But this contradicts \((Kf_i, u) \rightarrow 0 \).

Corollary 1 If \(K : H \rightarrow H \) is compact, linear and \(K^{-1} \) exists and \(H \) is \(\infty \)-dimensional, then \(K^{-1} \) is unbounded.

Proof

Let \(\{e_n\} \) be an orthonormal basis for \(H \). Then \(Ke_n \rightarrow 0 \) as \(n \rightarrow \infty \). Thus, \(K \) is not bounded away from 0. Hence \(K^{-1} \) is unbounded.
Theorem 4 Let $A : H \to H$ be a linear operator. If $\{K_n\}$ is a sequence of compact operators such that $K_n \to A$ in operator norm, then A is compact.

Theorem 5 Let $Au(x) = \int_{\Omega} K(x, y)u(y)dy$, with kernel $K : \Omega \to \mathbb{R}$. If K is Hilbert-Schmidt (i.e. square integrable), then A is compact.

Proof: Let $\{\Phi_i(x)\}$ be an orthonormal basis for $L^2(\Omega)$. Then $\{\Phi_i(x)\Phi_j(x)\}$ is an orthonormal basis for $L^2(\Omega \times \Omega)$. Write

$$K(x, y) = \sum_{i,j=1}^{\infty} k_{ij} \Phi_i(x)\Phi_j(x)$$

(where convergence is in $L^2(\Omega)$ - norm) and

$$k_{ij} = \int_{\Omega} \int_{\Omega} K(x, y)\Phi_i(x)\Phi_j(y)dx dy$$

Then

$$\|K\|_{L^2(\Omega \times \Omega)}^2 = \int_{\Omega} \int_{\Omega} |K(x, y)|^2 dx dy = \sum_{i,j=1}^{\infty} |k_{ij}|^2$$

Define the operator $A_n \in (L^2(\Omega))$ by

$$(A_n u)(x) = \int_{\Omega} K_n(x, y)u(y)dy$$

where

$$K_n(x, y) = \sum_{i,j=1}^{n} k_{ij} \Phi_i(x)\Phi_j(y).$$

since $D(A_n)$ is finite, A_n is compact. Now

$$\|(A - A_n)u\|^2 = \left\| \int_{\Omega} (K(x, y) - K_n(x, y))u(y)dy \right\|^2$$

$$= \left(\int_{\Omega} \left(\int_{\Omega} |(K(x, y) - K_n(x, y))u(y)dy| dx \right)^2 \right.$$

use Hölder’s inequality

$$\leq \int_{\Omega} \left(\int_{\Omega} |(K(x, y) - K_n(x, y))|^2 dy \right) \left(\int_{\Omega} |u(x)|^2 dy \right) dx$$

$$= \int_{\Omega} \int_{\Omega} |(K(x, y) - K_n(x, y))|^2 dy dx \int_{\Omega} |u(x)|^2 dy$$

So $\|(A - A_n)\|^2 \leq \int_{\Omega} \int_{\Omega} |(K(x, y) - K_n(x, y))|^2 dy dx$. Now

$$\lim_{n \to \infty} \int_{\Omega} \int_{\Omega} |(K(x, y) - K_n(x, y))|^2 dy dx = \lim_{n \to \infty} \sum_{i,j=n+1}^{\infty} |k_{ij}|^2 = 0$$

So $A_n \to A$ in the operator norm, so A is compact.
Examples:
1) Weakly singular integral operators under the conditions of Vainikko. (See Lecture 9)
2) Recall the 1D heat conduction problem from Lecture 1: Find $f(x)$, the initial temperature distribution of a finite insulated rod, given the temperature $u(x, 1) = g(x)$.

We derived the Fredholm integral equation of the 1st kind

$$g(x) = \int_0^\pi K(x, \xi) f(\xi) d\xi$$

where $K(x, \xi) = \sum_{n=1}^{\infty} e^{-n^2} \sin(nx) \sin(n\xi)$.

Exercise: Show the integral operator is compact.