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Preface

These notes are a faithful record of a course of lectures given in the
Department of Mathematics at the University of Pisa in the fall of 1988. My
aim was two-fold: first, to develop in some detail for a student of algebraic
geometry the basic theory of elliptic surfaces over C, and secondly, to
present some recent results of joint work with U. Persson on configurations of
singular fibers on elliptic surfaces.

I hope that the Lectures I - VII, with Lecture 1IX, serve the Ffirst
purpose to a reasonable extent, and that Lectures VIII and X do justice to the
second. In particular, I hope that anyone who has gone through these notes
will be able to quickly get into a modern research article on elliptic
surfaces.

Most of the lectures deal almost exclusively with Jacobian surfaces, that
is, elliptic surfaces with a chosen section. This restriction was made mainly
because there is so much to say, even about Jacobian surfaces, that I found
myself constantly ignoring non-Jacobian questions in my haste to get to the
description of the work with U. Persson. In addition, for this work the
assumption of a section is harmless, so I felt that my audience was not being
cheated too much.

I have included a bibliography at the end of the lectures, although T
have made rather spare use of it in the body of the text. The reader should
know that except for the material in Lectures VIII and X, the results are not
my own. A basic set of references could be [BPV], [D], [Kl1], [Kal], [MS],
[S], and [T].

I would like to thank M. Cragnolini, M. Ojanguren, R. Pardini, M.
Salvetti, and the students who attended these lectures for their kind
attention and interest. I must express my gratitude to the C. N. R., for
their grant support during my stay in Pisa. Finally it gives me great
pleasure to thanlk Fabrizio Catanese for his kind invitation to visit Pisa and
give these lectures. I has been a distinct honor to have been able to
experience his friendship and his scholarship, both in the past and especially
during my visit, and I look forward to extending our contact, perscnally and

professionally, in the future,
Rick Miranda

Colorado State University

February, 1989
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Lecture I: Definitions and examples.
I.1 Elliptic curves.

An elliptic curve (E,Q) over a field K is a complete curve E of genus one

defined over K, together with a given point Q defined over K. One is often
sloppy and refers to the elliptic curve as E alone, suppressing the given
point in the notation.

Note that we have called the chosen point 0; it is usually taken to be
the origin of the group law on the K-rational points of the elliptic curve.

There are several quite common ways that elliptic curves arise in nature.

(I.1.1)Example; Fix a non-real complex number 7, and denote by A(r) the
subgroup of C generated by 1 and r: A(r) = Z @ Zr. Then E = C/A(r}) 1is an

elliptic curve over C. The chosen point is of course the class of 0.

(I.1.2)Exanple: Let K be any field, and let E C Pi be a smooth cubic curve
with a given flex point p defined over K. Then (E,p) is an elliptic curve
over K.

(I.1.3)Example: Let K be any field of characteristic unequal to 2, and let
E be the double cover of Pé branched over « and three other distinct points,
which as a divisor of degree 3 on Pé is defined over K. Then (E,0) is an

elliptic curve over K, where 0 is the point over . Such an elliptic curve
can always he written as yz = f(x), where f is a polynomial of degree 3 in

K[x].

(I.1.4)Example: Consider the curve given by the equation y2 = x3 + Ax + B,

where A and B are in a field K. This is the famous Weierstrass equation, and

if A= 4A3 + 2732 is not zero in K, then this equation defines a smooth curve

E, of genus one, with a single point 0 at », (E,0) is an elliptic curve over
K. This equation is the one relating the Weierstrass P-function and its
derivative (up to some constants), for an elliptic curve as in Example 1. In
general, any elliptic curve over a field of characteristic unequal te 2 or 3
can be defined by a Welerstrass equation; one requires A »# 0 for E to be

smooth.



1.2: The J-function.

Assume that K does not have characteristic 2 or 3, and let (E,0) be
defined by the Welerstrass equation y2 - x3 + Ax + B, with A and B in K. The

basic theory of this equation says that the pair (A,B) is almost unique, i.e.,

it is almost determined by the elliptic curve E. In particular, two pairs
(Al,Bl) and (A2,B2) determine isomorphic elliptic curves if and only if there
is a nonzero A in K such that A2 = AaAl and B2 = A6Bl.
One direction of this is easy: if such a. X exists, then
2 3 3 4 6 6 -2 .3 -2
¥y~ o=x" + Azx + 32 = R 4 A Alx + B1 e AN )T O+ AI(A X) + Bl, S0

replacing y by A-sy and x by A-zx we obtain y2 = x3 + Alx + Bl' To see the
other direction, we must essentially derive the Weierstrass equation from the
elliptic curve (E,Q), which I will do very briefly.

Consider the wvector spaces Vn = HO(E,OE(nQ); by Riemann-Roch, din\[:Vn = 1

for nz= 1. Let (1) be a generator for V {1,f} generators for VZ’ and

{1,£,g) generators for V3. Then the elemeits {1,f,g,f2,fg,f3} forms a basis
for V6; since g~ € V6 aéso, ge have a rglation, and we may assume this
relation has the form g~ = £~ + asfg + aaf + azg + a2f +oay for some a, in K,
by scaling g appropriately. By completing the square in g we may assume that
ag and a, are zero, and then by completing the cube in f we may assume that a,
is zero (here we use characteristic unequal to two or three). This gives the
Weierstrass equation for (E,Q), with x being the new f and y the“new £.

The function x is now determined (up to a constant which must be a square
in K) by the requirement that a monic cubie in x with no x2 term is the square
of an element in V3; the element y is determined after x is (up to *) by being
that element of V3. If we have y2 - x3 + Ax + B, and we replace x by Azx,
then we must replace y by iASy to retain the form of the Weierstrass equationm.

This, as shown above, has the effect of replacing the pair of coefficients
(A,B) with the pair (A-4A,A_6B), and is the only amount of ambiguity in the
pair,

Note that for a pair (A,B) then, there is just one invariant under this
action of K*, namely o = AB/BZ. It is more convenient to take as the
invariant the quantity 4q/(4a+27) = 4A3/h, because this linear fractional
image of a is always in K, since we are assuming that E is smooth, hence

A= 0.

(I.2.1)Definition: J{(A,B) = 4A3/(4A3+2732).
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We define J for an elliptic curve given by the Welerstrass equation
y2 = x3 + Ax + B to be J(A,B). Note that this definition agrees with
Kodaira's notation, but disagrees with all the number theorist’s mnotation:
they tend to have a factor of 123 in addition to this. In characteristics
unequal to 2 and 3, this is not a real problem, but the reader should beware
of the formulas using our J-function in any arithmetic situations.

The reader should note that J(A,B) =0 if and only if A =0 and
J(A,B) =1 if and only if B = 0.
Note that if two pailrs (Al’Bl) and (AZ'BZ) define isomorphic elliptic

curves over K, then J(Al,Bl) = J(AQ’B2)‘ The converse is not quite true.

(1.2.2)Lemma: Assgume that J(Al,Bl) = J(AZ,B2). Then the elliptic cuxrves

y2 = X3 + Alx + Bl and y2 = x3 + Azx + B2 may not be 1isomerphic as elliptic

curves over K; however if J is unequal to 0 or 1, they become isomorphic over

at most a guadratic field extension of K.

Proof: It is easy to see that J = J(Al,Bl) - J(AZ,BZ) and J = 0,1 dimplies

*
that there is a ¥ in K such that A2 - 12Al and 32 = 1331. Indeed, we have
3 2 . -
(Al/Az) = (Bl/Bz) and y = AzBl/Ale works., If y 1is a square in K, say

¥ = Az, then the curves are isomorphic over K. If not, they become isomorphic

over K(V?). | |

We will primarily be interested in the theory of elliptic surfaces over
the field C, but this inevitably leads to the discussion of elliptic curves
over other fields (e.g., function fields of curves).
I.3: Elliptic Surfaces.

In this section we assume that the ground field is the complex numbers.

(I.3.1)Definition: An elliptic surface is a complex surface X together with a

holomorphic map n:X —3 C from X to a smooth curve C such that the general

fiber of nm is a smooth connected curve of genus one.

Note that we have not said that the general fiber of « is an elliptie
curve, which might strike the reader as more logical. This would imply that

there is given in each fiber a chosen point, which would mean that a section
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for the map n would be given, This is considered a special (though
fundamental) case and we just agree to abuse the language in this way.
An elliptic surface n:X —> C is smooth if X is a smooth surface. It is

relatively minimal, or a minimal elliptic surface if X is smooth and there are

no (-1)-curves in the fibers of =x.

We will call a curve on X wvertical for m, or simply vertical, if it 1lies

in a fiber of n. We will otherwise call it horizontal,. Thus a mninimal
elliptic surface has no vertical (-1)-curves. It may well have horizontal
ones, however, and therefore not be a minimal surface in the sense of surface
theory; it will only be minimal elliptie.

We say n:X —> C is an elliptic surface with section S, or simply with

section, if a section s:C — X of n is given; the image of g is the curve §
on X.

Finally we say that X is an elliptic surface over ¢ if we wish to specify
that ¢ is the base curve. For example, an elliptic surface over Pl has a
smooth rational base curve,

There is a local theory of elliptic surfaces, and a global theory, and of
course the two are not unrelated. The 1local problems deal with the
classification of the possible fibers of an elliptic surface x:X — ¢, the
local monodromy (on HZ(F,Z) for a fiber F) around a singular fiber, the local
behavior of the J-map, etc. The global problems are ones familiar to any
surface theorist: what are the numerical invariants of X, what 1is the
canonical bundle formula, what is the global behavior of the J-map, the
Kodaira dimension of X, ete. I will try in these lectures to deal in some
detail with both the local and the global theory.

There are some obvious base change properties, which I 1leave to the

reader to prove as an exercise.

(I.3.2)Lemma: Let w:¥X —> G be an elliptic surface, and let f:Cl —> C be a

map of curves. Then the pull-back ﬂl:X1 =X Xa Cl — C1 is an elliptic

surface. Moreover:

a) If # has a section §, then S5 induces a section S1 of -

b) If f is branched only over points p of C such that ﬂ_l(p) is smooth, and
if X is smooth, then X, is smooth.

1
c) With the hypotheses of b), if X is smooth and minimal elliptic, then so

is Xl'
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I.4: The List of possible singular fibers.

Before beginning to address the issues mentioned above, I would 1like to
give a series of examples to illustrate some of the features of the theory to
the vreader. It will be wuseful for the purposes of illustration and
communication for the reader to know the possible singular fibers which can
occur, and Kodaira's names for them. This I present below, without proof,

simply so that I can speak of them intelligently in the examples to follow.

(I.4.1)Table of possible singular fibers of a smooth minimal elliptic

surface. The names are those used by Kodaira,

Name Fiber

IO smooth elliptic curve

Il nodal rational curve

12 two smooth rational curves meeting transversally at two points

13 three smooth rational curves meeting in a ecycle; a triangle

IN,N23 N smooth rational curves meeting in a cycle, i.e., meeting with
dual graph AN

I§,N20 N+5 smooth rational curves meeting with dual graph 5N+4

IT a cuspidal rational curve

II1X two smooth rational curves meeting at one point to order 2

v three smooth rational curves all meeting at one point

IV** 7 smooth rational curves meeting with dual graph EG

IIi 8 smooth rational curves meeting with dual graph E7

II 9 smooth rational curves meeting with dual graph E8

MIN,Nzo topologically an IN’ but each curve has multiplicity N

All components of reducible fibers have self-intersection -2; the

irreducible fibers have self-intersection 0, of course,

The dual graphs referred to above are those of the extended Dynkin
diagrams. For ease of reference I'll give below tables of the Dynkin diagrams

and the extended Dynkin diagrams.
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(I.4.2)Table The Dynkin Diagrams
AN, N = 1: O—O0=— ... — 0 — 0 a path of length N
/O
DN’ N=4 O me O ,,, — O = O\ N wvertices total
o
E_: O O == O == O — O
: |
o]
E_: O rme O wae et O e O = O
! |
o}
ES: O— 00— 0 == 0 == Q0 —0—20
o]
(I.4.3)Table The Extended Dynkin Diagrams (with multiplicities)
AO: O Al: ) 0 AN,N22: a cycle of N+1 vertices
@]
< | E RN A
D,: O = 0 =—0DO D, N=5; O wan O — ,,, == O N+l vertices total
4 N 7 ~
| o o]
O
E;: O— 0= 0&=0=—0
O
o
E7: 00— 0= 0=0=—0—0 0
O
Egf 0—0—0—0—0—0~0=—0
@]

The multiplicities of the vertices of the extended Dynkin diagrams are given

below.
AN,Nzo: coefficient 1 on each vertex.

ﬁN,NZA: coefficient 1 on each vertex of degree 1, 2 on all others

E :12321; E.: 1234321, E,: 24654321
6 2 7 ) 8 3

1

A fiber of an elliptic surface m:X — C is more than just a wunion of
curves, of course, it is a divisor on X, and as such each component of the
fiber has a multiplicity. This information is missing in the above table

(I.4.1). For types IO’ Il’ 12, 13, II, III, and 1V, the multiplicity of every
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component is 1. TFor the types MIN’ the multiplicity of every component is M.
For all other types, the multiplicities are the multiplicities indicated at

the end of Table (I.4.3) for the appropriate extended Dynkin diagram.

I.5: Examples.

In this section I will present several examples to illustrate the
existence of singular fibers of many of the types indicated above in section
4, and also several other more global facts concerning elliptic surfaces,

Most of the examples come from pencils of plane cubic curves.

{(I.5.1)Example: A pencil of plane cubics.
Let C1 be a smooth cubic curve in Pz, and let 02 be any other cubic. The

pencil generated by C1 and 02 has 9 base points (some possibly infinitely

near} and after blowing them up the fundamental locus of the rational map from
Pz to Pl given by the pencil is resolved, and we obtain a morphism =m:X — Pl
which exhibits the rational surface X as being elliptic over Pl. It is
minimal elliptic, since there are no vertical (-1)-curves; if there were, we
would have blown up too much, but we blew up exactly nine times, which is

required since Cl-C2 = 9. The canonical class of ¥ is -Cl; in particular,
2

Ky = 0.

By varying 02 appropriately, we may see many of the possible singular
fibers in the Table (I.4.1). 1Indeed, if we take 02 to be reduced, meeting C1
in 9 distinct points transversally, then then fiber of » corresponding to 02
will be simply the proper transform of 02 itself, Hence Iif 02 is a nodal
cubic, we obtain a fiber of type Il, and if 02 is a cuspidal cubic, we obtain
a fiber of type II. If 02 is a conic plus a line, we obtain the types 12 (if
the line is not tangent to the conic) or type ITI (if the 1line is tangent).
1if 02 consists of three distinct lines, then we obtain type 13 (if the 1lines
are not concurrent) or type IV (if they are),

Note that since KX = -Cl,

fiber. Hence we verify that for all components of reducible fibers in the

we have KX-A = 0 for any component of any

above cases (which are all smooth and rational), we have self-intersection -2.
How many singular fibers does such pencil have? As in every enumerative
question in algebraic geometry, the answer is fairly nice 1if vyou count
properly, and the problem i1s to determine what "properly" means. First let me
present a criterion for a general cubic curve in the plane to be singular.

X 2 .
Let X 0Xy Xy be the homogeneous coordinates in P, and consider a
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homogeneous cubic equation F(x) = 0. Form the Hessian HF - det(32F/8xiaxj),
which is also a cubiec, and the nine further cubics Gij = XiBEfaxj. Let DF be

the determinant of the 10 X 10 matrix of coefficients of H and the Gij; DF is
a function of the coefficients of F, and since H is cubic and the Gij linear

in these coefficients, D_ is homogeneous of degree 12 in the coefficients of

F
F. It is well-defined up to sign.

(I.5.2)Lemma; The cubic curve G defined by F = 0 is singular if and only if
DF = 0.

Proof: C is singular if and only if the three partials of F have a common
golution in Pz; if they do, then so do H and all the Gij’ so that these 10
cubics share that common point. Hence they cannot be linéarly independent, so
DF must be zero.

The above argument shows that the discriminant locus in Pg for cubice
curves is contained inside the zero locus of D; we wish to show that they are
equal. A calculation of the above determinant for F = y2 - x3 -~ Ax - B gives
that DF is a constant (I believe it is 3327, but don't hold me to it) times
4A3+27Bz, which i1s the correct discriminant A for the Weierstrass equation.
Since every smooth cubic can be written in Weierstrass form, this shows that

if a cubic F = 0 is smooth, then DF * 0. =

This shows that the discriminant locus for plane cubics has degree 12,
and so we expect that in a general pencil of smooth cubics we will Ffind 12
singular members; in a non-general pencil, we expect still 12 singular
members, counted properly. Indeed, since the most general singular cubic is a
nodal cubic, one expects in a general pencil to find 12 nodal cubics,

contributing 12 singular fibers to the associated elliptic surface, each of

type Il'
(I.5.3)Example: A non-reduced fiber.
Let 02 now be 2L4+M, for L and M distinct lines in Pz, and let C1 be a

general smooth cubic meeting L and M in three points transversally each.
After resolving the base points of the pencil generated by C1 anf Cz, one will
find as the singular fiber corresponding to 02 a fiber of type IO' This fiber
type is not reduced; the proper transform of L occurs to multiplicity 2 in the
fiber. The other four curves of the fiber are M and the first three

exceptional curves lying over the three points of CinL'
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(I1.5.4)Example: A family with constant J,

Let G1 be defined by y2z = 0 and 02 by x(x2+axz+z2) = 0, for a fixed
constant a » #2. The pencil is then given by F = Ayzz + px(x2+axz+22). The
calculation of DF in this case gives DF equal to a constant times A6p6,

showing that there are only two singular fibers, corresponding to the elements
C1 and C, of the pencil. Those singular fibers, the reader* will find after
resolving the base points of the pencil, are both of type IO; each is counting
for 6 of the 12 singular fibers,

Note that the J-invariant of the general fiber does not vary with (A,pu)!
Hence this is a family of isomorphic elliptiec curves, but which degenerates

non-trivially. The surface is not a product, since there are degenerations.

(I.5.5)Example: Higher Polygons.

Let 02 be the triangle xyz = 0, and let Cl be a smooth cubic, If Cl goes
through a vertex of the triangle, then the exceptional curve over the vertex
will contribute a component to the fiber of the elliptic surface corresponding
to C2; if in addition C1 i1s tangent to one of the lines of C, at the wvertex,
then two (of the three) exceptional curves lying over that vertex occur in the
fiber corresponding to CZ' In every case, the triangle of 02 is expanded into
a higher polygon, giving a fiber of type IN for some N > 3. We can arrange in
this way to have a fiber of type IN with 3 < N = 9, 9 being obtained when C1
is tangent to each of the three lines of 02 ;t e;ch gf the vertices in turn.
For example, if C1 is given by the cubic xy +yz +2x” = 0, we obtain an Ig

fiber.

(I.5.6)Example: Base change of an IN fiber.

Let #:X = D be a smooth minimal elliptic surface over a disc with a
singular fiber of type IN over 0é If t is a coordinate on the disc D centered
at 0, make the base change t = s°. This amounts to taking the double cover of
X branched over the N components of the singular fiber, and after resolving
the N ordinary double points (occurring over the nodes of XO) one easily sees
that the singular fiber after the base change is of type IZN'

In this way one sees that one can obtain singular fibers of type IM with
arbitrarily high M.

In fact, as we will see later, if one base changes a fiber of type IN to

order M (replacing t by SM), one obtains a fiber of type IMN'
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(I.5.7)Example: Double base change of Example(I.5.4).

Let f:[P1 — ?1 be the double cover branched over 0 and =, and base
change the elliptic surface X of Example (I.5.4) via f. We are ramifying over
exactly the two singular fibers of £, and they are both of type Ig. After
normalizing the double cover, we are taking the double cover of X branched
along the 8 multiplicity one curves in the two fibers. Locally, this double
cover is a smooth elliptic curve (lying over the multiplicity two component)
with self-intersection -4 and 4 (-l)-curves (lying over the four multiplicity
one components). After blowing down the four (-1)-curves in the two fibers,
we obtain an elliptic surface over Pl, with constant J, and with no singular
fibers. This surface is a product of Fl with an elliptic curve, as is rather
easy to verify using the classification of surfaces.

(I.5.8)Example: A pencil with an 1’; fiber.

We have seen, in Example (I.5.3), that if we take 02 to be 2L+M, where L
and M are distinct lines, a:d C1 to meet L transversally in 3 distinct points,
we obtain a fiber of type I0 corresponding to 02. If instead we take Cl

*
tangent to L, we obtain a fiber of type Il.

* * %
(I1.5.9)Example: IV , IIT , and II fibers.
Let 02 be a triple line 3L. IF we take G, to meet C, in three distinct

-t .
points, we obtain a fiber of type IV corresponding to C2 in the elliptic
surface. If 01 is tangent of C2, and meets C2 at one other point, then we
*
obtain a fiber of type III . 1If Gl has L as a flex line, then we obtain =a

*
fiber of type II .

(I.5,10)Example: A multiple fiber.
Let C be a smooth cubie, and choose 9 points Py:---Pg OO0 G so that zpi

is not a divisor in 3H, but ZZpi is a divisor in 6H (here H is the hyperplane
divisor of C). Consider the set of sextic curves in the plane which are
double at the 9 points P, - There are 27 parameters for sextics, and iImposing
a double point is three parameters, so there is at least one such sextic. of
course 2C 1s one.

I ¢laim in fact there are two, hence a pencil of such. There is surely a
pencil of sextics double at PyseePg passing through Py and having some
different tangent at Pg other than that of C. (This is only 26 conditions.)
However, by Abel’s theorem on C, any such sextic must meet C twice at Pg»

hence must in fact be double there also.
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Let S be such a sextic, and consider the pencil generated by § and 2C. A
smooth sextic has arithmetic genus 10, so that the general member of this
pencil has geometric genus 1, and after vresolving the base points of the
pencil (by blowing up pl,...,pg) we obtain an elliptic surface with a multiple
smooth fiber, of type 210; this is the proper transform of 2C.

This example can be generalized to obtain fibers of type MIO for any M,
by considering a pencil of curves of degree 3M which have 9 M-fold points as
base locus, cutting out a divisor D o\n a smooth cubic such that MD is 3M

times the hyperplane divisor,

(I.5.11)Example: A multiple triangle,
Let Q be a smooth conic in the plane, and let Ll' L2, and L3 be three
distinet tangent lines to Q. Form the pencil of sextics generated by 3Q and

2(L1+L2+L This gives an elliptic surface with two singular fibers, one of

7.
3
type IV (over Q) and a multiple fiber of type 213 (the proper transforms of

the Li)'
I.6: The Classification of the Fibers

In this section I will present a proof of Kodaira's classification of the
singular fibers, which was written down in Table (I.4.1). We first give a
lemma which 1s quite general for a fibration whose fibers have arbitrary
genus. Assume X, is the singular fiber, and write X, = Znici’ with n, > 0 and
Ci irreducible for each i. The intersection form on ¥ induces a symmetric

bilinear form <-,-> on the @-vector space V with basis the set of components

{Ci}.

(I.6.1)Lemma:
a) The form <-,-> is negative semi-definite on V.

b) The kernel of <-,-> has dimension one, and is spanned by XO'

Proof: We’ll assume that XO is a fiber of a fibration of curves on an

algebraic surface, so that we have access to the Hodge index theorem. One
form of this theorem is that if B, and D, are two Q-divisors on the surface X,

2
with Di > 0 and Dl-D2 = 0, then D, =< 0; moreover D, = 0 if and only if D is

homologous to zero on X.
Now assume that there is a class D1 in V with Di > 0, and apply the Hodge

2 2 2

index theorem with D2 = XO. Since XO-Ci = Xt-Ci = 0 for each 1, X0 ig
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certainly in the kernel of <-,->. Hence D1 and D2 satisfy the hypotheses of

the Hodge index theorem, and we conclude that D, = XO is homologous to zero on
X, which is absurd since it is a positive divisor.

This proves that the form <-,-> is negative semi-definite, and we must
now show that we have only a rank one kernel. In fact I claim that if D is
any class in V with D2 = {0, then D is in the span of XO. Assume on the
contrary that D is not a multiple of XO. Then there is any a« € @ such that
Ga =D + aXO can be written as ZIiCi, with ri # 0 for every i, and such that
there is an i with r. > 0 and a j with rj < 0. Write G =P - N, where P and N
are both positive combinations of the Ci's, with disjoint support; by our
assumption on e, neither P nor N is zero. Note that since XO is connected,
PN > 0. Then, since D2 = 0 and XO is in the kernel of the form, we have

2 2 2

Ga = 0. But Ga = (P-N)2 = P - 2PN + N2 < 0 by part a) and the inequality

P+N > 0. This contradiction proves that D must be in the span of XO. n

(I.6.2)Remark: One can avoid the use of the Hodge index theorem here, if one
is willing to do some more work with quadratic forms. The lemma is true quite
generally for any singular fibers of a fibration of curves on a smooth

surface, e.g., for fibrations over the disc.

Now to some elementary graph theory. Let G be a graph, possibly with
loops and/or with multiple edges. Form the Q-vector space VG with basis the
vertices of G, and define a symmetric bilinear form on VG by declaring

v2 = -2 4+ 2(# of loops at v) for all vertices v,
and vw = the # of edges joining v to w in G, if v = w,

This space V together with this forxrm, is called the associated form to G.

The reaier should check, if he or she has never done so before, that the
graphs of Table (I.4.2), called the Dynkin diagrams, or the A-D-E graphs, have
a negative definite assoclated form,

Note that the element of VG defined by attaching to each vertex its
multiplicity, according to Table (I.4.3), is in the kernel of the form, for
each extended Dynkin diagram. Thus, since each extended Dynkin diagram
contains an ordinary one with one fewer vertex, we see that the associated
form to each extended Dynkin diagram is negative semi-definite, with a

dimension one kernel, spanned by the vector of multiplicities.

Note the following amusing fact:
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(I.6.3)Lemma: -

a) Every connected graph either is contained in or contains an extended
Dynkin diagram.

b) Every connected graph without loops or multiple edges either is contained
in or contains an extended Dynkin diagram without loops or multiple edges
{(i.e., not AO or Al).

Proof: Clearly b) implies a), since if a graph has a loop it contains AO'

If a graph has a multiple edge, it contains Al’ so we may assume that G does

not contain any loops or multiple edges. If € contains. a c¢yele, then it

contains AN for some N, so we may assume that G is a tree. If ¢ contains a

vertex of degree 4 or more, then it contains DA’ so we may further assume that

all vertices of G have degree 1, 2, or 3.

If G has two or more vertices of degree 3, it contains ﬁN for some N; if

all vertices of G are of degree 1 or 2, then G is a path, and so is contained

in AN for some N. Hence we may assume that G has exactly one vertex of degree

3. In this case G is a T " graph, 1.e., a graph with one central vertex v
of degree 3, and 3 "arms" emanating from v, of lengths p, q, and r (counting v
in each arm; we have then a total of ptg+r-2 vertices). Note that EG is
T3’3,3, E7 is T2,4’4, and E8 is T2,3,6'

We order p, q and r so that 2 < p s q=<v. Ifp=z=3, then G contains
Es; hence we may assume that p = 2. If g = 4, then G contains E7; if q=2,
then G is contained in D_ for some N. Hence we may assume that q = 3.

N
If r < 4, then G is contained in 57, while if r = 5, G contains E8' Thisg

completes the analysis, ®

The above lemma implies that the extended Dynkin diagrams are the only

graphs whose associated form is negative semidefinite with dimension one

kernel.

(I.6.4)Corollary: Let G be a connected graph whose associated form is

negative semidefinite, with kernel of dimension one. Then ¢ is an extended

Dynkin diagram.

Proof: If G has a loop, then since G is comnected and the associated form
is negative semidefinite, G must have simply one vertex and one lcop, i.e., G
must be AO' We may therefore assume that G has no loops. If G has a multiple

edge, joining say vertices v and w, then the negative semidefiniteness
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(applied to the element v+w of VG) shows that there must be exactly two edges
only, and no other vertices; hence G is Al. We may therefore assume that G
has no multiple edges.

In this case, if G contains a Dynkin diagram, then the square zero class
X of the Dynkin diagram must be the generator for the kernel of Vg, and so G
can have no vertices other than those of the Dynkin diagram. Hence G is the
Dynkin diagram, since it has no multiple edges.

If G is contained in a Dynkin diagram, the generator x of the kernel of
VG must be a multiple of the square zero class of the Dynkin diagram; since
this class has a strictly positive coefficient on all the vertices of the
Dynkin diagram, G must contain all those wvertices, and so G must again equal
the Dynkin diagram,

These exhaust all the cases, by the previous lemma. N

Let now #n:X — C be a smooth minimal elliptic surface, with a special
fiber over 0 € C. Write the fiber as XO = EniCi, with n, > 0 and Ci

irreducible for each i. Let M be the g.c.d. of the multiplicities n, ; M 1is

the multiplicity of the fiber, and we may write XO = MF, where F = Zrici, with
the ri's having no common factor, The fiber is called a multiple Ffiber if
M>1.

We have one more fact which is required; its proof can be found in

[BPV, III.8.3].

(I.6.5)Lemma: If XO is a fiber of multipliecity M, then OF(F) is a torsion
line bundle with order M in Pic(F). 1In particular, if F is simply connected

{(so that Pic(F) has no torsion), then M = 1.
We are now In a position to verify the table presented earlier.

(1.6.6)Theorem: The only possible fibers for a smooth minimal elliptic

surface are those listed in Table (I.4.1).

Proof: Again write a fiber XO as MF, and write F as ZriCi. If F is
irreducible, then, since the arithmetic genus of F is one, it is either a
smooth elliptic curve (type IO if M = 1), a nodal rational curve (type Il if
M = 1), or a cuspidal rational curve (type II if M = 1). So assume that F is
reducible. By the adjunction formula, KX X =0 for a general fiber X ; hence
KX-F 0 also, so that 0 = Zr C, KX Er (2p (C y-2- C )
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I claim that all the integers 2pa(Ci)-2-C§ are non-negative. Indeed, if

2p&(Ci)-2—C§ < 0, then -2 =< 2pa(Ci)-2 < Ci < -1, (since the form is negative

semidefinite and F is reducible; here we use (I.6.1)). Therefore we must have
pa(Ci) = 0, so Ci is a smooth rational curve, and Ci = -1:; however this is
ruled out by minimality.

Since every r, is strietly opositive, we must therefore  have
2pa(Ci)~2~C§ = 0 for each i, forcing each Ci to be a smooth rational cutrve
with self-intersection -2.

Form the dual graph G te the fiber ¥, that is, a <vertex v, for every
component Ci’ and Ci-Cj edges joining v, to Vj. By Lemma (I.6.%) and
Corollary (I.6.4), G must be one of the extended Dynkin diagrams, (not AO). 1t
G is Al, then F must be either 12 (1f the two components meet at two points)
or III (if the two components meet at one point). If G is A2, then F is
either I3 (if the components meet in a cycle) or IV (if they all meet at one
point). In all other cases there is no ambiguity to how the components meet,
N’ N = i, (frim the diagrams AN-l)’ I§, ~(frcjm the
and the types IV , III and IT (from the diagrams EG' E7, and

and we obtain the types I
diagrams D

ES)'

N+4)’

This completes the analysis in case M = 1, Tf M = 1, then F must not be

simply connected, so that only F = L_, N = 0, are allowed. This gives the

N!
types MIN’ and completes the proof. M
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Lecture 1I: The Weierstrass equation,
IT.1: Uniqueness of minimal models.

Let m:X — G be a smooth elliptic surface. If X is not minimal elliptie,
then there must be some vertical (-1)-curves; a smooth minimal elliptié
surface may be obtained by blowing down any vertical (-1)-curves one finds
(there can be only finitely many such in every fiber of m, of course).

I claim that this smooth minimal elliptic surface is wunique up to

isomorphism.

(I1.1.1)Definition: Let ﬂl:X1 — G and 1r2:X2 -3> G be two elliptic surfaces

over C. We say they are birational ag elliptic surfaces over C if there is a

birational map f:X1 ] X2 with o= w20f.

In fact we have the following.

(I1.1.2)Proposition: Assume wl:X1 —> C and 1r2:X2 —> ¢ are smooth minimal
elliptic surfaces, which are birational as elliptic surfaces over C; let f be

a birational map between them. Then f is an isomorphism.

Proof: The hypothesis that f preserves the elliptic structure implies that
the map f can be resolved by only blowing up points and blowing down curves in
the fibers of the ﬂi's. Let X be a surface dominating both Xl and X2’ such

that the number of blow-ups necessary to go from Xl to X is minimal. We have

7N

1 f 2
“1\Cﬁ2

Here a and 8 are the blowups of Xl and XZ’ respectively. We wish to show that

the following diagram:

B is an isomorphism. If not, factor 8 into a sequence of blow-ups, and let E
be the first exceptional curve blown down by 8. If E is also exceptional for
a, then after blowing down E we obtain a surface X' which is "closer" to Xl’
but still dominates both Xl and XZ' This violates the minimality of X, and so
E is not exceptional for o.

Therefore E must be the proper transform of a component of a fiber of Ty -

However, consider the possible components, as listed in Table (I.4.1): the
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image E of E in Xl is either a smooth rational curve with self-intersection
-2, a nodal or cuspidal rational curve with self-intersection 0, or a smooth
elliptic curve. Since E is smooth and rational, this last case is not
possible, and since E2 = -1 on X, the first case is not possible either: the
self-intersection can only go down upon blowing up. Therefore E is a rational
curve with a single double point, with self-intersection 0. To obtain the
smooth proper transform E, at some stage in the sequence of blow-ups of o the
double point of E must be blown up; when this happens, the self-intersection
will drop by 4, and so obtaining E2 = -1 is not possible in this case either.
Therefore E cannot exist, and # must be an isomorphism.

By symmetry, a 1s an isomorphism also, and hence so is £f. n

(II.1.3)Corollary: Given an elliptic surface m:X — C, there 1is a unique
smooth minimal elliptic surface 1r1:X1 — C birational to m:X — C as elliptic

surfaces over C.

If m:X — C is an elliptic surface over C, then the generic fiber Xﬂ of =
is a curve of genus one over the function field K(C) of C. Conversely, if omne
has a curve of genus one over the function field K(C), then the above
Corollary shows that there is a unique smooth minimal elliptic surface over C

with that curve as generic fiber. Therefore we have a 1-1 correspondence:.

smooth minimal curves of
(IL1.1.4) elliptic surfaces — genus one
over C over K(GC)

(both sets taken up to isomorphism)
Ir.2: The Weierstrass equation for an elliptic curve over a field

In this section I want to present the theory of the Weierstrass equation
for an elliptic curve over a field K of characteristic wunequal to 2 or 3,
This is a very well-known story, but I include it here for convenience.

Let E be a reduced irreducible complete curve of arithmetic genus one
over K, and let p be a smooth closed point of E. This therefore includes the
case when E is a nodal rational or cuspidal rational curve. For every n = 0,

let Vn = HO(E,OE(n-p)); by Riemann-Roch, we have

(I1.2.1): VO = V1 = K and dlmKVn =n for all n= 1.
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Indeed, we interpret VO’ and therefore Vl, as the constant functions on
E, and we consider Vn as the space of rational functions on E with only a
single pole of order at most m at p. In this way we have naturally Vi c Vi+l
for every 1 = 0. Moreover, multiplication gives wus a natural map
Vi ® Vj — vi+j’ and from SymmkVi to Vki'
(I1.2.2)Lemma:
(a) There is a nonzero element y € V3 - V2 such that y2 {considered to be in
V6) is in the image of Symm3V2.
(b) There is a nonzero element x € V2 - Vl such that a monic cubic in x with
110 x2 term is equal to y2.
(¢) 1If (xl,yl) and (xz,yz) are two pairs of elements satisfying (a) and (b)

above, then there is a nonzero element X in K such that X, = Ale and

3
Yo =AYy
Proof: The set {1} is a basis for VO and Vl' let f € V2 - Vl and
g € V3 - V2. Note that {1,f} is a basis for V2 and {1,f,g) is a basis for V3.
2 3 2 3, .
Then £~ € V4 - V3, fg € VS - Vq, and £ € V6 - VS’ so that {1,f,g,£f ,fg,f7} is
a basis for V6. Since g2 = V6' we must have constants a, in K such that
2 3 2 . 2 .
g = a6f + a5fg + aaf + ag + azf +oa;. Note that ag * 0, since g7 is not
in V5.

By replacing f by a6f and g by agg, we may assume that a, = i, Let
y=g - (a5f + a3)/2; this completes the square in g and we  have
2 3 2

yoo=f + b2f + blf + bo for some constants bi in K. This proves (a).

let x =£f + b2/3; this completes the cube in f and we  have
yz = x3 + Ax + B for some constants A,B in K. This proves (b).

Note that {1,x} is a basis for V2 and {l,x,y} is a basis for V3. Let us

now address the uniqueness statement (c). Note that the relationship of (¢)
gives an action of K* on the possible pairs (x,y): A+ (x,y) = (Azx,A3y). What
we are claiming is that there is just one orbit for this action. Therefore it
suffices to show that every possible pair is in the orbit of the one (x,y)
which we found above.

Suppose (Xl'yl) is another such pair. We may write ¥y = ay+fBx+y, with
a # 0. Then
¥ = a’y” + 2(perny + (Brin)® = o OaxtB) + 2(Briy)y + (Bt

and this is in SymmSV2 (i.e., it is a polynomial of degree 3 in x) if and only
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if 8=y =10, Hence Y1 is a multiple of y: ¥y = oy,
Now consider X, 3 we may write X, = ax + b, with a » 0. By assumption we

have yi = xi + Axq + B1 for some Ay, By in K, After substituting we find
3.3 2.2

that a2y2 = (ax+b)3 + Al(ax+b) + B1 =ax" + 3a"bx" + ..., which is supposed

to be az(x3+Ax+B). In particular, we must have b = 0 to have no x2 term;
therefore %y is a multiple of x: Xy = ax, ‘
In addition, the egquation above shows that a2 = a3, so that there exists

a nonzero A in K such that o = A3 and a = Az. This proves (c). N

(IT1.2.3)Corollary: There are elements A and B in K such that E is defined by

*
the equation yz = x3 + Ax + B. The pair (A,B) is unique up the action of K
defined by A+(A,B) = (AaA,A6B).

Proof: The affine curve E-p can be written as Spec(R), where R is the ring
oy

R= U Vn’ since the point p, considered as a divisor on E, is ample.
=0

Moreover it is clear, by (I1.2.1), that the elements

(l,x,xz,...,xm,y,xy,xzy,...,xm-ly) form a basis for v2m+l’ and the elements

2 m 2 m-2 .
(L,x,x",...,X ,¥,%¥, ¥ ¥,...,x y) form a basis for V2m. Hence x and y

generate R, and the since the relation above gives the correct Hilbert
function for R (eliminating the need for y2 at every stage), it must be the
only relation between x and y. Hence R = K[x,y]/(yZ-XB—Ax~B) as claimed.

To verify the uniqueness statement, use the uniqueness of x and vy.
Suppose E-p was defined by yi = xi + Alx1 + Bl' Then (xl,yl) would iatisfy
the conditions of the previous lemma, so that there would exist X in K  such
that x, = Azx and ¥y, = A3y. Then

1

3 2 6 2 6,3 3 4 6
X] b AR R B = yr o= ATy = A (x7 + Ax + B) = %y + b Axy + A7B,
6

showing that Al = A4A and Bl =3B, N
(I1.2.4)Definition: We call the pair (x,¥) with the  properties of
Lemma (II1.2.2) a Weierstrass basis for (E,p) (or simply E)}.

It is instructive (and amusing) to verify the previous calculations in
the case of a nodal or cuspidal rational curve. Assume that E is a mnodal
rational curve, obtained by identifying 1 and -1 on the Riemann sphere, and
let p be the point at «. Then Vn may be identified with the space of

polynomials in the affine coordinate t of the sphere, of degree at most n,
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which have the same value at *1: Vn = {f(t) of degree = n[f(l) = f(-1)}.

In particular we see that {1,f=t2} is a basis for V2 and {1,f,g=t3-t} is
a basis for V3. Then g2 = t6~2t4+t2 = f3 - 2f2 + £ thus y =g and
x=f - 2/3 ig a Weierstrass basis for E; we have y2 - x3 - {1/Dx + (2/27).

Assume that E is a cuspidal rational curve, whose normalization is again
the Riemann sphere, with O over the cusp and = over p. In this case Vn may be
identified with the polynomials in t of degree at most n, whose derivative at
0 is O: Vn = {f(t) of degree = nlf’(O) = 0}. 1In this case x = t2 and y = t3

. . - 3
is a Weierstrass basis for E, and we have y2 - X,

An equation of the form y2 = x3 + Ax + B for an elliptic curve over K is
called a Weierstrass equation for E over K. The discriminant A = 4A3 + 27B2
vanishes if and only if E is singular, and 4 1is well-defined wup to
multiplication by 12th powers in K. The isomorphism class of E, if E is
smooth, is determined by the J-function of A and B as defined in (I.2):

J{A,B) ~ 4A3/A. The pair (A,B) are referred to as the Weierstrass

coefficients of E, and by the Corollary above they are determined up to the
given (AA,A6) action of K*.

If K is algebraically closed, we have three types of orbits of this
action of K* on Kz: '

O the orbit of (0,0): this is the cuspidal rational curve

O the orbit of (-3,2): this is the nodal rational curve

O the other orbits: these are the orbits of smooth elliptic curves.
II.3: Welerstrass fibrations.

We want to develop the theory of the Welerstrass equation for an elliptic
surface, i.e., for a family of elliptic curves. Unfortunately a smooth
elliptic surface does not have all of its fibers simply irreducible curves of
arithmetic genus one: see Table (I.4.1). In addition, the Weierstrass
equation is for a curve with a chosen point. Therefore we have to make two
assumptions: that there is a section to the elliptic surface (i.e., a point
chosen in every fiber), and that the fibers are all irreducible.

The first assumption, that of a section, is rather serious: you can't
create one 1f there isn’t one there already. The second assumption, though,
is quite mild, if you are willing to live with a non-smooth surface.

Assume that n:X -3 C is a smooth minimal elliptic surface with section

S. (As we saw in section (III.1l), the assumption of smooth and minimal is not
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serious.) Note that for every fiber F, S+F = 1, so that S can meet only one
component of any fiber, and that component must have multiplicity one. By

considering the list of singular fibers, one sees that if F is of type I_, II,

ITI, or IV, then S can meet any one of the fiber components; if F is ofN type
I;, the: S can meet only one of the 4 multiplicity one components. If F is of
type IV , then S can meet only one of the 3 components with multiplicity 1; if
F is of type III*, then S can meet only one of the 2 components with
multiplicity one; and if F has type II*, there 1is only one component with
multiplicity one, and S must meet it. If 7 has a section, then no fiber can
be multiple, so no F can be of type MIN with M > 1.

Consider a reducible fiber F of . As the reader can check, the
components of F not meeting S forms a connected set of smooth rational curves
each with self-intersection -2, meeting with dual graph one of the Dynkin

diagrams. The following table tells which diagram goes with which fiber type.

(I1.3.1)Table of dual graphs for the reducible Kodaira fibers minus a

component of multiplicity omne.

Kodaira fiber tvpe Dual graph of fiber minus a component with mult. 1
IN’ N =2 AN-l
I* D
N N+4
Iz Al
v A
IV* E2
III* E6
il E7
8

One obtains an irreducible fiber by contracting all the components of F
not meeting the section S, This will give a singular surface if = has
reducible fibers, but the singularities are quite mild: they are simply
rational double points (RDP's) of the type denoted by the Dynkin diagram,

If one starts with a smooth minimal elliptiec surface x:X — C with
section 5, and performs these contractions, one will obtain an elliptic
surface n:X —> C, with section S, such that all fibers are irreducible. In
this context we have a chance at a global Welerstrass equation.

Let us abstract this concept.
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(I1.3.2):Definition: Let X be a surface and Y be a smooth curve. A
Weilerstrass fibration n:X — € is a flat and proper map « from X to C such
that every geometric fiber has arithmetic genus one (i.e., is either a smooth
genus one curve, a ratiomal curve with a node, or a rational curve with a
cusp), with general fiber smooth, and such that there is given a section § of

m, not passing through the nodes or cusps of any Ffiber.

The above discussion shows that there is a map F from the set of
isomorphism classes of smecoth minimal elliptic surfaces over G with section S
to isomorphism classes of Weierstrass fibrations over C, given by contracting
all components of fibers mnot meeting 8. There is also a map G from
isomorphism classes of Weierstrass fibrations over € to smooth minimal
elliptic surfaces over G with section, given by taking the unique sgmooth
minimal model, which exists and is unique by Corollary (I1.1.3). Tt is clear
that GoF is the identity on smocoth minimal elliptic surfaces over € with
section: F contracts the necessary components and G resolves them back again.
Hence F is injective and G is surjective,

However they are not inverse: FoG is mnot the identity in general. To see
this, take a product surface X = E X C, where (E,p) 1is elliptic; this is
smooth and minimal (x is the projection onto G, of course) and a section is
given by § = {p) x C.

Choose a point ¢ in C, and consider the point x = (p,c) on X. Blow up x
on X and blow down the proper transform of the fiber of x through x; this is a
smooth elliptic curve with self-intersection -1, and so blowing it down
produces a surface X with an elliptic singularity. The new fiber over ¢ is
now the Image of the exceptional divisor over x, and this is a ratiomal curve
with a cusp. X is a Weierstrass fibration over C, with section S. Applying F
to X however gives the product surface back again, and applying G to the
product leaves the product unchanged, so in this case G(F(X)) = X.

We'll return to this problem later,

Getting back to the general theory, let n:X — C be a Weierstrass

fibration with section §. We have the exact sequence for the normal bundle of

S in X:

(I1.3.3) 0—>OX—{OX(S) _>NS/X — 0.

Apply m, to this sequence, and obtain
1
(I1.3.4) 0 — W*OX sy w*OX(S) —_ “*NS/X —3 R w*q( - Rlyr*q( (s) — 0.

(Note that Rlﬁ*NS/X = 0 since NS/X is supported on 5, and the fibers of =«
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restricted to S have dimension 0.)
In this situation the nicest possible base change results apply: we have

that both W*Qx(ns) and R;H*Ck(nS) are locally free for all n, and that

IR

7,0, (nS)] | _ H°<xc,oxc<ns>> and R m,Q (nS)]], E}?og,c;{c (ns)).

where ¢ is any point of C and Xc is the fiber of ®# over c. In particular,

using Riemann-Roch on the fibers, we have that

(I1.3.5) W*Qx = CE and

w*QX(nS) is a locally free sheaf of rank n on C for all n = 1.
Moreover, le*QX is a line bundle on ¢, and
1
R H*QX(HS) = (} for all n= 1.

Now let us return to the sequence (II1.3.4)., From the above statement, we

have that the last term is zero; hence the map from W*NS/X to le*QX is a
surjection. However Riﬂ O, is a line bundle on G, and soc is n N (N is a
J *X *7S/X “US/X

line bundle on S, and m is an isomorphism on S). Therefore this map must be

an isomorphism;

1
W*NS/X = R ﬂ*QX.

R

(1I1.3.6)

This of course forces the map from w*QX(S) to ﬂ*Né/X to be zero, and the first

map in the sequence, from W*QX to m*QK(S), to be an isomorphism. Since =« is

proper, we have W*QX = CE, s0

(I1.3.7) H*QX(S) = W*C% = q].
II.4%: The fundamental line bundle L.

let a:X — C be a Weierstrass fibration with section §.The 1line bundle

ﬂ*NS/X is a fundamental invariant of the Weierstrass fibration. Let us give

its inverse a name.

(IT.4.1)Definition: Let n:X — C be a Weierstrass fibration with section §.

The fundamental line bundle of x is the line bundle L = [w*NS/X] on G.

Note that because of (II.3.6), the fundamental line bundle does not
depend on the section S which is given for =n; it could equally well have been
defined as the inverse to Rlﬁ*QX, which is obviously independent of S.

Since we have QX((n-l)S) C:C&(nS) for every nm, we also  have

w*QX((n-l)S) C W*C%(HS) for every n. By (I1.3.5), these are both locally free
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sheaves 1f n = 1. They are equal (to OC) if n =1, and for n > 1 we have the

following relationship with the fundamental bundle 1.

(IT.4.2)Lemna; There exists a short exact sequence
-n
0 — ﬁ*QX((n-l)S) — ﬂ*C&(nS) — L — 0
for every n = 2.

Proof: Consider the exact sequence

0 — OX((n-l)S) — (%{(nS) — OS (nS) — 0. Applying 7., and noticing that if
n = 2 then R W*QX((n-I)S) = (0, we obtain the exact sequence

0 = 1,0, ((n-1)8) — m,0, (nS) — =, G, (nS) — 0. Since § (nS) = @’/‘X , we are
done. M

Now the theory of the Weierstrass equation comes into play. In each
fiber of the sheaf ﬂ*QX(BS) there is picked out canonically three natural
directions, namely the spans of 1, %, and y, where (x,y) 1s any Weierstrass
basis for that fiber. (Although the Weierstrass basis (x,y) is not
determined, the span of x and y are, by Lemma (I1.2.2); the span of 1 is
exactly the subsheaf QX.) These directions give a basis at every fiber, and

so give a splitting of W*QX(3S).

(I1.4.3)Lemma: For every m = 2, we have a splitting

r 0 (nS) = O © 2o’ e... 0",

Proof: Locally, let (x,y) be a Weierstrass basis for the fiber of =«. Then
if n = 2, the splitting is given by the span of the elements 1 and x; if
n = 3, by the span of 1, x, and y. If n is even, say n = 2m, then the
splitting is given locally by the spans of [l,x,xz,...,xm,y,xy,...,xm-zy}; if
n is odd, say n = 2m+l, then the splitting is given locally by the spans of
{1,x,x2,...,xm,y,xy,...,xm-ly}. By the uniqueness of the Weierstrass basgis
{up to the given action of B*), these spans are canonically determined, and
give a splitting of W*QX(nS).

To see that the splitting is as stated, just apply Lemma (I1.4.2) and use

induction. =
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I1.5: Welerstrass data.

Fix a sufficiently fine open cover {1%_} for G, so that L is trivialized

. . : -n o,
on each ﬂi, and pick a basis section e; on each l& for th . Then e is a

. . - .. .
basis section for L on Ui. Assume that {aij} are the transition functions

for L with respect to the local bases {e.)}, i1.e., e, = a,.e, on U. Nl .
i i iji ] i 73

In constructing the Weierstrass basis locally over Ui, we may begin by

. . . -2
choosing an fi in W*OX(ZS)’1% such that fi projects onto e, in LllL’ and

i
. . . -3 .
choosing a g; in n*QX(SS)jlt such that g; Projects onto e, in li'l&' The
original equation for g?, you will recall, is
g? = a, f? + a f.g. +a, f? + a.g. + azf. +ag, where the a; are sections of
OU . Thls equation is an equality between two sections of =« C’X(6S)|cu
i

Considering the projections onto the factor L~ |1[, we see that the left hand

. . - : . -6
side projects to ei6, and the right hand side to age. ; hence we must have

a6 =1.

A local Weierstrass basis (xi,yi) is obtained by completing the square in
gs (to get yi), then completing the cube in fi (to get Xi)' Since fi and 8;

project to e£2 and e£3 in anlli and l-B[QL respectively, and the process of

completing the square and the cube only affects terms of lower order, we have

s -2 -3, -2 -3 .
that X and ¥; also project to e; and e, in L Et& and L lii respectively.

Hence, as local generators for the direct summands of T (3S)]u isomorphic
to &-2 and L~ lli respectively, they transform like the given local hases

oy
2t L
e; and e, - This proves the following.

(II.5.1)Lemma: For each i there is a local Weierstrass basis (Xi’yi) which

-2
transform by Xy = aijxj and y; = aijyj'

Given the 1local Weierstrass basis (Xi’yi)’ we obtain  the local

Weierstrass coefficients (Ai’Bi)' which are locally sections of OU.' We have,
over ‘Ui r‘s‘l.ﬂ. , :

x? + Aixi + Bi = yi = ai?y? = ai?[x; + ijj + Bj] - xz + ai?iji + ai?Bj,
showing that A and B1 transform by Ay = oy ?Aj and B = ai?Bj. Therefore ch

local sections {A ea} and [B e, ] patch together to give glebal sections of L
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and LG respectively: A.e% = A.e? and B.e? = B.e?. We wusually call these
11 J ] 11 J ]
global sections simply A and B.

(I1.5.2)Definition: The pair of sections (A,B) for &4© ls are called the
Weierstrass coefficients for the Weierstrass fibration m:X — C, The

discriminant of the fibration is the section A = 4A3 + 27B2 of le.

(IT.5.3)Lemma: Given a Weierstrass fibration nx:X -3 G, the discriminant A is
not identically zero (in particular the Weierstrass coefficients are not both
zero); moreover the Weierstrass coefficients (A,B) are well-defined up to the

&
action of A in HO(C,OC) given by A+(4A,B) = (AaA,ASB).

Proof: If the discriminant is identically zero, then every fiber of the
Weierstrass fibration would be singular, which is not allowed. The uniqueness
statement follows from the local wuniqueness (which is  essentially

Corollary (I1.2.3)). =

Notice then that the discriminant A is well-defined up to multiplication
by a 12th power in HO(C,OC)*.

We now have all the data collected which can be obtained from a
Weierstrass fibration, mnamely, the fundamental 1line bundle L, and the

Welerstrass coefficients (A,B).

(I1.5.4)Definition: A triple (L,A,B) will be called Weierstrass data for a

Welerstrass fibrationm over C, or simply Weierstrass data over G, if L is a
line bundle on C and (A,B) are global sections of &4® LG such that the section

A= 4A3 + 27B2 of llz (which is called the discriminant of the data) is not

identically 0.

We have shown that if n:X — C is a Welerstrass fibration over (, then
the triple (L,A,B), where L = [le*QX}_l and (A,B) are Welerstrass

coefficients for n:X — C, is Welerstrass data over C. Moreover, the fiber of
n over a point ¢ of C is singular if and only if the discriminant section 4 is
zero at c.

Conversely, given Weilerstrass data (L,A,B) over C, the Welerstrass
fibration is built by patching together the local surfaces defined by the
local Weierstrass equations yi = xi + Aix. + Bi’ where the Ai and Bi are the

i
local versions of A and B over a sufficiently fine open cover {Ui} for C.
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The uniqueness statement of Lemma (I11.5.3) shows that Weierstrass data
for m:X — C is unique up to isomorphism, where we say two sets of Weierstrass
data (L. ,A.,B,) and (L,,A,,B,) are isomorphic if there is an isomorphism of

1171 27272 4 4 6 6 6

. c s 1 4, .
X inducing isomorphisms ¢ .il — Lz and ¢ .ll — iz,

line bundles ¢:ml — L
such that ¢4 transports Al to A2 and ¢6 transports B1 to B2. (If Ll = Lz,
then ¢ must be multiplication by an element in H (C,OC) , and we recover the
uniqueness statement above.)

0f course we say two Weierstrass fibrations 'rrl:X1 —> C and :rr2:X2 — C are
isomorphic 1f there is an isomorphism of surfaces f:Xl s X2 such that

T, = w20f. In this way we have a 1-1 correspondence:

1
Welerstrass Welerstrass
.5, ata «— ibrations
(I1.5.5) d fib i
over C over C

(both sets up to isomorphism},

The reader will see now why we chose the "fundamental" bundle L to be the
inverse of RIW*QK rather than the R; itself: L tends to be a nonnegative

bundle.

(II.5.6)Lemma: Let (L,A,B) be Weierstrass data over a projective curve C.
Then deg(lL) = 0. Moreover, if deg(L) = 0, then either 14 or L6 is trivial.
Hence if deg(l) = 0, L is torsion in Pic(C) of order 1, 2, 3, 4, or 6.

Proof: The bundle llz has a non-zero section, so its degree must be
non-negative, This proves the first statement, and the second follows from

the condition that at least one of A or B is not zero. N

(I1.5.7)Lemma: The number of singular fibers of a Weierstrass fibration over a
projective curve € is 12 times the degree of the fundamental Iline bundle,

counting properly,

Of course this is just the degree of the discriminant divisor (A = 0} on
C. We see in this context that "counting properly" means that a singular

fiber counts for the number of zeroes of A.
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Lecture IIT: The global aspects of the Weierstrass eguation.
ITT.1: The representation as a divisor in a qu bundle.
Let m:X —> C be a Weierstrass fibration, with section §. Recall
2 3

(Lemma (II.4.3)) that n, 0. (35) =0, @ L " @ L'", where L is the fundamental

line bundle of x. Let ¢IW*W*OX(3S) —3 Ck(SS) be the natural map. Note that,
locally on G, QX(BS) is generated by 1, x, and y (using the notation of the
previous lecture), and that these are exactly the local generators for OC’
l'z,
QX(SS) is a line bundle on X, this gives a map £:X — ?(W*Ck(35)); since

w*QX(BS) is a locally free rank 3 sheaf on G, P = P(ﬂ*C%(3S)) is a Ez-bundle

and l-3' hence this natural map ¢ is a surjection of Qx-modules. Since

3

over G. Moreover, if p is the structure map from P to C, we have pof = n.

In fact, it is clear that f is an embedding: it is on each fiber, since
1, %, and y generate the homogeneous coordinate ring of every fiber of &, by
the Welerstrass equation analysis., Therefore, via f, we have realized X as a
divisor inside the Fz-bundle P over C.

Let (A,B) be the Weierstrass coefficients of X over G. A global equation
for X in P is then given by YZZ - X3 + AX22 + BZ3. This simply means that
such an equation describes X locally over G, if A and B are interpreted as
local functions on C by suitably choosing a local trivializing section for L
(hence for l4 and ls). The given section is defined by X = Z = 0. The global
variables (Z,X,Y} are interpreted as formal sections of (OC,EZ,L3) to
transform properly (Lemma (IT.5.1)).

This implies that the divisor class of X in P is (p*L6)(3): the
individual terms of the global equation are sections in L6 formally, and the
equation is of degree 3 in the global variables.

The canonical class of P is (p*(wG®L-5))(-3) (in general, one pulls back
the canonical class of C tensored with the determinant of the bundle, then

*
twists by qP(—rank)). Hence the adjunction bundle of P to X is p (wC®L), 50

we may use the adjunction formula to deduce the following.

*
(I1I.1.1)Pxoposition: wy & g (wC®L).

In particular, note that the canonical divisor on ¥ is pulled back from

the curve G, so that

(ITI.1.2) Ki -0,
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Also, the growth of HO(nKX) can never be more than linear, so that
(II1.1.3) the Kodaira dimension of X is at most 1.

Also clear is the following.

(ITI.l.4)Lemma; X is a product of C with a smooth elliptic curve iIf and
only if L = OC'
Proof: Indeed, if X is a product, then I claim that the normal bundle to

any section must be trivial, so L g O This follows essentially because an

c
elliptic curve is a group. Let (E,eo) be an elliptic curve, and let £:C — E
induce a section § of X = E X C, by S = {(£(c),c)|c € C}. Apply the

automorphism o_ to X, defined by af(e,c) = (e-f{c),c). It is clear that ¢

carries S intofthe "horizontal" section [(eo,c)}, which has trivial normal
bundle since of course it is a fiber of the projection to E.

Conversely, if L = OC’ then F = Fz X C, and A and B must be constants, so
X is a product. N

(III.1l.4)Example: Let m:X — Pl arise from a pencil of plane cubies. The
last exceptional divisor for the blowup from Pz can be taken to be the given

*
section, and so we see that L = O 1(1). Then KX = q O0(-1) = -F, where F is a
P

fibexr of n. Note that here the Kodaira dimension is -=,

(IIT7.1.5)Example: Let C = Fl, and let L = & 1(2). Then KX =0, and we will
P

see in a moment that X is a K3 surface. In any case, it is clear that here

the Kodaira dimension is 0. If we take L = O l(k) with k = 3, then KX will be
P

a positive multiple of the fiber, and will move in at least a pencil; the

Kodaira dimension will be 1.
It will be useful to remark the following:

0 -1, | 0 1if X is not a product
(I11.1.6) H(G,L ) - { 1 if X i1s a product ’

Indeed, the second statement is clear using Lemma (III.1.4), and the

first follows because L has non-negative degree.



-30-

IIT.2: The representation as a double cover of a ruled surface.

Let R = P(r,0, (25)) = P(0, ® L'

will call q the structure map from R to (. The natural surjection from

); R is a ruled surface over C, and we

W*ﬂ*QXC2S) to C&(ZS) gives a map g:X — R, which is a C-map: gog = =.
Locally, this map is given by sending (x,y) to x, and is therefore a double
covering, branched over the trisection T defined in R by X3 + AX22 + BZ3 =0
and the section given by Z = 0. Note that in R, the trisection T and the
section Z = 0 are disjoint.

The invelution of the double cover g is simply (x,y) + (x,-¥), and so
we see that this is exactly the inverse map on the fibers of w. Therefore R
is the quotient of X by the inverse map on the fibers, and we sometimes write
this as R = X/{£1).

The trisection T is a divisor on R with line bundle (q*Ls)(B), and the
section Z = 0 has line bundle OR(l), so the branch locus of g 1is a divisor
with line bundle (q*L6)(4). The standard theory of double covers implies that
g_kOX = OR @ (q*ﬂ_-s)(—2); the second factor is the sub-line bundle of g*q{
locally generated by y.

Of course, when T intersects a fiber of R in 3 distinet points, the
corresponding fiber of X is a smooth elliptic curve, and conversely. The
singular fibers of m occur exactly over those fibers of R which T does mnot

meet properly. Indeed, as we will see below, the local behaviour of the curve

T on R completely determines the type of singular fiber of X.
ITT.3: Weierstrass data in minimal form

Recall from Lecture II that we have defined two maps back and forth
between the set of isomorphism classes of smooth minimal elliptic surfaces
over G with section, and the set of isomorphism classes of Weierstrass

fibrations over C:

ini ¢ F Welerstrass
smo?th‘mlnlmal ; .
elliptic surfaces fibrations
over C w/section G over G

where F contracts all components of fibers not meeting the section, and G
resolves any singularities of the Weierstrass fibration, then blows down any
(-1)-curves in the fibers to get a relatively minimal surface. (Equivalently,
G(m:X —> C) is the unique smooth  minimal birational model, see

Corollary (II1.1.3).)

As explained in (II, section 3), F is an inclusion, G a surjection, and
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GoF is the identity. However FoG is not the identity, and there are plenty of

Weierstrass fibrations which are not "hit" by F.

(I1I.3.1)Definition: A Weierstrass fibration m:X — C is in minimal form

if it is hit by F, i.e., if F(G(xn)) = =,

We maturally want to analyze the Welerstrass fibrations in minimal form:
they are in one-to-one correspondence with the smooth minimal elliptic
surfaces over C with section, hence with elliptic curves over K(C).

The following Proposition gives a satisfying answer to this problem.
First some notation: a triple tacnode of a curve T on a smooth surface is a
triple point t of T, such that t is still a triple point on the blowup (an
infinitely near triple point, or two consecutive triple points). The order of

vanishing of a section s of a line bundle at a point ¢ will be denoted by

uc(s).

(II1.3.2)Proposition: Let n:X — C be a Welerstrass fibration over C, with

Weierstrass data (L,A,B). The following are equivalent.

{(a) = is in minimal form.

(b) X has only rational double points (RDPs) as singularities.

(c) The trisection T of the ruled surface R = X/(%l) has no triple tacnodes.

(d) There is no point ¢ in C where vc(A) > 4 and VC(B) = 6.

Proof: That (a) implies (b) is clear, by considering the classification of
the singular fibers; see Table (II.3.1). That (b) and (e¢) are equivalent
follows from the general theory of double coverings. If g:X -3 R is a double
cover of a smooth surface, with branch locus D, then X is smooth if and only
if D is smooth, and X has only RDPs if and only if D has no points of
multiplicity greater than 3, and has no triple tacnodes. In our case D has
two disjoint components T and the section Z = 0, and the section is certainly
smooth, so the criterion need only be applied to T; since T 1is a trisection
(meeting the fibers of R three times), T can have no point of multiplicity 4
or more, Hence T has no triple tacnodes if and only if X has only RDPs.

The reader can easily check that (c) implies (d): if t is a local
coordinate at ¢ on C, and t4 divides A and t6 divides B, then the curve
X3 + A(t)X + B(t) = 0 has a triple tacnode at (x,t) = (0,0). Conversely,
assume that X3 + A(t)X + B(t) = 0 has a triple tacnode at a point (xO,O). In

particular, the cubic X3 + A(0)X + B(0) has a triple root; this implies (since
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there is no square term) that the triple root must be at X =0, i.e.,
A(0) = B(0) = 0, and the triple tacnode must occur at (0,0). For
X3 + A(t)X + B(t) to have a triple point at (0,0), we must have t2|A and tBEB.
If we now blow up the origin, replacing X by Xt and dividing by t3, we obtain
X3 + (A(t)/tz)X + (B(t)/t3), and this must have a triple point also. The same
argument shows then that t2|A(t)/t2 and t3|B(t)/t3, s0 that talA and t6|B:
this is the denial of condition (4).

We now have that (b), (¢), and (d) are equivalent, and that (a) implies
them; we must show that they imply (a). Assume that E:X — € is mnot in
minimal form. In this case X certainly cannot be smooth; pick a fiber where X
is not smooth, and work locally at this fiber (all the conditions are local on
€¢). Let a:X — X be a minimal resolution of X. If ¥ is minimal over C, then
a must simply be the contraction of all of the components of the singular
fiber not meeting the section, so that X is in the image of F, and is minimal,.

Hence we may assume that X is not minimal over C, and let f:X — Y be the
minimilization. The map f must contract the proper transform of the original
irreducible fiber of m, since if it does not, Y would dominate X and ¥ would
not be a minimal resolution.

Now view the process going the other way, starting from ¥. In order to
get to X, we must at some stage blow up the point of intersection of the
section with the fiber of Y, else 8 would not contract the proper transform of
the original fiber of n. After performing a certain number of such blowups,
we arrive at X, and to get to X we contract all other components of the fiber
of ¥ except that last blowup made at the intersection point with the section.
In this case what is being blown down is at least the entire fiber of Y;

hence, since this has arithmetic genus one, the singularity on X cannot be an

RDP. This violates condition (b). M

To preserve the uniformity of notation, we will say that Welerstrass data
(L,A,B) over C is in minimal form if for every ¢ in C, either uC(A) <3 or
-
uc(B) =< 5.

We will refer to the process FoG (first taking the unique smooth minimal

model, then contracting components not meeting the section) as putting the

Weierstrass fibration into normal form. We would like to describe what this

means, algorithmically, in terms of the Weierstrass data.
Let (L,A,B) be Weierstrass data over G. For each ¢ in G, define

n = max{n > 0|uc(A) > 4n and uc(B) > 6n}. Consider the divisor D = ) n.c on
ceC

C. Let f be a section of OC(D) vanishing on exactly D.
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(II1.3.4)Lemma: The Weierstrass data for the normal form of (L,A,B) is
(L(-D),a/e% B/£%) .

Proof: By the maximality of n, for each ¢, the Weierstrass data
(L(-D),A/fa,B/fG) is in normal form, and of course by the definition of the
nc's, A/fq is holomorphic as is B/f6, and they are sections of ﬂ.(-D)®4 and
E(-D)®6 respectively. We must only check that the Weilerstrass f£ibrations
given by (L(-D),A/fa,B/fG) and (L,A,B) are birational. This follows from
considering the general fibers, with their Weilerstrass <fibrations, and
applying Corollary (II.2.3), wusing for X € K(C) the meromorphic function

corresponding to £. M
III.4: Invariants of a Weierstrass fibration

I'd like in this section to compute the cohomology groups Hi(X,OX) for a
Welerstrass fibration, and also to compute the plurigenera of X, as well as
the other standard invariants.

First let us address the irregularity g of X; it is at least g (the genus
of the base curve C) and I claim that unless X is a product, this is exactly

q: all l-forms on X are pulled back from C,

_] & if ¥ is not a product
(III.4.1) 4 { g+ 1 if X is a product )
Proof: The easiest way to see this is to use the short exact sequence of
low-order terms in the Leray spectral sequence for the map =. This sequence

has EEY = HP(C,Rqﬂ*QX), abutting to Hp+q(X,C%). The relevant terms of the

2
10 1 01 20 . :
short exact sequence are 0 — E2 — H (X,QX) — E2 — E2 , which for us is

1 1 1 . o
0 — H'(C,m0,) — H (X,0,) — # (C,R’ % Q) — i (C,7,Q). Since 7.Q =@,
we have that the last term i1s zero (C is a curve) and the first term has

dimension g. The third term is simply HO(C,L‘I), and so the result follows
uging Lemma (III.1.6). =
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_ ) g +deg(L) - 1 if X is not a product
(II1.4.2) pg { g + deg(l) if X is a product ’
Proof: This is a more straightforward calculation:

2 0 s
pg = h (X,QX) = h {X,qx) (Serre duality on X)

- hO(X,ﬂ*(wC®i)) (using (IIT.1.1))

hO(C,wC®L) (from the projection formula)

= hl(C,i'l) (Serre duality on G)

nah -yl =n%@ ™) - deg@™) - 1+ g (using Riemann-Roch)

g + deg(L) - 1L + hO(L"l),
which proves the result using Lemma (IIL.1.6). =

This then gives a succincet formula for x(QX):
(IIT1.4.3): X(QX) = degree(l).

Using Noether's formula, with the fact that K; = (, now gives:
(III.4.4): e(X) = 12-degree(l).

The plurigenera of X are easy to calculate, also. Since we have already

computed pg, let us assume that n = 2. Then

%
P_(X) = hO(X,win) -n0x,x (w8 (Proposition III.1.1)
= hO(C,m2®ln) {the projection formula)

x(wE@&n) + hl(wE®Ln)

f

deg(wE@&n) +1-g+ hl(w2®&n) (using Riemann-Rich on C)

n{2g-2+deg(l)) + 1 - g + ho(wé-n®L-n) (using Serre duality).

This seems a convenient form for computations, and it gives the following

N

with ease.
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(I11.4.5)Lemma: Asgume that n is at least two.
(a) Let g = 0. Then

P (X) = 0 if deg(l) = 1
n 1+n(k-2) if deg(l) = k = 2,

{(b) Let g = 1. If deg(l) = 0, recall that then L is torsion of order t = 1,
2, 3, &, or 6. 1In this case

1 if t divides n
Pn(X) = { 0 otherwise ’

If deg(lL) = 1, then Pn(X) = nedeg(l).
(¢) Let g= 2, Then Pn(X) =n(2g - 2 + deg(L)) + 1 - g.

These calculations allow us to place elliptic surfaces with section in

the over-all classification of surfaces.

(IIT.4.6)Lemma;
(a) Let g =0, Then X is
a product E X Pl if deg(l) = 0,
a rational surface if deg(l) = 1,
a K3 surface if deg(l) = 2, and
a properly elliptic surface 1f deg(l) = 3.
(b) Let g =1. Then X is
an abelian surface (a product) if L = OG'
a hyperelliptic ("bielliptic" in Beauville's notation) surface if L
is torsion of order 2, 3, 4, or 6, and
a properly elliptic surface if deg(lL) = 1.
In case X is hyperelliptic, the order of KX is that of L.
{(c} Let g2 2. Then X is a properly elliptic surface.
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Lecture IV: The Local Aspects of the Weierstrass Equation.

1: A bit more on invariants and classification.

There are just a few more remarks I want to make along the lines of the
last section of the previous lecture, that 1is, on the invariants and
classification of Weierstrass fibrations, or elliptic surfaces with section.
Firstly, what we have computed up to now allows us to compute all the Hodge

numbers.

(IV.1.1)Lemma: Let m:X — C be a smooth minimal elliptic surface over C
with section, with asscociated line bundle L. If ¥ is not a product surface,

then the Hodge diamond of X is

1
g g
gtdeg(lL)-1 10deg(L)+2g g+deg(l)-1.
g g
1

In particular, hl'1 = 10deg(L) + 2g. If X is a product ExC, then the Hodge

diamond of X is

1
g+l g+l
gtdeg(l) 10deg(l)+2g+2 g+deg(l).
g+l g+l
1,1 1
In particular, h™’'" = 10deg(L) + 2g +2.
Proof: All of the hodge numbers except for hl’l can be gotten immediately

from (III.4.1) and (I1I.4.2). Then, since the alternating sum of the Hodge

L1 can be readily found using (III.4.4). m

numbers is the Euler number e{X), h

Note that if X is a rational surface, then the genus g of C must he zero,
i.e., C must be isomorphic to Pl. (This follows from (II1.4.1), or <£from
Lemma (IT1I.4.6).) In fact, from Lemma (III.4.6), if X is rational, then g = 0

and L = O 1(1). We have seen in Lecture I many examples of rational elliptic
P

surfaces constructed from a pencil of cubic curves in Pz, and all of course
have base curve Pl and deg(l) = 1. (The last exceptional curve for the

blow-up from Fz is a section S, with S2 = -1; hence deg(l) = 1.) The converse

is also true.
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(IV.1.2)Lemma: Let m:X — Pl be a rational elliptic surface with section.
Then X is the 9-fold blowup of the plane Pz at the base points of a pencil of

generically smooth cubic curves which induces the fibration =.

Proof: Let £:X — M be the blow-down of X to a minimal model M. Note that
because KX = -F, where F is2 a fiber (Proposition (III1.1.1)), every smooth
rational curve E on X has E” 2z -2. Therefore M cannct be Fk with k = 3; the
section on Fk with self-intersection -k would persist on X to2 a smooth

F,, or P*. TIf M is

rational curve E with E2 < -k < -3, Hence M is either FO’

FO’ then any blow-up of M also dominates Pz; if M is Fz, then no point of the
(-2)-section may be blown up to get to X (since then the proper transform of
the (-2)-section would be a smooth rational curve E with E2 =< -3), and any

blow-up of F, at a point not on the (-2)-section also dominates Pz. Therefore

2
we may assume M is the plane PQ. The pencil |[F| on X descends to a pencil on
Pz, and since F is —KX, and the general member of F is smooth, we have that

the image pencil in F2 is a pencil of generically smooth curves in |-K 2],
P

i.e., is a pencil of generically smooth cubic curves. N

There is an Iinteresting relationship here between rational elliptic
surfaces with section and weak Del Pezzo surfaces of degree 1. Given a
rational elliptic surface X with section S, the surface Y obtained from X by
blowing down S is a weak Del Pezzo of degree 1. Conversely, given a weak Del
Pezzo surface Y of degree one, the pencil ]wKY| has a unique base point, which

upon being blown up yields a rational elliptie surface with section. Hence:

(IV.1.3)Lemma: There is a one-to-one correspondence hetween
rational elliptic Weak Del Pezzo
surfaces over P and surfaces
with section of degree 1

2: The singularities of the trisection T

In preparation for an analysis of the local information to be gotten from
the Weierstrass coefficients (A,B) of a Weierstrass fibration (or, from a
smooth minimal elliptic surface with section) we will analyze the singular
fibers of the fibration from the point of view of the singularities of the
trisection T of the ruled surface R of which the Weierstrass fibration 1is a

double cover, as described in (ILI, section 2). For definiteness let m:X — C
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be a smooth minimal elliptic surface over C with section, and let Y be the
associated Weierstrass fibration in minimal form.

Recall that T is a trisection of the ruling on R, and the branch locus of
the double covering is T union the section {Z = 0}. Fix a fiber F of R; the
singular fiber of # is determined by the local behaviour of T near F. In
fact, very little geometric information about T is needed to determine the
Kodaira type of the fiber of = over ¥, as we will see.

By the minimality of the Weierstrass fibration, T has no triple tacnodes.

The analytic types of a curve singularity with no triple tacnodes (and no
points of multiplicity 4 or more) are classified, and have no moduli: they are
the so-called simple curve singularities, also sometimes referred to as the
a-d-e curve singularities. They are amply discussed in [BPV, Chapter II,

section 8}, and I'1l just briefly present the facts in the table below.

(IV.2.1)Table of simple curve singularities, of a curve on a smooth surface.
Here € is the curve with singularity at p, E is the exceptional divisor

after blowing up p, and C is the proper transform of C on the blow-up.

Name Local Equation Geometric Description
a x =0 smooth point of C
0
2 2 .
ay X =y ordinary node
2, x2 = y3 ordinary cusp
a x2 - yn+1 higher-order cusp or tacnode, 1f n = 3
2 3 . . .
d4 yX =¥ ordinary triple point
dnzs yx2 = yn-l triple point of C, with C meeting E in two points, one

smooth and one singular of type a (If n = 5, this

-5"
means that C is tangent to E there.)

e X =y triple point of C with one tangent, such that C is smooth
and meets E at one point to order 3.

ey x3 = xy3 triple point of C with one tangent, such that C has an
ordinary node (type al) with E as one tangent,

eg x3 = y5 triple point of C with one tangent, such that C has an

ordinary cusp (type az) with E as tarigent.

The Kodaira fiber type of the elliptic fibration n is determined only be
the singularity of T, and the relative position of the fiber of R with respect
to the tangents to T at the singular points; this follows from an analysis of

the double covering, and is quite elementary. In particular, we have the



-39

following.

{IV.2.2)Proposition: Let T be the trisection of R, F a fiber of R, and G

the fiber of 7 over F.

(a) Assume 'I'|F =p+q -+ r, with p, q, and r distinct points of F.
Then G has type Iy i.e,, G is a smooth elliptic curve.

(b) Assume T]F = p + 2q, with p and q distinct points of F. Then q is at
worst a double point of T, and if it is double, then F is nct one of the
tangents. Moreover:

(bl) If T is smooth at q, then G has type I i.e., is a nodal rational

1’
curve.

(b2) If T has a double point at g, of type a then G has type In'

{c) Assume T;F = 3p. Then p is at worst a triple ;oint of T.
{cl) If T is smooth at p, then G has type II, i.e., is a cuspidal
rational curve.
(c2) I£ T is double at p, of type a, then F must be one of the tangents
to T at p; hence n < 2 (else ('.'E.'-F)p = 3).
(c21): If (T,p) is of type a

(C2ii): If (T,p) is of type a

1 then G has type III,

then G has type IV,

(c3) If T is triple at p, then F is iot one of the tangents,
(e3i): If (T,p) is of type dn’ then G has type I:%a.
(c3ii): If (T,p) is of type ecs then G has type IV %
(e3iii): If (T,p) is of type e7, then G has type IIi .
(c3iv): If (T,p) is of type egs then G has type II .
Proof: Most of the statements follow from the classification of the fibers,

Table (IT1.3.1), and the well-known fact that the double cover of a smooth
surface germ branched over a curve with a simple singularity is a rational
double point, and the type of the RDP has the same name as the type of the
eurve singularity. I.e., if T has a singular point of type a , then the
double cover has an RDP of type A, and similarly for the dn’s and en’s.
(See, for example, [BPV, Chapter III, section 7].)

Part (a) is clear; and part (c¢3) feollows from the argument above. Most
of part (b) alsc follows; if T has a singularity of type a with n = 3 then
there ig no ambiguity to the Kodaira type, by Table (II.3.1). We must only
check that if T has a point of types ay, ap, Or a,, then the position of the
fiber as deseribed above determines the type of G as indicated.

In other words, we must distinguish between I1 and 1II, between 12 and
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ITI, and between 13 and IV. This can be done by remarking that for the In
fibers, the fiber of the Welerstrass fibration is a nodal rational curve;
hence the trisection T must meet the fiber in two points, not one. For the
types II, III, and IV, the fiber of the Weierstrass fibration is a cuspidal
rational curve; hence trisection T must meet the fiber in only one point.

This completes the analysis. N
3: The a, b, § table

The point of making the previous Proposition is to notice that wvery
little geometric information about T is required to determine the Kodaira type
of the fiber G. We want to use these remarks to develop "Tate's algorithm"
for determining the Kodaira ctype of the fiber ¢ from the Weierstrass
coefficients (A,B), and the disecriminant A = 4A3 + 27B2. Fix a point ¢ on the
base curve ¢, and denote by a, b, and § the order of wvanishing of A, B, and A
respectively, at ¢: a = vC(A), b = uC(B), and § = vC(A). Then I «claim that
the Kodaira type is completely determined by the three integers a, b, and §.
Note that if we assume minimality of the Weierstrass data, then we have a = 3

or b = 5, The algorithm is presented in the Table below, along with gome

extra information which will be useful. The legend for the table is:

LEGEND for Table (IV.3.1):

Name : Kodaira’'s name for the type of singular fiber

Curve: A description of the curve itself (often using the dual graph)
a: the order of wvanishing of A

b: the order of vanishing of B

6: the order of wvanishing of A = 4A3 + 2732

J: the value of the J-function

m({J): the multiplicity of the J-function

e: the euler number of the fiber

r: the number of components of the fiber mnot meeting the section

the number of components of the fiber with multiplicity one
RDP: the RDP obtained by contracting components mot meeting SO
(Also, the type of singularity of the branch curve T)

v the genus drop contributed by the singularity of T
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Name Curve a b § J m{JY e xr dRDP ¥ Comments
smooth 0 0 0 =0,1 ? T meets F
IO elliptic {a=1 0 O 0 3a o o 1 - 0 in three
curve 0 b=l O 1 2b points
nodal T is tangent
Il rational 0o 0 1 o 1 1 0 1 - 0 to F
curve
cycle of T meets F
I N smooth 0 0 N w0 N N N-1N AN [N/2] twice at the
N - -1 .
rational double point
curves
- B 2 3 6 =0,1l,o ? T has an
IO D4 a>3 3 & 0 3a-6 6 4 4 D4 3 ordinary triple
2 bz=4 6 1 2b-6 point on F
. . T has a point
IN DN+4 2 3 N+6 © N N+6 N+4 4 DN+4 3+[N/2] of type (3,2)
on F
cuspidal T is flexed
I1 rational a=]l 1 2 0 3a-2 2 0 1 - 0] to F at one
curve point
E:g ent T has node
111 gen 1 b2 3 1 263 3 1 2 A 1 with F as
rational 1
one tangent
curves
Ezzzirrent T has cusp
v . 2 2 43 0 3a-4 4 2 3 A 1 with F as
rational 2
tangent
curves _
. . T is flexed
v E6 a=3 4 8 0 3a-8 8 6 3 E6 3 to E
. - T has a node
III E 3 b=5 9 1 2b-9 9 7 2 E 4 on E with one
7 7
tangent E
. T has a cusp
II E8 a4 5 10 0 3a-10 10 8 1 E8 4 on E with

E as tangent

In the last column, T is the proper transform of T after one blow-up, and

E is the first exceptional curve.

Proof: We’ll start by simply verifying that if a, b, and 6§ are as in the
table, then the Kodaira type of the fiber of =« is as indicated. Again
preserve the notation of Propesition (IV.2.2): F is the fiber of the ruled

surface, and G is the fiber of the elliptic surface. G is smooth if and only

if § = 0, and G is of type In, withn=1, if and only if § # 0 and a = b = 0;

this last statement follows from the remark that only the In fibers with n = 1
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have a nodal rational curve for the Weierstrass fibration, and 1f a=Db = 0,
then the Weierstrass fibration has a cusp; also, one should note that if
8§ = 0, then a = 0 if and only if b = 0. This already proves the first line of
the table, i.e., that for I1,.

0
Let us take up the second and third lines, that for the I fibers with

N
N =1. We must only check now that if a = b = 0, then we have an 16 fiber,
assuming 6 = 1. By Proposition (IV.2.2) it suffices to check that T has a

double point of type a at the point where T meets F twice. By scaling

appropriately, we ’ iay assume that T has the equation
x3 + (-3 + £(e))x + (2 + g(t)) for local functions f and g with
£(0) = g(0) = 0. The discriminant is computed to be
A= 108(f+g)-36f2+4f3+27g2. The singular point of T occurs at (x,t) = (1,0},
and the other branch of solutions passes through (x,t) = (-2,0). By changing
coordinates analytically we may suppose that the other branch 1is exactly
X = -2, and so T has a local equation near (1,0) of the form
x2 + (-2 + a)x + (1 + 8y, for some local functions « and g with

a(0) = 8(0) = 0; the discriminant in  terms of « and g8 is then

A= a2 - 4(a + B8). By replacing x by =z + 1 - a/2, we  have  the
equationz2 + (a + 8 - a2/4) = 22 - A/4, Hence, using (IV.2.1l), we see that
this is a local equation for a simple singularity of type ac 1 and so we have
G of type I, as required.

)
*
The analysis for the IN cases are very similar and I will leave them to

the reader. Let us just present the rest of the analysis quickly. Note that
we have a =z 1 and b = 1 for the rest of the cases, and T meets F at only one
point p, which is (x,t) = (0,0} in the Weierstrass equation x3+A(t)x+B(t).

Assume that G has type II. Then by Proposition (IV.2.2), case (cl), T is
smooth at p, and so we must have b = 1.

Assume that G has type III. Then by case (c2i), T hds an ordinary node
at (0,0), with one tangent (t=0}; hence a = 1 and b = 2.

Assume that G has type IV. Then by case (c2ii), T has an ordinary cusp
at (0,0), with tangent {t=0}; hence b = 2 and a = 2.

In the rest of the cases T has a triple point at (0,0), with no tangent F
(which is {t=0} at this point), so a = 3 and b = 4. Write A = t% and B = tbﬁ
with «(0) and B(0) nonzero. Upon blowing up (0,0), we obtain the equation
x3 + tamzax + tb_Bﬁ, with exceptional divisor defined by t =0, and to
distinguish between the last three cases we must decide whether this equation
describes a smooth curve (giving ec and IV*), a curve with a node (giving e,

* Y L. .
and ITII ), or a curve with a cusp (giving eg and IT ). This is smooth if and
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only if b = 4; it has a node if and only if a = 3 and b = 5; and it has a cusp
if and only if b = 5 and a = 5. This finishes the verification of the first
part of the table.

I will leave to the reader to check that the J-funection is as indicated;
this is a straightforward calculation using only the definition of J. The
Euler number e of the fiber is also easily calculated; most of the fibers have
all Pls for components, and e is then directly related to the number of
components. The columns for r and d need no explanation, and the genus drop v
is as indicated, using only that the genus drop for a double point is one and

for a triple point is 3. =

Some easy remarks are in order now, which are obtained simply by

inspection of the table,

(IV.3.2)Lemma:
(a) In all cases e = §.

0 if type IO, i.e. smooth
(b) In all cases 0 <e - r <2, withe - r=4 1 If type IN with N = 1

2 otherwise

We say that a fiber is semistable if is of type IN for some N z= 0. The
above invariant e - r then distinguishes between semistable and non-semistable

fibers.

Note that the equality e =6 1is a local wversion of the equality
e(X) = degree(A) (both are equal to 12.deg(l), by (III.4.4)). 0f course,
degree(A) is the sum of the local §'s, and also the Euler number e(X) of the
smooth surface X is the sum of the local Euler numbers, since we have a

fibration by genus 0 (hence e = 0) curves:

(IV.3.3)Lemma: Let #n:X —> G be a smooth minimal elliptiec surface. Then

eX) =T e(r 1(e)).

c

Proof: Let S € C be the finite set of points of C over which the fiber of =

is singular, and denote by Xc the fiber of n over ¢ € C. Then
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e(X) = e(x 1 (C - §)) + T e(X)

cES
= e(a smooth elliptic curve)-e(nwl(c -8 + Z e(Xc)
cES
) e(XC) since a smooth elliptiec curve has Euler number 0., =

ces

4 The J-function

Let us turn to the J-function, and what we can derive from

Table (IV.3.1). Again simply by inspection, we have the following.

(IV.4.1)Lemma; TLet G be a fiber of 7 over ¢ & C.
(a) If G has type II, IV, IV*, or II* then J(¢) = 0.

Assume J(¢) = 0. Then:

G has type IO or Ig*if and only if m(J) = 0 mod 3

G has type II or IV if and only if m(J) = 1 mod 3.

G has type IV or II* if and only if m(J) = 2 mod 3.
(b) 1If G has type III or III then J(c) = 1.

Assume J(c) = 1, Then:

G has type IO or Ig i£ and only if m(J) = 0 mod 2.

G has type III or III 1if and only if m(J) = 1 mod 2,
(c) G has type IN or I* with N =2z 1 if and only if J has a pole at c of order

N
N.

From the last statement, and remarking that J the poles of J can ocecur
only at singular fibers, we have a formula for the degree of the J-function.

It is convenient to use the following mnotation: let iN {respectively
i;,ii, iii, iwv, iv*, iii*, ii*) denote the number of £fibers of type IN

% * * *
(respectively I_, II, III, IV, IV , III , 1II ); similarly let io(j)
%
(respectively io(j)) denote the number of smooth fibers (respectively fibers

*
of type IO) with J = j.

(IV.4.2)Corellary: Considering J as a map from € to Pl, we have

degree(J) = N(iN + i;).
N=1

We need to analyze the Hurwitz formula as it applies to the J-map, to

obtain an important inequality. Assume that the J-function is mnot constant.
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For each j in Pl and positive integer m define integers kj(m) by
kj(m) =#{ ce C | J(e¢) = j and multC(J) =m }.
Let d = degree(J). Then

(IV.4.3): d = Z mk, (m) for each fixed j in Pl.
m>1

Using Lemma (IV.4.l), we have the following relationships.

(1V.4.4) 1,(0) + 13(0) - I k@
m=0(3)
*
ii +iv = ) Kk, (m)
m=1(3)
*
v+ il = T kg (m)
m=2(3)
(D) +in(D) = Tk (m
m=0(2)
*
111 + 811 = L kg (m)
m=1(2)
* O* = k
i + i w(n)

A bit more subtle are the following inequalities.

(IV.4,.5)Lemma:
. ¥ .. LF *
(a) 10(0) + 10(0) < fd - (i1 + iv ) - 2(iv + i1 }]/3,
and the right hand side is a non-negative integer,

Moreover, equality holds if and only if

*
(Condition JO): every fiber of type II or IV has m = 1,
%
every fiber of type IV or IT has m = 2, and
*
every fiber of type IO and I0 with J = 0 has m = 3.

I.e., if J(c¢) = 0, then multC(J) =< 3.
(b) ig(1) + ig(l) < [d - (iii + i1i)]/2,
and the right hand side is a non-negative integer.
Moreover, equality holds if and only if
(Condition J1): every fiber of type III or III* has m = 1, and
every fiber of type I, or I* with J = 1 has m = 2,

¢] 0
I.e., if J(e) = 1 then multc(J) = 2.
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Proof: From the previous observations (IV.4.4), we have

(11 + iv7) + 2(iv + 117) + 3(1(0) + 1g(0))

-y ko (m) + 2y ko (m) + 3y, kq (m)
m=1(3) m=2(3) m=0(3)
< d, and is congruent to d module 3, by (IV.4.3), applied with j = 0.
Statement (a) follows from this; statement (b) is similar:
(iii + iii*) + 2((10(1) + ig(l)) = ) kl(m) + 2y kl(m) =< d, and is
m=1(2) m=0(2)

congruent to d modulo 2. =

Let R, denote the ramification contributed by the points ¢ of C with J(c) = j;

we have

(IV.4.6) R, = ¥ (m-Dk (m) = d - § k (m).
Jom J m=1 -

The previous lemma can be brought to bear to give a good estimate on R0

and Rl .

(IV.4.7)Lemma:

(a) Ry = [2d - 2(id + vy - (iv + 1i)1/3.
Moreover, the right hand side is an integer, and equality holds if and
only if condition J0 of Lemma {IV.4.5) holds.

(b) Ry = [d - (iii + 11i7)1/2.
Moreover, the right hand side is an integer, and equality holds if and
only if condition J1 of Lemma (IV.4.5) holds.

() R =d- T (i +1i%)
c = - .
* wy "
Proof: Statement {(c) is a direct consequence of (IV.4.6) and (IV.4.4),
applied with j = «. For part (a), we have
Ry = d - Elko(m) -d - ¥ ko(m) + ) ko(m) + ) ko(m)
= m=1(3) m=2(3) m=0(3)
o . L% i X
d - (ii + iv ) - (iv + 1i ) - (10(0) + 10(0))

d - (i1 + iv') - (iv + ii7) - [d - (ii + iv) - 2(iv + i17)1/3

v

(using the previous lemma)

I

[2d - 2(ii + iv') - (iv + ii°)]/3 as required.
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Part (b) is similar:
R, =d - 3 ky(m) = d - Y k) (m) + Y ky (m)
m>1
m=1(2) m=0(2)
—d - (idi + ii17) - (1y(1) + 13(1))
* %
d - (141 4 1417) - [d - (141 + 1i17)]/2
*x

v

= [d - (iii + iii )]/2 as indicated.
The other statements follow from their counterparts in the previous

lemma. B

We are finally ready to apply the Hurwitz formula to the J-map.

(IV.4.8)Proposition: Assume that J is not constant. Let
* * * *
x=12g - 2 + %[ 62 (im + im) + 4(ii + iv ) + 3(iidi + iii ) + 2(iv + ii ) - d].
m=1

Then x is a non-negative integer. Moreover, if x = 0 then conditions J0 and

J1 hold, and the only ramification of the J-map occurs over 0, 1, and =,

Proof: Let R’ = ) R, be the total ramification away from 0, 1, and .
j=0,1,= J
J#?!
Then the Hurwitz formula for J gives
- = t
2g - 2 24 + Ry + Ry + R+ R
z -2d + RO + Rl + R_ (with equality if and only if R' = 0)
* * *
z -2d + [2d - 2¢i1 + div ) - (iv + i1 )]1/3 + [d - (iii + iii }]/2

*
+ [d - Z (im + im)] (with equality if and only if conditions JO
m=1

and J1 hold)

a/6 - L (i + iz) S 2(it + v /3 - (v 4 117)/3 - (il + 1117)/2,
m>1

1

and re-arranging gives the result. m

The integer x represents the "extra" ramification of the J-map, not
forced by the particular configuration of singular fibers. When there 1is mno
"extra" ramification, the ramification of J is determined by the singular
fibers. This happens, by the above Proposition, if and only if conditions JO
and J1 hold. We will say that an elliptic surface has no extra J-ramification

if and only if J is not constant and x = 0. Thus:

(IV.4.9)Corollary: An elliptic surface m:X — C has no extra J-ramification
if and only if J is not constant, the only branch points of J are 0,)l, and =,
and O whenever J(¢) = 0, multC(J) < 3,

O whenever J(c) = 1, multc(J) = 2.
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Lecture V: The J-map.
1: Criterion for birationality

In this section, which could (maybe should) have come much before this,
I'd like to briefly present the criterion for determining when two sets of
Weierstrass data (ll,Al,Bz) and (L2,A2,Bz) determine birational surfaces. An
effective procedure is obtained by Lemma (IIT.3.4), Corollary (II.1.3), and
the mnotion of isomorphism for Weierstrass data (the discussion  after
Definition (II.5.4): one puts both sets of data into minimal form, and then
checks whether the data are then isomorphic.

Another way to say this is as follows.

(V.1.1)Propogition: Two sets of Welerstrass data (Ll,Al,Bz) and (&2,A2,B2)
determine birational surfaces if and only if there are line bundles Ml’ M2 on

C and sections fl = HO(Ml), f2 (S HO(MZ) such that

4 6, . & 6
(l1®Ml,Alf1,B1fl) & (L2®M2,A2f2,B2f2).
Proof: Clearly if such line bundles and sections exist, the two sets of

data define birational surfaces. Conversely, if the two sets of data define
isomorphic surfaces, then when brought to normal form they become isomorphic.

I.e., there are two divisors Dl and D2 on G, and sections B1» By of OC(Dl),

. 4 6, . 4 6
OC(DZ) respectively, such that (Ll(-Dl),Al/gl,Bl/gl) = (Lz(-Dz),Az/g2,Bz/g2).
Tensoring both sides of this isomorphism with Ob(Dl+D2)’ and multiplying the
4 4 6 6 . 5
Ai and Bi by 818, and 818, respectively, we see that, letting M1 = OC(DZ) and
M2 = OC(Dl), fi =g and f2 = g, proves the result. =W

We will abuse language and say that the two sets of Welerstrass data
(il,Al,Bz) and (Ez,Az,Bz) are birational if they determine hirational
surfaces. It 1is obvious that birationality of Weierstrass data is an
equivalence relation; let BW dencte the birational equivalence classes, [Note
that by the uniqueness of minimal models, and the correspondence between
minimal models and Weierstrass data in minimal form, we may identify BW with

the set of Welerstrass data in minimal form, up to isomorphism.
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2: Quadratic twists and criterion for hawving the same J-map

Of course, if two sets of Welerstrass data (Li,Ai,Bi) define birational
surfaces, one expects the J-maps for the two sets to be the same, and this
follows from the previous Proposition: the J-map 1is determined by the
Weierstrass coefficients (A,B), and J(A,B) = J(Afa,Bf6), since f12 factors out
of both the numerator and denominator of the formula for J.

Actually, one can do a bit Tbetter than this. Note  that
J(A,B) = J(Afz,BfB); f6 factors out of the numerator and denominator now.

There is a converse to this calculation, which is as follows.

(V.2,1)Proposition: Let (Ll,Al,Bl) and (lz,A B,) be Welerstrass data over (.

2'72

Let Ji be the J-map for (Li,Ai,Bi), and assume that neither J1 nor J2 is
identically O or 1. Then the following are equivalent:

(a) Jl = Jz.

(b) There exists line bundles M1 and M2 on C and nonzero sections

0,2 2 3.7 2 3
fi € H (Mi), such that (L1®M1,Alf1,Blf1) - (L2®M2,A2f2,B2f2).
Proof: That (b) implies (a) was remarked above. Assume then that J1 = J2

as maps from C to Pl. Since neither Ji is identically 0 or 1, none of Al, A2,

Bl’ or B, are identically 0. The assumption that J, = J2 then implies, after

2 1

. . . 3.2 3.2

cross-multiplying and canceling some terms, that A1B2 = AZBI' Let
3.3 -1 .

Mi = L1®l2®li ; let fl = A1B2 and f2 be A2Bl’ and note that fi are sections of
Mi, and are nonzerc by the hypotheses on the Ji. Then

2 3 3.3 .,3.2 3 .3 3.3 .32 3.3
(l1®M1,Alfl,Blfl) = (L1®&2,A132,A13132) = (11®L2,A231,A231B2)

2 3
= (L@, A, £, ,B,E,). ®
This motivates the following definition. We will say that one has

performed a guadratic twist on the Welerstrass data (L,A,B) if one replaces

(L,A,B) by (&@M,Afz,BfB), where M is a line bundle on C and f 1is a nonzero
section of MZ. The previous proposition states that, unless J is identically
0 or 1, Welerstrass data with the same J-maps are equal "up to quadratic
twists",

Note a special case of the quadratic twist operation, namely when
M2 = OC’ i.e., when ¥ is a torsion line bundle of order 2 on C. Then we can

take £ = 1, and replace (L,A,B) by (L&M,A,B). For example, when € is an
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elliptic curve, L = OG' and A and B are nonzero, when we perform such a
quadratic twist on the data (I.,A,B) (which represents a product of C with an
elliptic curve with J = 0 or 1) we obtain (M,A,B), which represents a
hyperelliptic surface with K®2 & OC (see Lemma (ITIT.4.6)).

Finally note that if we perform a quadratic twist twice with the same
pair (M,f), we change (L,A,B) to (l@MZ,AfA,st). Although these sets of data
are different, by Proposition (V.1.1l) they represent birational elliptic
surfaces. This suggests that, in the proper setting, we have a group action

here, and in the next section we will introduce the group involved.
3: The double cover group

Let C be a curve (not necessarily compact) and let S be an arbitrary

subset of C. A double cover pair on C relative to S is a pair (M,f), where M

is a line bundle on C and £ is a nonzero section of M@z, whose zero locus is
contained (as a set) inside S.

The reason for this terminology is that if 4:D — C is a double covering
(a flat finite map of degree 2) then ¢*OD is a vector bundle of rank 2 on (,
which splits canonically as ¢*OD = Ch ® MJ';Ifl is locally generated by the
elements of trace zero, and a generator z of M_l would satisfy an equation of
the form 22 = f, for some f in OC’ locally. The multiplication in the
1 to 0, , which locally of

C
. 2 . .
course simply sends z®z = z~ to the element f. This map can be viewed as a

OC—algebra ¢*q) is then defined by a map from M71®M-
section {also rightly called f£) of the bundle Mz, and is nonzero if we assume
that D is reduced. This gives the double cover pair (M,f) associated to the
covering ¢, The requirement that (M,f)} is a double cover pair relative to a
subset S of C simply means that the branch locus of ¢ is contained inside S.
Two double cover pairs (Ml’f1> and (MZ’f2) are isomorpgic if the ;s an
isomorphism a between Ml and MZ’ inducing the isomorphism o between Ml and

Mg, such that az transports fl to f2. Let [M,f] denote the isomorphism class

of a double cover pair (M,f), and let AS be the set of isomorphism classes of
double cover pairs over C relative to S.
One can define a product on the set ds by declaring
[Ml’fl].[MZ’fZ] - [M1®M2,flf2}.
One easily checks that this product is well-defined on #,, and is associative
and commutative, with the 2-sided identity element {Oc,l]. Hence we have a
monoid structure on the set AS'

Define a subset BS of d% to be the set of isomorphism classes {M,fz],
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where £ is a nonzero section of M, whose zero set is inside 8, It is easy to
see that Bé is a submonoid of A%.

We wish to take the quotient of ﬂs by I%. In the category of monoids,
the construction is as follows. Define an equivalence relation = on ﬁs by
declaring, for a; in ﬂs, a, = a, if and only if there are elements bl and b2
of BS such that al-bl = a2-b2. I.e., we declare [Mi,f ] = [Mé,f ] if and only
if there are line bundles Nl and N2 on C and nonzero sections g; of Ni {whose

. . s 2
zero loci are inside S8), such that [M1®Nl,flg1] {M2®N2,f2g2].
The reader can cheeck easily that = is an equivalence relation on &S.

Denote by {M,£f} the equivalence class of an element [M,f] of &S.

(V.3.1)Definition: Let DoubS(C) denote the set of equivalence classes (M, f)
of ﬂs modulo E%. If 8§ = C, (so that there is no restriction on the zerces of

the sections involved), we denote DoubC(C) by simply Doub(C).

The product on ﬁs now descends to a product on the set of =-classes
DoubS(C) {(the reader should check that this is well-defined) which 1is of
course still commutative, associative, with identity [OC,l}. I claim in fact
E(G) has order 2. )

This is an easy check: {M,f}«{M, £} = [M £7), and £ 1is a section of M7,

that now we have a group: every element of Doub
s0 {M,f}2 is in 35; hence it is equal to { C,l} in Douq;(C). Thus:

(V.3.2)Propogition: DoubS(C) is an abelian group, with every element having
order two. The identity of DoubS(C) is {OC,l}.

In terms of double coverings, by factoring out 3 we have essentially
identified covers which are birational; any cover deflned by an element of B
is globally split (it is defined by zz = f not only locally but also
globally) and hence any such cover is birational to the trxivial cover (its
normalization is isomorphic to the trivial cover). The product on ﬂs can be
described as follows. Suppose a; and a, are in As. representing covers
qéi:Di >+ G. On any double coverzone has the covering involution (sending z to
-z if the cover is defined by z” = f) and so we have two covering involutions
91 and g, on Dl and D2 respectively. The fiber product Dlx D inherits both
involutions, and they commute, The quotient D (D1 c 2)/(01X02) is a
natural double cover of G, and its double cover palr represents the product of

ay and a, in AS'

Since any element of @S is birationally the trivial cover, any product of
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an element a of ds and an element of E% will be birationally the same as the
cover represented by a. The converse is also true (although I won't spend
time proving it here: it is easy) and so DoubS(C) represents birational
classes of double covers of C, whose branch locus is contained inside S.

Since we are talking about curves here, we may view DoubS(C) as
classifying double covers of € which are smooth: there 1is always a unique
smooth model of the cover, Since a smooth double covering has a reduced

branch locus, we suspect the following to be true (and it is!).

(V.3.3)Lemma: Every element of DoubS(C) has a unique representative [M,f} in
&S with the divisor of zeroes (f)o of £ reduced.

Proof: Let (M fl} be in DoubS(C), and write (f)o = D + 2E, with D reduced,

1’
and both D and E nonnegative, Let s be a section of OC(E) which wvanishes
exactly along the divisor E, 1i.e., (s)o = R, let M = Ml(-E), and let
£f= fl/sz; note that by the construction of D and E, f is a holomorphic
. 2 . 2 2
section of £ and (f)0 = D. Since [M,f]-{CE(E),s ] = [Mi,fi], and [q:(E),s ]
is in ES, [M,f] also represents {Ml’fi} in DoubS(C), and (f)O = D is reduced.
This proves the existence, and let us turn to the uniqueness. Assume
that [Ml,fl} = {M2’f2} with D1 = (fl)O and D2 = (fZ)O both reduced, Then

there are two line bundles N. and N, on €, and nonzero sections Bs of Ni’ such

1 2
2 2 - .
that [M1®Nl’flgl] = [M2®N2,f2g2]. Let Ei be the divisor of =zerces of gyt
Ei = (gi)o. Then we have that M1®N1 = M2®N2 and Dl + 2El = D2 + 2E2. Since

the Di’s are reduced, and all Di’s and Ei's are nonnegative, we must in fact
have Dl = D2 and E1 - E2 {(there is a unique way to decompose a mnonnegative
divisor as D+2E with D reduced and both D and E nonnegative). Since El = E2’
we must have N1 & N2, and this forces Ml & M2. We may choose the isomorphism
between the Ni so that the s correspond, since they hav; the same dévisor;
after tensoring the isomorphism guaranteed by [M1®N1,f1gll = [M2®N2,f2g2] with
this isomorphism, we see that the isomorphism between the Mi's can be chosen

to make the fi's correspond. Hence [Ml,fl] = [Mz,fz]. |

It is not hard to calculate the order of DoubS(C) if § is finite and C is

compact.

(V.3.4)Lemma: Suppose C is a complete curve. Then

22g if § is empty

|Doub(C)| = { )
§ 22g+isi 1 if § is finite and nonempty



-53-

Proof: We need to count the double cover pairs (M,f) with (f)0 reduced and
contained inside S5, by the previous Lemma. Since f is a section of Mz, the
degree of (f)0 must be even; thus the number of possible divisors (f)0 is 1 if

§i-1
~ 2l

S is empty, and is Z (lgi) if S is not empty.

i=0
Every such divisor determines the line bundle Mz, and so the number of

possible choices for M is 22g, the number of 2-torsion elements in Pic(C).
Once M and the divisor of zeroces of £ are known, £ 1is determined {up to

isomorphism). N

Now let wus tie this double cover group construction in with the
Weierstrass data. Let (M,f) be a double cover pair, and let (L,A,B) be
Welerstrass data. Note that the double cover palr information is exactly what
is required to perform a quadratic twist on the Welerstrass data: the double
cover pair (M,f) "twists" the data (L,A,B) to the data (&@M,Afz,st).

Recall the set BW of birational classes of Weierstrass data. Denote the
birational class of Welerstrass data (L,A,B) by {L,A,B}. By the uniqueness of
minimal models and the correspondence between minimal models and Welerstrass

data in minimal form, every element {L,A,B} of BW is represented by

Welerstrass data in minimal form, uniquely up to isomorphism.

(V.3.5)Proposition: Foxr any 8 <€ G, the above twisting operation induces a free
action of DoubS(G) on  BW, l.e., the action is given by
{M,f}e{L,A,B} = {&@M,Af2,5f3}.

Proof: First one must check that the twisting operation descends to the set
of birational classes BW; this is clear using Proposition (V.1.1). Moreover,
if two double cover pairs are isomorphic, they act identically on BW (in fact
they act so that the resulting data are isomorphic, not just birational);
hence the operation induces an action of the monoid ﬂs on [BW. Again, wusing
Proposition (V.1.1), we see that the submonocid ﬂs acts trivially (this is the
easy direction of (V.1.1)) and so we obtain an action of DoubS(C) on BW as
defined above.

Finally we must show that the action 1is free. Suppose
{M,£)+{L,A,B} = {0,A,B}, 50 that {L@M,Aszf3] = {L,A,B}, Using
Proposition (V.1.1), we see that there are line bundles Ni on G and nonzero

& 6
sections g5 of Ni such that (l@M@Nl,Afzgi,Bf3gi) & (l@Nz,Agz,Bgz). Hernce
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there is an isomorphism a:l@Nz > ﬂ.®M®N1 such that cx'{F carries Agg to Afzgi and
a6 carries ng to Bfgi. by tensoring e« with the identity of &"1®Nil, we

1

obtain an isomorphism ﬁ:N2®Ni - M such that ﬁ4 carries gg/gi to f2 and ﬁ6

carries gg/gi to f3 (a2 priori as meromorphic sections, but in fact this shows

that g6/g6 is holomorphic). Hence Bz must carry {g,/g )2 te £, and since
27 °1 27°1

gz/gl is a holomorphic section of N2®Nil, we see that

[M,f] = [N2®N11,(g2/gl)2] igs an element of 38. Hence {M,f} is trivial in

DoubS(C). |

Note that the J-map foxr an element of BW is well-defined; with this in

mind, Proposition (V.2.1) can now be rephrased as follows.

(V.3.6)Proposition: Let {L,A,B} he an element of BW whose J-map is not
identically 0 or 1, Then the set of elements of BW with the same J-map as
{L,A,B} is exactly the orbit of {L,A,B)} under the action of the full double

cover group Doub(C).

Hence the set of smooth minimal elliptic surfaces with section, all
having the same J-map, is a torsor under the group Doub(C). It is natural to
ask, when can a map J:C — Fl be a J-map for an elliptic surface with section?

The answer is that there is no restriction.
(V.3.7)Lemma: Fix a non-constant map J:C — ?1. Let J be defined by two

*
sections [t:s] of L=J¢ 1(1). Then. the Weierstrass data
P
(L,-3t(t-s)52,2t(t-s)2s3) has J as its J-map.

Proof: This is just a calculation:
2 23 2 23
J(L,-3t(t-s)s",2t(t-58)"87) = J(-3t(t-s8)s ,2t(t-8)"87)
2.3 2.3 2 3.2
= [4(-3t{t-8)s")  :4(-3t(t-8)s" ) +27(2t(t-5)" s ]
= [-108t3(t-s)3s6:-108t3(t-s)356+108t2(t-s)as6]
= [t:t-(t-8)] (factoring out -108t2(t-s)356)

I

[tig] =J. =

The above data (L,—3t(t-s)52,2t(t-s)253) is the pullback of the data
(0(1),—3t(t-s)52,2t(t~s)2s3) on Pl, where now ([t:s] are the homogeneous

coordinates. This data defines a rational elliptic surface with section over
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?1, and an application of the Table (IV.3.1) shows that there are only three
singular fibers: over 0 we have a fiber of type II, over 1 a fiber of type
III, and over « a fiber of type Ii. This surface has the identity for its
J-map.

Of course any constant J-map is easy to obtain, as a product surface, and
if J is not identically 0 or 1, the same formula above can be used. Therefore

we have:

(V.3.8)Proposition: Let J:C — Pl be any map, not identically 0 or 1. Then

the set of smooth minimal elliptic surfaces with section having this J as its

J-map is a torsor under Doub(C).

In fact we have something a 1little more precise, wusing the special

surface given above and Lemma (V.3.3).

(V.3.9)Proposition: Let m:X — C be a smooth minimal elliptic surface with

minimal Weierstrass data (L,A,B). Let J = [t,s] be the J-map for =, and
suppose that J is not identically 0 or 1. Then there is a double cover pair
(M,f) on C with (f)O reduced, unique up to isomorphism, such that (L,A,B) 1is

*
the minimilization of the twist of (J O 1(1),-3t(t~s)52,2t(t-s)253) by (M,f).
P
I.e., there is a unique nonnegative divisor D on C, and a section g of OC(D)

with zero locus D, such that

(L(Dy,ag Bg®) = (3°0 L(Dait, -3t(t-5)s" ", 26(t-5) s £) .
P

4: The transfer of ¥* process

Suppose that C is a disk with center O0; then Pic(C) is trivial, and
double cover pairs relative to {0) are all isomorphic to (OC,tn) for some

n = 0; moreover, Doub (C) is a group with only two elements, represented by

the identity (00’1) aég}the nontrivial element (Cé,t). It is the effect of
performing a quadratic twist by this mnontrivial element which I want to
analyze briefly.

Let (OC,A(t),B(t)) be Weierstrass data over the disk C. Upon twisting by
(OC,t) we arrive at the data (qj,t?A(t),th(t)). If one wuses the (a,b,§)
Table (IV.3.1) to determine the type of singular fiber over 0, one sees that
(a,b,§) is replaced by (a+2,b+3,6+6) upon performing the quadratic twist.

Since minimalizing is essentially subtracting (&%,6,12) from (a,b,s), we
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recover again the statement that performing a quadratic twist twice has no
effect after minimalizing,
Inspection of the Table (IV.3.l1l) gives the following table, for deciding

what the fiber type over 0 is after the quadratic twist is performed.

(V.4.1)Table of effect of quadratic twist, locally
The fiber types are switched according to the rule:

*
IN L IN for any N = 0

*
IT ¢&—— 1V
*
III ¢«—— IIL

*
IV ¢&—— 1II

This is the so-called “transfer of #" on the £fiber over 0. The
"%-fibers", namely the fibers of types I*, IV*, III*, and II*, are switched
with the "non-*-fibers" by the performing of a gquadratiec twist.

Note that a fiber is a *-fiber if and only if (a,b,§) = (2,3,6), where
(a,b,6) is the triple of orders of wvanishing of the minimal Weierstrass data.

Now let us suppose that € is a complete curve, Then 1if (L,A,B) is
Weierstrass data over G, and (M,f) is a double cover pair over C with (f)o
reduced, the minimalization of the quadratic twist performs the transfer of %
process at each fiber over the points ¢f C where £ is zero. Since (f)o is a
divisor of even degree on C, we see that this transfer of * process occurs an
even number of times, so that the parity of the number of *-fibers remains

constant. We will say that Weierstrass data is *-even or *-odd depending on

whether the minimalization has an even or odd number of *-fibers. By the
above remarks, this is a property of the J-map for the Weierstrass data,

Hence, using appropriate double cover pairs, we may twist any Weierstrass
fibration to one with either 0 or 1 #~-fiber. Such a Weierstrass fibration {(or
Weierstrass data, or smooth minimal elliptic surface with section) will be
gaid to be *-minimal.

There is a related notion for the J-map, as we now discuss. Assume that
C is a complete curve, Weierstrass data (L,A,B) is said to be J-minimal if

deg(L) is minimal among all Weierstrass data having the same associated J-map.

(V.4.2)Lemma: ILet (L,A,B) be minimal Weierstrass data over a complete curve
C. Assume that the associated J-map is not identically 0 or 1. Then (L ,A,B)

is *-minimal if and only if it is J-minimal.
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Proof: Assume first that (L,A,B) is not *-minimal. Then there are at least

two *-fibers, say over the points c¢. and ¢y of C. Let M be a line bundle on C

1
such that M2 2 0 (c,+c,), and let f be a section of O (cliwh) such that (f), =
C_ll 22 3 C 0

c1+c2. Then (LeM " ,A/f",B/f") is Weierstrass data over C, with the same J-map
as (L,A,B), and since deg(M) = 1, this has strictly smaller degree for the
line bundle; hence (L,A,B) is not J-minimal.

Conversely assume that (L,A,B) is *-minimal, and let (M,f) be a double
cover pair on C with (f)o reduced. We must show that deg(l) =< deg(leM(-D}),

where D is the divisor used to minimalize the quadratic twist (L@M,Afz,BEB).

If (£)
9

A = 4A +27Bz, then no minimalization is necessary and the result follows from

has no points in common with the zerces of the original discriminant

the fact that deg(M) = 0. 1In fact, if all points of (f)o are non-¥*-fibers,
the same argument works: still no minimalization is required. Since we are
assuming that (L,A,B) is *-minimal, we are left with the case when there is
exactly one *-fiber over a point ¢ of € and ¢ is a zero of f.

In this case the minimalization necessary is to twist by -¢, i.e., in the
notation above, D = c¢; since f has zeroes, deg(M) = 1, so that in this case

deg(M{-c)) =z 0 and the result is proven. M
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Lecture VI: The J-map and Monodromy.

1: Uniqueness of germs of fibers

Let m:X — C be an elliptic surface with section, and let ¢ be a point of

C. The germ of the fiber w-l(c) of ® over ¢ 1is what vyou expect: the

equivalence class of the fibration restricted to a neighborhood of ¢, two
fibrations being equivalent as germs iIf they are isomorphic after shrinking
the neighborhoods., It is our task in this section to demonstrate that the
germ of a fiber is determined by very little data.

We will say that the multiplicity of a constant function is »: if £ is

constant near ¢, then multc(f) = o0,

(VI.Ll.1l)Proposition: The germ of a fiber ﬂ-l(c) of an elliptiec surface

with section n:X — C is determined by J(c), multC(J), and the singular fiber

type.

Proof: We may assume that C is a small disk around ¢ = 0, and that the only
singular fiber of n is over 0. Assume first that J is not identically 0 or 1,

Then J is determined, locally analytically, by J(0) and multO(J). In this
case by Proposition (V.3.8), the possibilities for =« form a torsor under
Doub(C). However if we insist that there are no singular fibers away from 0,
we have that the possibilities form a torsor under the subgroup Doub{o}(c),
which as described in (V, section 4), is a group of order two. The singular
fiber distinguishes between the two possibilities: one 1is a "#-fiber", the
other is not.

If J is identically O, then locally m has a Weierstrass equation of the
form y2 = X3 + tb for some b > 0, and minimality forces b < 5. These give 6
different singular fiber types, by Table (IV.3.1). If J 1is identically 1,
then locally m has a Welerstrass equation of the form y2 = x3 + t%x, with
0 = a =< 3; these give 4 different singular fibers. Hence in either case the

singular fiber determines the exponent, which determines the germ. M

In fact, the same statement is true without assuming the existence of a
section, but only assuming that there are no multiple fibers; this follows

since there is a local section in that case,

In the following table we present local normal forms for germs of fibers,

in terms of the Weierstrass coefficients (A,B).
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(VI.1.2)Table of normal forms for Weierstrass fibrations over the t-disk

Fiber J(t) {A.B)
[ 0 0,1
1 (1,0)
3%0,1 (-35(3-1,25G-1%)
IO 4 t3n (tn,l)
14t20 (1,t%
JHER, 50,1 (-3(G+D (GHeR-1), 2 (GED) (GHER-1) D)

I, ¢ N (-3(1-2%, 2¢1-eH %)
(0 ©0,>)
1 t2,0)
. . 2 .., 2.3
+ | 3#0.1 (-33(-Le7,253(-D7tD)
IO 4 t3n (tn+2 t3)
a2 (£2, ™3,
L j+t?, 30,1 (-3t2(j+tn)(j+tn~l),2t3(j+tn)(j+tn-l)2)
% -
;e (-3e21-t 262 -
Fiber J(t) (A.B) Fiber J(t) (A.B)
0 (0,t) L [0 ©0,th
I 3n+l n+l w 3+l 3 4
t ™ oy 7" RN
3
1 (£,0) L1 (t7,0)
111 111
1+t2n+1 (t,tn+2) 1+t2n+l (t3,tn+5)
0 0, t2) < [0 0,t)
v 1I
t3n+2 (tn+2,t2) t3n+2 (tn+4,t5)
2: Local monodromy

let w:X — C be an elliptic surface over a small disk C, such that
theonly singular fiber is over 0. If one fixes ¢ = 0, one has the smooth
fiber XC = wul(c), and its integral first homoclogy Hl(XC,Z), which is a free
abelian group of rank 2, Choose a loop v on C which winds once around the
origin, in the positive (counterclockwise) direction, starting and ending at
¢. The elements of H (X ,Z) move contlnuously as t moves aloeng the 1loop 7,

giving in effect an 1dent1flcat10n of H (X ,Z) with H (X ,Z). TUpon returning
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to ¢ via the loop v, we have an automorphism of Hl(Xc,Z). This automorphism
is independent of the choice of v (it depends only on the homotopy class of
¥). We thus obtain a well-defined element of AutZ(Hl(XC,Z)), called the local

monodromy around 0. It is in fact Independent of c, for c chosen sufficiently

close to 0.

Choose a nowhere zero holomorphic 1l-form w on Xc‘ Then integration of w
along the elements of Hl(Xc,Z) gives an isomorphism of Hl(Xc,Z) with the
lattice of periods Ac' We may thus view the local monodromy as an
automorphism of this lattice. Since Xc = C/Ac, this is a wuseful remark for
computations. In particular, given a basis [rl,rz} for Ac’ the orientation of
the ri’s is preierved upon continuation around the loop v (the continuation
occurs inside H (Xt,ﬁ), which is isomorphic to C, and the complex structure is
preserved); therefore the local monodromy must have determinant 1,

If one fixes a basis of Hl(Xc,Z), then one may regard the local monodromy
as an element of SL{(2,Z); if one does not fix a basis, then one has naturally
a conjugacy class of elements in SL(2,Z). One is usually a bit sloppy with
language and refers to all of these manifestations of the monodromy around 0
as the local monodromy.

Of course, the local monodromy only depends on the germ of the fiber, and
so one can calculate the local monodromy for the normal forms only, to obtain
the local monodromy in all cases. In fact, the local monodromy does mnot
depend on the local normal form, but only on the type of singular fiber. We

present in the table below the results,

(V1.2.1)Iable of representatives in SL(2,Z) for the local monodromy.

Fiber Local monodromy Fiber Local monodromy
Ty 6 1) Iy 50
w1 W (1Y
III rg é] - 1" :g é]
1V :2 i] 1" :g }]

Since the local monodromy distinguishes between the singular fiber types,

we get the following from (VI.1.1).

(VI.2.2)Corollary The germ of a fiber ﬂul(c) of an elliptie gurface with

section n:X — G is determined by J(c), multc(J), and the local monodromy.
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Some remarks about the calculation of the local monodromy will be

postponed until after a discussion of local base change is made.
3: Global monodromy: the homological inwvariant

The j-map from the wupper Thalf-plane % to OC, defined Dby
jir) = J(C/{Z+Z1)), (actually J is defined from j, not the other way around)
exhibits % as a branched cover of €, branched only over the two points {0,1}.
The unramified covering j:% - j_l{O,l} —3 C - {0,1) is a PSL(2,Z)-cover, and
therefore gives naturally a map a:ﬂl(C - (0,1}) — PSL(2,Z).

Suppose that J:C — Pl is any nonconstant map, and assume that § C C is a
finite set containing Jnl({O,l,w}); i.e., on€C - 8, J is never 0, 1, or e,
Then J:C - § —- € -~ [0,1} is well-defined and not constant, and so gives a map
J*:wl(c - - ﬂl(C - {0,1}); after composing with the natural map a above,
we obtain a map (which we will also call J*) J*:ﬂl(C - 8) — PSL(2,Z).

Suppose now that J is the J-map for an elliptic surface over G, and that
C is a small disk about 0, as in the previous section. We see that J,  can be
thought of as the monodromy of the period r, after making the normalization of
the lattice Ac with Z+Zr before and after going around the loop. Of course to
remain in the upper half-plane we must replace 7 by -r if necessary; this is
part of the normalization which may be required after going around the loop.
Hence we see that J_ is slightly crudexr than the local monodromy: it doesn't
distinguish between *r, In any case we certainly have a commutative diagram,
locally:

local

c - 0) monodromz SL(2,7)

T

1

PSL(2,Z)
where the vertical arrow is the natural quotient map, modding out by *ID. The
commutativity is "up to conjugacy", since the local monodromy is defined up to
conjugacy.
It is clear that this globalizes, in case C is not simply a disk. If
S € C is a finite set containing the discriminant locus (so that the fibers

over the points of C - § are all smooth), we have the global monodromy

G:ﬂl(C - 8) —> SL(2,Z) (after choosing a base point ¢ and a basis for
Hl(XC,Z)). The choice of ¢ is inconsequential. This global monodremy is

called the homological invariant of the elliptic surface over C.
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Given any finite set 5 of C, and a representation G of wl(C~S) into
S8L.(2,Z), and a nonconstant map J:C - Fl guch that J-l{O,l,m} C S, we say that
G belongs to J if the diagram above commutes, up to conjugacy. This language

is due to Kodaira. The discussion above shows the following.

(VI.3.1)Proposition: Let m:X — C be an elliptic surface with no multiple

fibers, and let 8 C C be a finite subset such that J-l{O,l,w} CS and = is

smooth outside of S. Then the homological inmvariant G for = belongs to J.

Therefore, in the elliptic surface situation, G is exactly a lift of J*
from PSL(2,Z) to SL(2,Z). 1If S has |S| points, then ﬂl(C-S) is generated by
2g+|S| elements, subject to one relation; and this relation may be wused to
solve for the one of the generators. Since there are two possibilities for a

lift of a generator from PSL to SL, we see the following.

(VI.3.2)Lemma: Given a non-constant map J:C —eFl, and a finite set § ¢ ¢ such
that J"l{O,I,w} € 8§, the number of homological invariants G belonging to J 1is
22g+[S|—1.

The reader should compare this with Lemma (V.3.4): this number is exactly
the same as the order of the relevant double cover group. Hence one suspects
that there should be a 1-1 correspondence between these lifts and elements of
DoubS(C). The elements of DoubS(C) are in 1-1 correspondence with the
elliptic surfaces with section, with singular fibers lying over S, and so we
suspect that there should be a 1-1 correspondence between homological
invariants (belonging to a fixed J) and elliptic surfaces with section, with
that J. This is indeed the case.

Note that the representation G, or indeed its conjugacy class, gives a
locally constant sheaf (locally isomorphic to Z@®Z} over C-S; in fact the data
of the conjugacy class of G is equivalent to the data of an isomorphism class
of such a sheaf. We will refer to this sheaf as G, also, and also call it the
homological invariant,.

(VI.3.3)Proposition: Given a non-constant  map J:C — Pl and a
representation G:wl(C-S) — S8L(2,Z) belonging to J, there exist a unique

Weierstrass fibration X(J,G) with J-map J and homological invariant G,

Proof: The local existence of X(J,G) follows from Lemma (V,3.,7) and the



-63-

fact that all possible local monodromy is realizable. The local uniqueness is
Corollary (VI.1.3). So we must only address global considerations.

Choose a covering {1%} for C by sufficiently small analytiec disks, such
that each s in § is contained in exactly one of the ﬂi’s; moreover, choose
them so that t%rﬂ% is also a disk for every i and j. Let 41 X — H be the

unique elliptic surface with section o, over Ui with J-map equal to JIU and

local moncdromy given by the sheaf (with fibers ZoZ) G. Thus we have fixed an
identification of Rlﬂ Z {the sheaf of local H (X ,Z)'s) with Gllt’ call this

identification a, -
Over Uirﬂé, the fibrations ™ and % have the same J-map, and trivial
monodromy, so there is an isomorphism ¢ij:X. — Xi respecting the fibrations

J
w, and x,, mapping the section ¢, to O and finally respecting the

i
identifications made on the sheaf of local Hl(X WZY's: a0, ., =a, on U nl .
t i Tij# j i3]
Moreover the isomorphism ¢ij' with these requirements, is unique: the only
automorphisms possible which preserve the section all act nontrivially on the
sheaf of Hl’s
For three indices 1i,j, and k, the composition ¢"°¢jk°¢ki is an

tomorphism of W
automorp X, Iltrﬂirﬂﬁ hich preserves the fibration, the section o 7 and

acts as the identity on the sheaf of local H (X AR Hence it is the
identity, and the local isomorphisms ¢ij patch together to give an elliptic
surface with section n:X(J,G) — C.

The unigueness of X(J,G) follows from the uniqueness of the local
isomorphisms ¢ij in the construction above. m

(VI.3.4)Propesition: Given a non-constant map J:C — Pl and a

representation G:ﬂl(C-S) —3> SL(2,Z) belonging to J, the set of elliptic
surfaces without multiple fibers, with that given J and homological invariant
G, is in 1-1 correspondence with the set

Hl(C,sheaf of local sections of X(J,G)).

4 Base changes of fibers

Let m:X — € be an elliptic surface with section over the t-disk. After
making a base change of order M (replacing t by sM), we obtain the Mthmorder
base change of the family. Clearly the germ after the base change depends
only en M and the germ before making the base change, so by uniqueness, using

the normal forms given above, we can readily determine the fiber type of the
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singular fiber after the base change: it depends only on the fiber type before

the base change. We present the information below.

(VI.4.1)Iable of fibers after a base change of order M.

Before M After
IO M=1 I0
IN M>1 IMN
0 med 2 I
*
IN { EN Before M After
1l mod 2 IMN
'
[ 0 mod 6 I0 0 modé IO
1 mod 6 II 1 mod6 I
2 mod 6 TV . 2 mod6 IV
* ;
I ) 3 mod 6 1 I 3 modé6 I*
0 0
4mod 6 IV 4 mod6 TV
| 2 mod 6 II 5 modé I1
( {
0 mod 4 IO 0 mod 4 I0
1 mod 4 IT1 " 1 med 4 III*
IIT < * TI1 4 *
2 mod 4 IO 2 mod 4 I0
*
[ 3 mod & I1I | 3 mod 4 III
r 0 mod 3 I0 0 mod 3 I0
* *
Iv « 1 mod 3 IV A4 1 med 3 IV
%
2 mod 3 v 2 mod 3 Iv

In particular, note that the fibers I*, II, III, IV, IV*, III*, and II*
all may be base-changed to a smooth fibration, after base changes to order 2,
6, &4, 3, 3, 4, and 6, respectively. Conversely, the germs for these singular
fibers may be constructed as quotients of smooth germs, by cyclic groups with
these orders. After doing so, the monodromy is rather easy to determine, and
we leave it to the reader to verify these parts of the moncdromy table.

For the fibers of type I*, a base change to order 2 will give type I2N’
and so understanding the stable case is enough information.

The monodromy for Il is [é %], and it is not hard to verify that one can

assume that the period 7(t) for the lattice 1is 7(t) = E%Elog(t). For IN’

which is a  base change of order N of Il, we have

L N N
T(t) = 5—5log(t) = 5 —log(t).
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Hence we may construct thig I1 germ as C x A/Z+Z§%E10g(t) over the disk
A. By using the exponential e2ﬂlm to factor out the Z first, we see that we
can put the family into the form B* % A/{tj|j€Z}. This is the "Jacobi Fform"
of the l?cal family. For a fiber of type IN, the Jacobi form is
c” x o/ | jezy.

The I* fibers can be obtained, as noted above, by taking the quotient of

N

an IZN germ by a Z/2Z-action; this action, as the reader can check, is given

locally by (z,t) — (-z,-t). The 1local form for the period Ilattice is
7e1/ 247 1/2

multi-valued (that's the monodromy!)} but the lattice is well-defined for each

log(t)/2niif N = 1. Note that the periods themselves  are

fixed t.

The normal forms for the other lattices are given in the table below,

(VI.4.2)Table of local normal forms over the t-disk C for the lattice At of

periods., We write At as Zfl(t) + Zfz(t).

Fiber J{(t) rl(t) rz(t)
I0 any 1 r{t), 7(t) holomorphic on C
*
I0 any tl/2 tl/zr(t), 7{t) holomorphic on C
-N N
w1 ¢ 1 F.7108(t)
* -N 1/2 1/2 N
INZ]. t T t mlog(t)
0 5/6 .5/6 2ni/3
11 . .
t3n+]. t5/6(l_tn+1/3) t5/6(3211'1/3 ) e41r1/3tn+1/3)
1 t3/4 t3/4i
1l ontl  3/4,. _ntl/2 3/4 n+l/2
1+t 7/ 7 (1-¢ ) £/ 7Ti(l + ¢ )
0 2/3 (2/3 2xi/3
IV : :
In+2 2/3 12273, (273 2mL/3 | hmi/3 273
. (o 173 L1/3 2%i/3
v . -
(3ol (/3 w3y (173 2mi/3 | 4ni/3 nvl/3
1 /4 /%
11l ontl  1/4,. _n+l/2 1/4 ntl/2
1+t t (1-t ) t il + ¢t )
. (o /6 176 _2mi/3
I1I . .
302 (1761 (n+2/3, (1/6 2mi/3 | bni/3 me2/3,
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The reader should beware that the matrices for the monodromy are computed

using 7, as the first basis vector and r., as the second! This is traditional,

2 1
because the action of monodromy on the upper-half plane % is usually given by
sending 7 to %%E%’ with associated matrix {2 2]; this places r first and 1
second in the order for the generators of the lattice. We have usually

written the lattice, however, in the form Z + Zr, which places 1 first and

second.
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Lecture VII: The Neron-Severi Group and the Mordell-Weil Group
1: The Picard group and the Neron-Severi Group

Let 7:X —— C be a smooth minimal elliptic surface.

(VIT.1.1)lemma;
*
(a) = :Pie(C) — Pic(X) is injective.
*
(b) If x has a section and X is not a product, then =« :PicO(C) — PicO(X)

is an isomorphism,

Proof: Statement (a) follows from the oprojection formula, wusing that
ar*OX = OC: for any line bundle £ on C, L, ::r*.i’f & .‘B@)v;r Q 2 £, To see (b)), note
that since X is not a section, the irregularity q equals the genus g of G;
therefore both PicO(C) and PicO(X) are both tori of the same dimension, and

- * - - * + - - - -
since # 1is injective by part (a), it must be an isomorphism on the Pic 's, =

(VII.1.2)Lemma: Assume w has a section and the assoclated 1line bundle L
has positive degree. Then Pic(X)/PicO(X) is torsion-free, i.e., there are no
torsion classes in Pic(X) not algebraically equivalent to 0; from the
previous lemma, we have then that every torsion classs comes from a torsion

class on C.

Proof: Let T be a divisor representing a torsion class, which we assume to
be nonzero. Then HO(X,T) = 0, so by Riemann-Roch we have

hz(X,T) z T(K-T)/2 + x = x = deg(L) = 1. Hence there is an effective divisor
D in [KX - T]. Recall that Kzis pulled back from C, so that D-F = 0; hence D
is vertical. However since D” = 0, we must have that D is a sum of complete
fibers: the vertical divisors have negative semi-definite intersection form,
with only complete fibers having square zero. However K, being pulled back
from C, can be written as a sum of complete fibers; therefore so can T, and so
T is pulled back from C. Hence the class of T is zero mod PicO(C), which by

the previous lemma means that the class of T is zero mod Pico(X) too. H

(VII.1.3)Corollary: Assume that =« has a section and deg(L) = 1. Then
Neron-Severi group NS(X) is isomorphic to Pic(X)/PicO(X). Moreover the

quotient Pilc(X)/Pic(C) 1s isomorphic to NS(X)/Z?, where F is the class of a

fiber of m.
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Proof: The first statement is simply that there is no torsien in
Pic(X)/PicO(X). The second follows from the diagram
0 ——> Pico(c) -3 Pic(C) ~——> Z —— 0
[ L * l
n
0 — PicO(X) —3 Pic(X) — NS(X) — O

* —
after noting that the image of «# Z is ZF in NS(X). m

(VIT.1.4)Lemma: Let Xﬂ be the general fiber of =.

(a) Any divisor D on X can be written uniquely as D = V + H with V vertical
and H horizontal.

(b) The restriction map r:Div(X) — Div(Xn) is surjective with the set of
vertical divisors as kernel. We denote r(D) by Dﬂ'

{¢) r:PrinDiv{(X) — PrinDiv(Xn) is surjective.

(d) r:Piec(X) —> Pic(Xn) is surjective with [QX(V)|V is vertical} as kernel.

(e) If D is a divisor on X with Dﬂ linearly equivalent to 0 in Xﬂ’ then D is

linearly equiwvalent to a vertical divisor on X.

Proof: Statement (a) is obvious. To see the surjectivity of r on Div, omne
simply takes the closure E of a divisor E in Div(Xn): then (E)ﬂ = B, Clearly
the vertical divisors are in the kernel of r, and no horizontal divisor is,
proving (b). Statement (c) follows since the function field of X,7 is the same
as that of X: K(Xﬂ) = K(X). Statement (e) follows from writing Pic as
Div/PrinDiv and wusing (b) and (c). Finally, the 1last statement is a

consequence of (e). H

(VII.1.5)Corollary Suppose m has a section and deg(lL) = 1. Then there is a
well-defined map r:NS(X) — Pic(Xn) induced by restriction of divisors,
Moreover this map is surjective with kernel generated by the classes of

vertical divisors.

*
Proof: Clearly r is 0 on m Pic(C), so the existence of r follows from
(VIT.1.3), and the surjectivity from (d) above; the statement about the kernel
also follows from (d). =
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2: The Mordell-Weil group of sections and the Shioda-Tate formula

We assume in this section that n:X — € is an elliptic surface with a

given section SO’ and associated bundle L.

Let MW(X) be the set of sections of m;, addition, fiber by fiber, induces
a group law on MW(X) with SO as the zero. This group is called the
Mordell-Weil Group of 7 (or of X).

The group law can also be described as follows, Note that MW(X) can be

identified with the set of rational points on the general fiber Xﬂ: a section
gives a point by restriction, and a point gives a section as its closure. The
point of X’7 corresponding to the zero section SO will be denoted by Py- The
sum in MW(X) is then inherited from the sum on the points of Xﬂ’ which is
after all an elliptic curve over K{C) and as such its points form an abelian
group. More explicitly, let S1 and 52 be two sections. Then the sum 81@52 in
MW(X) is the section 83, where (Sl+52_80)n - (SB)n'

For any divisor E on Xﬂ’ one has the summation )E, defined by adding in
the group law on Xﬂ the points of E. This gives a  homomorphism
E:Div(Xn) —> MW(X), which by Abel’s theorem on Xn factors through Pic(Xﬂ).
Composition with the map r:NS(X) —> Pic(Xﬂ) gives a homomorphism B from NS{X)

to MW(X): A(D) = E(Dn) = the class of the closure of X(Dn).

(VII.2.1)Theorem: Let A ¢ NS(X) be the subgroup generated by the class of
the zero section S0 and the wertical classes. Then the sequence
0 — A %5 NS(X) P MUE) — 0

is exact, where a is the inclusion.

Proof: Clearly f is surjective: If § is any section in MW(X), the class of
S in NS(X) goes to S under 8. Of course a is injective, and since ﬁ(SO) = S0
which is the zero of MW(X), and A(V)} = 0 for any wvertical V, we have that
Boa = 0, Let D € kexr(f). Then E(Dﬂ) = Py’ therefore Dn - deg(Dﬂ)pO is
linearly equivalent to O on X’7 by Abel’s Theorem. Since deg(Dn) = (D+F), we
have that D - (D-F)S0 restricts to 0 on Xﬂ' Therefore by Lemma (VII.1.4(e}),
D - (D-F)SO is linearly equivalent to a  vertical divisor V; hence

D= (D-F)SO + V as classes in NS(X), so D€ A, =

(VII.2.2)Corellary: MW(X) is a finitely generated abelian group.
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DPenote by R the sublattice of A generated by vertical components not
meeting SO. R is a direct sum of root lattices of types AN, DN’ EG' E7, and
E8; the root lattice is given in Table (II.3.1). R is an even mnegative
definite lattice, and

rk(R) = Z(# of components of Xc - 1,
cEA
where A € C is the discriminant locus. Note that this local number is called

"r* in Table (IV.3.1); hence we have rk(R) = Erc.
Note that the sublattice U of A generated by S0 and the fiber F is a rank

two unimodular sublattice, with R as its perpendicular space. Therefore

(VI1.2.3) A - <8, F> SR =UdR.

In particular, rk(A) = 2 + rk(R). This gives the following corollary. Denote
by p the rank of NS(X), the Picard number of X.

(VII.2.4)Corollary (The Shioda-Tate formula): p =2+ 3 r_ + rk(MW(X).
ceA

Since U is unimodular, it splits off NS(X) also, giving the exact

sequence

(VII.2.5) 0 s R ut > MW(X) — 0

where Ul is the perpendicular space to U in NS(X); this version of

Theorem (VII.2,1) is sometimes useful.

Let L be any free finitely generated Z-module with a nondegenerate
bilinear form <-,-> with values In Z. The form extend to a Q-valued form on

Ly = L@Q. Denote by ¥ the module L* = (x €Ly | <x,l> e Z for all £ e L}.

L# is a free-Z-module containing L as a submodule of £finite index; the
quotient group GL = L#/L is a finite abelian group whose order 1is the
discriminant of L.

L# may be naturally identified with the dual module L* = HomZ(L,Z), by
sending x € L# to the functional <x,->.

The intersection form on NS(X) gives a map NS5(X) — R* = Hom(R,Z), which
after identifying R* with R® and passing to the guotient GR of R" by R, gives
R Note that y(A) = 0, since S0 and F do not meet any
components generating R, and R goes to 0 in GR' Therefore v factors through

a map y:NS(X) — G

MW(X), and we have a map (which we also call ¥) y:MW(X) — GR'

Because of the importance of GR we would like some more detailed

information about it. Note that if A’ is the set of points ¢ of C such that
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Xc is reducible (hence Xc contributes to R), then R is the orthogonal direct

sum of the "local R’s", namely R = & R , Where Rc is the lattice generated
ceh’
by components of X not meeting S,.. Therefore G, also splits as G, = & ¢ .
c 0 R R cEA! Rc

Hence the calculation of G, is local, and can be done once and for all for

R
each fiber type. We present the results below, which we urge the vreader to

check,

(VI1.2.6)Table of G

R -
c

Flber=§g QE

INzZ Z/N

I* Z/2xZ/2 if N is even

N Z/4 if N is odd

*
II, 117 {0}
*
III, 111" Z/2
w, v 23

Moreover the nonzero elements of G, are exactly the cosets of the duals

R
c

of the multiplicity one components of Xc’ i.e., the cosets mod R of the
functionals e” which take value 1 on a multiplicity one component e of R and 0
on all other components.

Note that the order of G is the number of multiplicity one components

R

[o

of Xc: this is the column "d" of Table (IV.3.1).
Let

M, (X) = (S € MW(X) |

S and S0 meet the same component of Xc for -every ¢ in C}.

(VII.2.,7)Proposition: MWO(X) = ker(vy).

Proof: Certainly 7(MWO(X)) = 0: the sections in MWO(X) cannot meet any
components generating R, by the definition of R. Suppose § is not in MWO(X);
then there is a reducible fiber Xc such that S meets a component e of Rc, with
¢ having multiplicity one in Xc‘ Therefore vy(S) projects onto the coset of e

in GR , since S meets e once and meets mno other generator of Rc' Using

C
(VIT.2.6), we have that this coset is one of the nonzero elements of GR ,
c

hence v(8) = 0. n
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(VII.2.8)Corocllary: MWO(X) has finite index in MW(X).

(VII.2.9)Lemma: MWO(X) is torsion-free if deg(l) = 1.

Proof: Suppose that S is a torsion section of order n in MWO(X). Hence
ns - nSO restricts to 0 on the general fiber Xﬂ; therefore nS - nSO =V with V
vertical. However since S is in MWO(X), 5 - SO does not meet any vertical

components; therefore neither does V, and so V must have square 0, forcing V
to be a sum of fibers. Working in NS(X), we then have nS - nSO = aF for some

integer a.

Let k = §+8, and £ = -deg(l) = 32 = Sg. By intersecting the above
equation with § we obtain nl - nk = a, and by intersecting it with SO we get
nk - nd = a; therefore a = 0 and k = £. However k is non-negative and £ is

negative!. W
3: Torsion in MW

Denote by TMW(X) the torsion subgroup of MW(X), i.e., the group of
torsion sections of X. We have the following fact. From the previous Lemma,

we have the following:

(VII.3.1)Corollary: Suppose that deg(L) = 1. Then v:TMWE) — GR is

injective.

Note that in particular, if deg(l) = 1, then a torsion section is

completely determined by which vertical components it meets,

(VII.3.2)Proposition: Let S1 and 82 be two torsion sections of X. Then Sl

and 52 are disjoint.

Proof: It suffices to prove that if § is a torsion section, then S does mnot
meet SO' Moreover, note that since sections meet only multiplicity one
components of fibers, if the statement is true after making a base change,
then it is true before. Therefore it suffice to prove the statement locally
around a semistable fiber of type IN’ with N = 0, using Table (VI.4.1): any
fiber has a semistable fiber as some base change.

Assume then that 5 and SO meet at a point of a smooth fiber of type IO'
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We may locally represent the fibration as CxAt/Z+Zr(t), where At is a disk
with coordinate t. The zero section is given by the map z(t) = 0. Suppose
that S is given by the holomecrphic map z(t); since § 1is a torsion section,
z{t) € Q+Qr(t) for all t; this forces z(t) to be constant. Since we assume
that § and S0 meet, we have z(0) = 0, s0 z(t) = 0 and § = SO'

Agsume finally that S and S0 meet at a point of a singular fiber of type

IN’ with N = 1. We may locally represent the fibration in Jacobi form

C*X At/{th|jEZ}, with the section S0 given by =z(t) =1, let S be given
locally by z(t) € C , with g(O) = ] (because S and S0 meet) . Since S is
torsion, we have z(t)k = tNJ for some integer j. Hence z(t) is a branch of
th/k, and since z(t) is holomorphic, we have that Nj/k € Z and z is a root of
unity times a nommegative power of t. However since z{0) = 1 we must have
z(t) identically 1, sc that again § = SO' |

# . L . . s s
Let X" denote the subset of X consisting of points which are not critieal

points for the fibration . X# is then obtained from X by deleting =all

components of fibers which have multiplicity greater than one, and also
deleting all singular points of fibers. For ¢ in C, we denote by Xi the fiber

of X' over c.
Let X§ denote the subset of Xf obtained by deleting all components of

fibers not meeting the zero section SO. Similarly denote by Xﬁo the fiber of

X# over ¢ in GC; Xi

points of Xc on X#

0 is the compeonent of Xc meeting SO, minus the singular

c0’

Note that Xﬁ can be made naturally inte an abelian group, as follows.
Take the germ of the fiber Xc’ and let ¥ be the set of all local sections of =«
in the germ. Any section must pass through a point of Xf. The set ¥ forms a
group, by the usual addition of sections: one defines the sum fiber by fiber
on the smooth fibers, then closes up the result over the singular fiber, Let
yOO be the subgroup of local sections in ¥ which pass through Soan, i.e.,
pass through the same point on Xc as does the zero section SO. The quotient
group 9/?00 may be identified with the points of Xi,,and this puts the group
structure on ¥ . Note that Xio is the connected component of the identity,
and Xﬁ/xjo is a finite abelian group whose order is the number of multiplicity

one components of Xc.
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The fact that two torsion sections never meet can be expressed as

follows:

(VILI.3.3)Coxollary: For every c in C, the restriction map
res:TMW(X) — Tors(Xf) is injeective.

We again meed to have some more detailed information about this
< # . 157 5 0d . .
commutative group Xc for the various possibilities of singular fibers XC. We

present the information in the table below,

(VII.3.4)Table of X‘:.

. ¥ #
Fiber Kgg X_/Kgg
I elliptic {0}

0 *

N1 C Z/N
I* c Z/2xE/2 if N is even
N Z/4 if N is odd

*
IT,I1 Cc {0}
*

III,III C Z/2
w,1v° ¢ 7/3

The column of the Xi is quite easy to understand; the last column is

0
interesting in light of Table (VII.2.6). This is no accident:

1
[}

(VI1.3.5)Lemma: let XC be a reducible fiber. Then Xf/XfO

Proof: This is a local statement, and we may prove it by passing to the
germ of the fiber Xc. Let ¥ be the set of local sections as before, so that
Xi = ?/?00. Let ?0 be the subgroup of ¥ consisting of sections meeting XiO‘

# L
Then ?00 C 90 ¢ ¥ and XcO = 90/900.

The homomorphism y is defined at the germ level, and gives a map

v:¥ — G the kernel is precisely 90. Since amy point of Xi is hit by some

R ;
° #
local section, in particular any component of XC is so hit; therefore v 1is

onte, and so 9/?0 = GR . But by the above, this is precisely Xi/XfO. [
c
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Lecture VIII: Rational Elliptic Surfaces

1: Extremal rational elliptic surfaces
Let m:X — Fl be a rational elliptic surface with section SO. In this
case e = e(X) = 12, and KX = -F, let U = <SO,F> be the rank two unimodular

sublattice of NS(X) generated by S0 and F; as remarked previously, U splits
off NS(X): NS(X) =U @& UL. Since NS(X) is unimodular with signature (1,9) (X
is a blow-up of P2 at nine points), and U iIs unimedular with signature (1,1),
we must have Ul unimodular with signature (0,8): 1i.e., Ul is a negative
definite unimodular lattice of rank 8.

The intersection form on Ul, moreover, is even, since KX €U and X 1is
rational; hence Ut is abstractly isomorphic to a lattice of type E8'

Recall from (VII.2.5) we have MW(X) = UL/R, where R is the sublattice of

u generated by components of fibers not meeting SO.

(VIII.1.1)Definition: An elliptic surface n:X — C with section will Dbe

called extremal if p = hl’1 = 2 4+ rank(R).

In other words, X is extremal if X has maximal Picard number and the

classes of S0 and components of fibers generate NS5(X) over Q. We have an
immediate corollary: X is extremal if and only if p = hl’l and MW(X) is
finite.

In fact, for rational surfaces, the concept of extremal can be viewed in

many ways:

(VITI.1.2)Proposition: let X be a rational elliptic surface with section.

Then the following are equivalent:

(a) X is extremal

(b) The relative automorphism group AutC(X) ig finite. )

(¢) The number of representations of X as a blow-up of P” is finite.
{d) The number of smooth rational curves C with 02 < 0 is finite.

(e) The number of reduced irreducible curves C with 02 < 0 ig finite.

Proof: The relative automorphism group AutC(X) is the group of
automorphisms of X (all of which must preserve the elliptic £fibration, since
the elliptic fibration is given by |-KX|) which induce the  identity

automorphism of the base curve C. Let 7 be such an automorphism, and consider
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the image T(SO) of the zero section; it 1s again a section, and so the

automorphism Tr(S )-lor fixes SO’ where g is the automorphism given by
0

translation by S, for a section §. The automorphisms of X fixing SO form a
finite group: this is the automorphisms of the generic fiber. Hence AutC(X)
is finite 1if and only if the group of sections MW(X) is finite; this proves
that (a) and (b) are equivalent, The implications (e) = (d) = (c¢) are
obvious. Since KX = -F, a smooth rational curve E on X is exceptional if and
only if it is a section, proving (a) e (d), since in any case a smoocth
rational curve C must satisfy -2 = 02 + CK, or 02 = CF - 22 -2, and the
(-2)-curves are always finite in number: they are the components of reducible
fibers. If C is reduced and irreducible with 02 < 0, then we must have
-2 = 02 + CK = -1, forcing C to be smooth rational and either a (-1)- or

(-2)-curve; this shows that (d) and (e) are equivalent. Finally, since any

rational elliptic surface is a blow-up of 92, we have (¢) = (d). =

As consequences of extremality for rational elliptic surfaces, we have

the following.

(VIII.1.3)Proposition: Let m:X — Pl be an extremal rational elliptic

surface with section. Then:

(a) disc(R) = nd(F) = lMW(X)lz, and in particular is a perfect square.
F

(by Y(e - ) = 4
F

(c) X has, for singular fibers, either:
O 4 semistable fibers
O 3 singular fibers, exactly 2 of them semistable

or O 2 unstable singular fibers.

Proof; The lattice R 1s the orthogonal direct sum of the lattices RF for
each fiber F, and the discriminant of RF is d(F) by definition. Hence
disc(R) = [d(F) is obvious. By general lattice theory,

digsc(R) = disc(Ul)-[Ul:Rlz, and since MW = UL/R, and Ui is unimodular, we have

that disc(R) = |MW(X)|2. Since e = Je, = 12 and rank(R) = Jrp = 8, we have
F
(b). Finally, (c) follows from Lemma (IV.3.2)(b). ™

This Proposition allows us to classify all configurations of singular
fibers on extremal rational elliptic surfaces. We give the list in the

following table.
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(VIII.1.4)Table of possible configurations of singular fibers on extremal

rational elliptic surfaces.

Singular fibers degree(J) |MW(X)| Notation
II,II* . 0 1 X22

III,III 0 2 X33

IZ,IZ 4] 3 X,

IO;IO 0 & Xll(j)' jetc
II ;11,11 2 1 Xy11

IIi % P Y 3 2 X301

I: ,I3,I1 4 3 X431

A | 6 2 Xa1
11,14,11 6 2 X141

1,,1,,1, 6 & Xy00
IQ’Il’Il’Il 12 3 XQlll
18’12’11’11 12 4 X8211
LgrlqgnLy014 12 6 X6321
15’15’11’11 12 3 XSSll
14,14,12,12 12 8 X4422
13,13,13,13 12 9 X3333

Proof; There are three cases, corresponding to the number of singular
fibers.

Case of two unstable sinpular fibers,

Since EeF = 12 we ha:e the four p:ssibilities above, plus the
configurations {IZ,IV}, {i3,III}, and {Ia,II}. The £first two violate
Proposition (VIII1.1.3)(a) and the third leads to degree(J) < 0O by
Proposition (IV.4.8). An alternate argument can be given by remarking that
since there 1is mno non-constant holomorphic map from C* to the wupper
half-plane, J must be constant; however at fibers of type I; J has a pole.

Case of three singular fibers, exactly two semistable and one unstable.

Again using EeF = 12, Proposition (VIII.1.3)(a), and
Proposition (IV.4.8), we are left only with the configurations in the table.

Case of four semistable singular fibers.

The possibilities are to have [In1’1n2’1n3’1n4} with Zni = 12 and ﬂni

equal to a perfect square; this gives only the six sets in the table. H
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The following theorem is proved in [MP].

(VIII.1.5)Theorem: For every configuration of possible singular fibers in the
Table (VIIL.l.4), there is a unique extremal rational elliptic surface with
section with that configuration of singular fibers, except for the
configuration {I:,Ig}; these are classified by their j-invariant, which must

be some constant j € €, and can be any complex number.

The 6 semistable surfaces above were studied by Beauville [B], and some

authors have called these surfaces Beauville surfaces.

2: A deformation result

Let m:X — Pl be a semistable elliptic surface with section, i.e., =&ll

fibers of = are of type In' Assume that X has s singular fibers, which are of

types In ""’In . In this case we will say that X zrealizes the unordered
1 5

s-tuples [nl,...,nS]; note that Zni is a multiple of 12: it is e(X).

Conversely, given a set [nl,...,ns] of s positive integers whose sum is

divisible by 12 (repetitions are allowed), we will say that [nl,...,ns] exists

as a semistable elliptic surface over Pl, or that simply the set exists, 1if

. . . s . . 1 .
there is a semistable elliptic surface with section over P~ with exactly s

singular fibers of types I_ ,...,I_ .
| ns
For example, the Beauville rational elliptic surfaces realize [9,1,1,1],

[8,2,1,11, [6,3,2,1], [5,5,1,1], [4,4,2,2]), and [3,3,3,3]; these six 4&4-tuples
exist.

It is our goal in this section to prove the following.

(VIIT.2.1)Llemma: Assume that [nl,...,ns] exists.
- - 3 o

Then Inl,...,ni_l,a,b,ni+1,...,ns] exists, for any a,b =2 1 with a+b n, .
Proof: By pulling back the surface with J = identity, one sees that to
prove that [ml,...,ms] exists it suffices to construct an appropriate J-map,
properly ramified over 0, 1, and », To obtain only semistable fibers of types
I ,...,Im , one must have Zmi = 12k for some k = 1, and the J-map must have
m

1 s
exactly s points over «, with multiplicities ml,...,ms; in addition, one must

have the proper ramification over 0 and 1.

If [n .,ns] exists, then a J-map exists, properly ramified over 0 and

1



-79-

1, with s points over =, with multiplicities L ERRRTL Such a J-map 1is
determined by its monodromy representation, given by a set of permutations
{ao,al,aw,fl,...,rr}, such that their product is the identity in Sl2k and they
generate a transitive subgroup: o, is the monodromy around «, and the 7's are
the monodromy around the other branch points umequal to 0, 1, or o, if any.
The cycle structure of o must be given by s cycles, of lengths ...,
Because of the identity
(1,2,3,...,n) = [(L,2,...,a)(a+]l,...,n)]+[(a,n)]

we may replace the ni-cycle in ¢_ by the product of the two cycles of lengths
a and b, at the expense of adding an extra permutation (and therefore an extra
simple ramification point over a new branch point to J). This mnew 1list of
permutations still has product the identity, and still generates a transitive

subgroup of Sle; hence it defines a J-map, properly ramified over 0, 1, and

w, to produce an elliptic surface which realizes the (s+1)-tuple
[nl""’ni~1’a'b’ni+1""'ns]' =
3: Semistable rational elliptic surfaces

As a corollary of Lemma (VIII.2.1) and the existence of the six 4-tuples

obtained by the Beauville surfaces, we have the following.

(VIIT.3.1)Corollary The following s-tuples exist,

s = 4:  912,8212 6321,5%1%,4%22 3%

s =5 81%,7213,6313,541° 62212, 5321242212 43221 42" 3321

s =~ 6:  71°,621%,531%,5221% 421" 43213 ,42312 3313 329212 39%1 o8
s =7:  61%,521% 431 42%1%,3%91% 32313, 2512

s =8: 51742153218 3221 %1%

s =9 118 3017 2340

s = 10: 317,2%8

s = 11: 2110

s =12: 1%2

Note that every s-tuple with s =z 6 and Zni = 12 is on the above list,

i.e., can be obtained from the six 4-tuples:

(VIII.3.2)Corollary Let [nl,...,nS] be an s-tuple with Zni = 12. Then if
s=6, [n,,...,n_] exists,
1 [
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Our goal is to prove that the list of Corollary (VIII.3.1l) is complete,
i.e., that these are the only s-tuples with Zni = 12 which exist. In view of
the previous coreollary, the mnecessity that s be at least &, and the

classification in the case s = 4, it suffices to show the following.

(VIII.3.3)Proposgition: The three 5-tuples
(5,2,2,2,1], [4,3,3,1,1}, and [3,3,2,2,2]

do not exist.

We will take this up in the next lecture,.
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Lecture IX: Some Lattice Theory
1: Generalities on discriminant form groups

Let L be a finitely generated free Z-module, and let <-,-> be an even
non-degenerate Z-valued symmetric bilinear form on L. HQ = L ®y @ naturally
inherits the bilinear form, which will still be non-degenerate and symmetric;
moreover L C L@ naturally. Define L# = {X € Lm|<x,ﬂ> eZ viel}. We of
course have L ¢ L#, since the form is Z-valued on L. The natural map
¢:L# —_— L* (= HomZ(L,Z)) defined by ¢(x) = <x,-> is an isomorphism, and so we
see that L# is a free Z-module with the same rank as L; in particular, L has
finite index in L#.

Define G, = L#/L, the so-called digcriminant-form group of L. Its order

L
is the absolute wvalue of the discriminant of L,

(IX.1.1) EGL] ~ |dise(L)|,
since both sides are computed as the absolute value of the determinant of any

matrix for <-,-> on a Z-basis of L. If we define the length £(G) of a finite

abelian group to be the minimum number of generators of G, we also have that
(IX.1.2) B(GL) < rank(L),

since GL is generated by the cosets of the rank(L} generators of L#.

One can define a Q/Z-valued quadratic form qq > the discriminant-form, on
GL by setting, for x in L#, qL(x) = %<x,x> mod 2.2 The reader should check
that qy, iz well-defined, and satisfies qL(nx) = 1 qL(x) forne€ Z and = € GL'
Moreover, the function qL(x+y)~qL(x)-qL(y) is exactly the induced symmetric

bilinear form <-,-> on GL’ with values in Q/Z.

(IX.1.3)Example: Let L be the lattice of rank N-1 representing AN-l' Then
L is realized as the lattice Rc’ where Xc is a fiber of type IN on al elliptic
surface with section. In particular, as we noted in Table (VII.2.6),

GL Z/NZ. A generator for GL is afforded by the coset of the element

N-1
e# = “%[ 3 iei], where {ei} is the natural basis of L, namely the classes of
i=1

lit4

1
the components of the cyele IN; these are numbered so that e, meets e ..

- #
around the cycle, and e, meets the zero section. The element e, meets e
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*
exactly once, and meets no other e, its image in L is the dual element to
e;. .
A calculation gives that qL(el modL) = (1-N)/2N, so that if we identify

GL with Z/N by sending e? medL to 1, we have that

(IX.1.4) (a) = az(l—N)/2N.

a1

It will be useful later to remark the following:

(IX.1.5) For the following lattices L, GL has no nonzere qL-isotropic
elements (i.e., elements g with qL(g) = 0):
A, Ay AGA,, A @A @A,

One of the main applications of this discriminant-form construction is to

the analysis of embeddings of lattices. The following is 'a typical example.

(IX.1.6)Lemma: There is a 1-1 correspondence between

intermediate lattices M . .

5 qL-lsotroplc subgroups
LEMCcL, such that and He g
<—,—>[M is Z-valued and even L

Moreover if M corresponds to H, then GM = HL/H, and EW is induced from 9y -

Proof: Of course by qL-isotropic I mean that qL(h) = 0 for every h in H.
The lemma is easily proved; the correspondence is the usual one, sending an
intermediate lattice M to M/L, and a subgroup H to ﬂ-l(H), where w:L# — GL is
the natural quotient map. We must check that the sets above corxrespond.
Assume that M is an intermediate 1lattice such that <—-,—>|M is even and

Z-valued; then clearly g (m) = <m,m>/2 modZ = 0, so that M/L is q -isotropic.
Y g L

Conversely, assume that H is qL~isotropic, and let m and n be in ﬂ-l(H). Then
<m,n> modZ = qL(m+n)-qL(m)-qL(n) =0, so <m,n> € Z, and the form is Z-valued
on M; moreover, since <m,m> = qL(Zm)-ZqL(m) - 2qL(m), we have evenness also.

. i,.1
To prove the last statement, one must simply show that M# =q (H),

which is obvious. H
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The following will be useful.

{(IX.1.7)Lemma: Suppose that U is a unimodular lattice, and L, and L2 are two

1
nondegenerate sublattices of U, such that Ll = Lé and L2 = Li. Then there
exists an isomorphism between G, and G such that g, = -q under the
L L L L
1 2 1 2
isomorphism,
Proof: The nondegeneracy of the Li implies that Ll@L2 is a sublattice of U;

hence we may view U as an intermediate lattice between L1®L2 and (Ll@Lz)#, 50

that there exists a g-isotropic subgroup H of GL oL corresponding to U.
1772
Since U is unimodular, GU is trivial, so that H® = H by the previous lemma.
Note that since the Li are orthogonal, GL oL = GL ® GL . Let T, be the
1772 1 2

projection of GL oL onto GL.'

1772 i
claim: wi{H:H — GL is an isomorphism for both 1.

i

Why: First let us show injectivity: suppose that wl(h) = (0, for h e H. Then

h = (O,gz) for some -9} in G Hence there exists an element u in U, mapping

L°

2
# . L
to h, of the form (0,x2), where X, (= L2 and 8, = X, mod L2. Since u € Ll’ we
must have u € L2, so that X, € L2 and By = 0, whence h = 0. Thexrefore Ty is
injective on H; the argument for n, is the same.

2
The injectivity shows that |H| = lGL | for both i; since HS = H, and the
i

order of Hl is the index of H (this is a general fact), we have that

2 <. -
|H|™ = |GL oL | = |GL |-|GL |. Hence [H| = IGL | = [GL | and the injectivity
1772 1 2 1 2
also implies surjectivity. This proves the claim.
.. ; . _ -1, .
To finish the proof, define f.GL —> GL by £ = (WZIH)O(ﬂlEH) : £ 1is

1 2
an isomorphism by the claim, If h € H, then, since H is 1isotropic, we have

0= 9 oL (h) = qy, (wl(h)) + qu(wz(h)), proving that the gquadratic forms for

1772 1
the Li are oppesite in sign. MW

(IX.1.8)Corcllary Suppose L is a nondegenerate sublattice of a unimodular

lattice U. Then G 2 G  and q = -q .
LLL Ll Lll LL

Proof: Just apply the previous lemma to L' anda L. m
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2: The 3 impossible 5-tuples

We are now in a position to prove Proposition (VIII.3.3), i.e., to prove
that the three 5-tuples [5,2,2,2,1}, [4,3,3,1,1], and [3,3,2,2,2] do not
exist.

Suppose that n:X —> C is a semistable rational elliptie surface with

section, realizing the s-tuple [nl,...,ns]; i.e., there are exactly s singular

fibers of types In ,...,In , and Zni = 12, Let R be the sublattice of NS(X)
5
generated by the components of fibers not meeting the zero section SO; Ris a

lattice of rank Z(ni-l) = 12 - s, isomorphic to @ An L Let U be the lattice
i i

generated by S and the fiber F; NS(X) is unimodular (X is rational), so is

0
UL, and since KX e U, Ul is even; in fact U'L is isomorphic to the E8 lattice,

but we do not need to know that. In any case U" has rank 8, since U has rank 2

and NS(X) has rank 10. Therefore:

(IX.2.1) 1If [n ,n_} exists, then ® An 1 embeds into a unimodular lattice

1 ls -
1 i

of rank 8.

Now suppose further that s = 5; then rank(R) = 7, so that K = Rl in Ul

RJ.J. )
The inclusion R C R'!"L is between lattices of the same rank, so that we can

. - . . # 1l
view Rll as an Iintermediate lattice between R and R ; therefore R

has rank 1. Therefore GK is cyelic, and by Corollary (IX.1.8), so 1is G

corresponds to an isotropic subgroup H of GR with G m = HL/H. Thus :

R
(IX.2.2) 1f [nl,...,ns] exists, there is an lsotropic subgroup H of GR with
HL/H cyclie.
In particular:

(IX.2.3) 1If G@A is not cyclic, and has no nonzero isotropic elements,

. n, -1

i i

then [nl,...,ns} does not exist.
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The final ingredient is provided by the next lemma.

(IX.2.4)Lemma: For the lattices
Al®A1@Al®A2®A2, Al@Al@AleAA’ and Az@A2©A3,
the discriminant-form groups have no nonzero isotropic elements.

Proof: Since (2,3), (2,5), and (3,4) are relatively prime, any Iisotropic
element of these lattices must decompose 1into 1isotropic elements of the
summands A1®A1®A1, A2®A2, A3, and AQ: no cancellation 1is possible. This
forces any isotropic element to be zero by (IX.1.3). =

Since the discriminant-form groups for the three lattices above are not

cyclic, applying (IX.2.4) to (IX.2.3) proves Proposition (VIII.3.3).
3: The Length and Discriminant Criteria for deducing torsion in MW

In the rest of this lecture we want to develop some sgimple criteria for
deducing the existence of torsion in the Mordell-Weil group of a semistable

elliptic surface over Pl. The first is the "Length Criterion":

(IX.3.)1)Proposition: Assume m:X — Pl realizes {nl,...,ns]. Fix a prime
number p. If p divides £-3 or more of the ni's, then there is p-torsion in

MW(X).

Proof: Let R be the lattice of components of fibers not meeting the =zero
section SO’ and let L = <SO,F> @ R. The assumption implies that the p-length
of G, is at least s-3. Considering L as a sublattice of Hz(X,Z) (mod

R
torsion), we have that

rank(LY) = h%(X,Z) - rank(L) = h2(X,Z) - (2 + rank(R))
= (12x - 2) - 2 - J(n;-1) =5 - 4
hence the length of G - length(G l) = s5-4,

L R
Now R C R'' and this inclusion corresponds to a totally isotropic

subgroup H of GR; moreover, RLL/R = H is isomorphic to TMW(X), the torsion in
the Mordell-Weil group. Assume then that there is no p-torsion in MW(X); then
there is no p-torsion in RLL/R = H; hence the p-length of HL/H equals the

p-length of G,. Since HL/H 26 , we have that
R RJ..L

the p-length of G = p-length of G, = s5-3.
RJ._L R
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Now we apply (IX.1l.8) to obtain a contradiction: since G N and G |, are
- R R
isomorphic, cexrtainly they have the same p-length; thus
s - 3 = p—length(GRli) =< length(GRll) = length(GRl) = s - 4, This

contradiction proves the result. M

The length Criterion for deducing p-torsion in the Mordell-Weil group can
be sharpened to apply to the extreme case, when a prime p divides exactly s-4
of the ni's. For this application, one must use the discriminant of GR also,

not just the length; for this reason we call it the "Discriminant Criterion™:

(IX.3.2)Proposition: Assume w:X —> Pl realizes [nl,...,ns]. Fix a prime

number p, and assume that p does not divide Dy, ny,, but p does divide n,
for 1 = 5.

(a) Assume p = 2 and 4 divides n, for i = 5. If

(-l)sn1n2n3n4 = 10 (ni-l) mod 8, then there is 2-torsion in MW(X).
i=5
(b) Assume p is odd, and n,n,n,n, is not a square modulo p. Then there 1is
p-torsion in MW(X).
°i
Proof: Write n, = m.p for i = 5, with p!mi. Asgume that there 1is no

p-torsion in MW(X). Let H be the isotropic subgroup of G, corresponding to

R
Rll; H is isomorphic to TMW(X), and the assumption of no p-tersion in MW(X)

implies that pf{|H|. Again write L = <S_,F> ® R; then

0!

|G LI = |G LLI = |G Lll - !GR|/|H[2 = 1 ni/|H|2. Since Li has signature
L L R izl

(2k,s-4-2k) for some k, there are s-4-2k negative eigenvalues for the matrix

for LL; since |G J_| is the zbsolute value of the discriminant of LL, we have
L

that dise(Lh) = (-1)° | n,/[H| 2.
izl *

Let us write G(p) for the p-part of a finite abelian group @G. Then

(P) . ~(P)
G S (by (IX.1.8))
L.L LLJ.

Gép) (since |H| is prime to p)

114

s e;
mZ/p Z.
i=5

I



-87-

e e

Moreover, q(p)(x mod p 5,. X mod p ) = -q(p)(x , ,X )
Ll 5 L s
_.(p)
=N (0,0,0,0, s WX o mod Do, oo MR mod ns)
. 2
= Z [(I-n,)/(20,) ] {m,x_) {using (IX.1.4))
j=5 ] J 1]
s
= 3 [(n;-m/2p Jlx
j=5
in particular, the discriminant form of G(E) diagonalizes, Therefore, since
L
rank(Ll) = p-length of G K the p-adic form on LJ'®Zp also diagonalizes (here

L
we use the assumption that 4 divides the ni's in case p = 2). Hence there Iisg

a basis for LL®ZP over Zp such that the matrix of the bilinear form 1is

e e
diag(p 5/(n5-1)m5,...,p S/(ns—l)ms); these are the eigenvalues that produce
the above formula for q(i), and part of the p-adic theory is that the form on

L

Li®2p is unique under our hypotheses. The eigenvalues are well-defined modulo

squares of units in ZP, so that we may equally well take
e e
. 5 s s .
diag(p (n5-1)m5,...,p (ns-l)ms) = dlag(ns(ns-l),...,ns(ns—l)) ag the matrix.
s
In this case we calculate disc(Ll®Zp) ﬂ n.J(nJ -1) mod (Z ) Since the
j=5

discriminant of Llez_ is induced by the dlscrlmlnant of Ll we have from our

ptevious calculation that (-1 ﬁ n, /EH{ = n n, (n -1) mod (Z ) or
i»] j=5 i
s x, 2
equivalently that (-1)Sn 10o0gn, = m (nj-l) mod (Zp) . If p =2, equality mod
=3
(Z;()2 is measured by equality modulo 8, proving (a). If p is odd, then
equality mod (Z;)2 is measured by equality modulo squares mod p. Since

ﬂ (n -1) = (-l)s mod p, after canceling we obtain the denial of the condition
j=5
of (b). m
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Lecture X: Configurations of fibers on semistable K3 surfaces
X.1: The statement of the results

In this last lecture I want to outline the results of [MP2Z] on the
possible configurations of singular fibers on semistable elliptic K3 surfaces.
The goal is to prove a result analogous to Corollary (VIII.3.1). There all
realizable s-tuples [ni] with Zni = 12 were found: this was the rational
elliptic case. Now we focus on the mnext case, namely the s-tuples with
Zni = 24, which is the case of semistable elliptic K3 surfaces.

There are many more combinatorial possibilities now, and for an
exhaustive analysis the reader should consult [MP2]. In this lecture I will
outline the techniques used and state the results,

Suppose that m:X — Pl realizes [nl,...,ns} with Zni = 24, An
application of Proposition (IV.4.8) shows that

X = -2 + %[62 (im) - 24] = g5 - 6, where ® is the "extra' ramification of the
m=1
J-map; recall that x = 0, and moreover x = 0 if and only 1f every fiber with

J =0 has m = 3, every fiber with J = 1 has m = 2, and the only ramification
of J occurs over 0, 1, and », We see then that s is at least 6, and s = 6 if

and only if the above conditions on the multiplicities of J hold.



There are 199 6-tuples [n

that 112 of them exist:

{X.1.1)Theorem:

(1,1,1,1,1,19]
{1,1,1,1,5,15]

f1,1,1,1,10,10]

(1,1,1,2,5,14]
[1,1,1,2,9,10]
[1,1,1,3,6,12]
[1,1,1,4,7,10]
[1,1,1,6,7,8]

[1,1,2,2,4,14]
[1,1,2,2,9,9)

[1,1,2,3,6,11]
[1,1,2,4,5,11]
[1,1,2,5,5,10]
[1,1,3,3,4,12]
[1,1,3,4,6,9]

[1,1,4,4,7,7]

[1,2,2,2,3,14]
[1,2,2,3,4,12]
[1,2,2,4,5,10]
[1,2,2,6,6,7]
[1,2,3,3,7,8]
[1,2,3,5,6,7]
[1,3,3,3,5,9]
[1,3,4,4,5,7]
[2,2,2,4,6,8]
[2,2,3,4,5,8]
[2,2,5,5,5,5]
[2,3,4,4,5,6]

I will discuss the proof of this theorem in the next section.

view this list as the starting point for the list of all realizable

1
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v ] with Zni = 24,

The

The following 112 6-tuples exist,

[1,1,1,1,2,18]
[1,1,1,1,6,14]
[1,1,1,2,2,17]
[1,1,1,2,6,13]
[1,1,1,3,3,15]
[1,1,1,3,7,11]
[1,1,1,5,5,11]
[1,1,1,7,7,7]
[1,1,2,2,5,13]
[1,1,2,3,3,14]
[1,1,2,3,7,10]
[1,1,2,4,6,10]
[1,1,2,5,6,9]
[1,1,3,3,5,11]
[1,1,3,4,7,8]
[1,1,4,5,6,7]
[1,2,2,2,5,12]
[1,2,2,3,5,11]
[1,2,2,4,7,8]
[1,2,3,3,3,12]
[1,2,3,4,4,10]
[1,2,4,4,6,7]
[1,3,3,4,5,8]
[2,2,2,2,8,8]
[2,2,2,6,6,6]
[2,2,3,5,5,7]
[2,3,3,3,4,9]
[3,3,3,3,6,6]

[1,1,1,1,3,17]
[1,1,1,1,7,13]
[1,1,1,2,3,16]
[1,1,1,2,7,12]
[1,1,1,3,4,14]
[1,1,1,3,8,10]
[1,1,1,5,6,10]
[1,1,2,2,2,16]
[1,1,2,2,6,12]
[1,1,2,3,4,13]
[1,1,2,3,8,9]
[1,1,2,4,7,9]
[1,1,2,5,7,8]
[1,1,3,3,8,8]
[1,1,3,5,6,8]
[1,1,4,6,6,6]
[1,2,2,2,7,10]
[1,2,2,3,6,10]
[1,2,2,5,5,9]
[1,2,3,3,4,11]
[1,2,3,4,5,9]
[1,2,4,5,5,7]
[1,3,3,5,6,6]
[2,2,2,3,3,12]
[2,2,3,3,4,10]
[2,2,4,4,4,8]
[2,3,3,4,5,7]
[3,3,4,4,5,5]

[1,1,1,1,4,16]
[1,1,1,1,9,11]
[1,1,1,2,4,15]
[1,1,1,2,8,11]
[1,1,1,3,5,13]
[1,1,1,4,6,11]
(1,1,1,5,7,9]
[1,1,2,2,3,15]
[1,1,2,2,7,11]
[1,1,2,3,5,12]
[1,1,2,4,4,12]
[1,1,2,4,8,8]
[1,1,2,6,6,8]
[1,1,3,4,4,11]
[1,1,3,5,7,7]
[1,1,5,5,6,6]
[1,2,2,3,3,13]
[1,2,2,3,7,9]
[1,2,2,5,6,8]
[1,2,3,3,6,9]
[1,2,3,4,6,8]
[1,2,4,5,6,6]
[1,3,4,4,4,8]
[2,2,2,3,5,10]
(2,2,3,3,7,7]
[2,2,6,4,6,6]
(2,3,3,4,6,6]
[4,4,6,4,4,4]

first

result is

One should

s-tuples

[ni] with Xni = 24, using the deformation result, namely Lemma (VIII.Z2.l1). A

relatively simple calculation with the 112 6-tuples above gives the following.
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(X.1.2)Coxollary: All 7-tuples except the 34 below exist.
[1,1,1,4,4,4,9] [1,1,1,4,4,5,8] ({1,1,3,3,3,3,10] [1,1,3,3,3,6,7]
{1,1,3,4,5,5,5] [1,l,4,4,4,4,6] [1,1,4,4,4,5,5] 1[1,2,2,2,2,2,13]
f1,2,2,2,2,4,11} [1,2,2,2,2,6,9]1 [1,2,2,2,4,4,9} 1[1,2,3,3,5,5,5]
(1,2,4,4,4,4,5] [1,3,3,3,3,3,8] [1,3,3,3,3,4,7] 1[1,3,3,3,4,4,6]
[2,2,2,2,2,2,12] [2,2,2,2,2,3,11] [2,2,2,2,2,4,10] [2,2,2,2,2,5,9]
[2,2,2,2,2,7,7] |

[2,2,2,2,5,5,6] [

[2,2,3,3,3,5,6] |

f3,3,3,3,3,4,5] |

2,2,2,2,3,4,9] [2,2,2,2,3,6,7] 1[2,2,2,2,4,5,7]
2,2,2,3,4,4,7] [2,2,2,4,4,5,5] [2,2,3,3,3,3,8]
2,3,3,3,3,3,7]1 1[2,3,3,3,3,5,5] 1[2,3,3,4,4,4,4]
3,3,3,3,4,4,4]

(X.1.3)Corollary: All B8-tuples except the 11 below exist.
[1,1,1,4,4,4,4,5] (1,1,3,3,3,3,3,7] [1,2,2,2,2,2,2,11]
[1,2,2,2,2,2,4,9] {1,3,3,3,3,3,4,4] [2,2,2,2,2,2,2,10]
[2,2,2,2,2,2,3,9] i2,2,2,2,2,2,5,7] [2,2,2,2,2,3,4,7]
[2,2,2,2,2,4,5,5] f2,2,3,3,3,3,3,5]

(X.1l.4)Corollary: All 9-tuples except the 3 below exist.
(1,2,2,2,2,2,2,2,9] [2,2,2,2,2,2,2,3,7] [2,2,2,2,2,2,2,5,5]

(X.1.5)Corollary: All s-tuples with s = 10 exist.

As mentioned above, the proof of Corollaries (X.1.2)-(X.1.5) are
straightforward computations with the deformation Lemma, One simple remark
should be made: once one has all 10-tuples, then clearly all s-tuples with s
at least 10 can be obtained, so one only needs to verify the statements up to
the s = 10 level.

It will turn out that we have generated all of the realizable s-tuples
[ni] with Zni = 24 with Theorem (X.1.1) and its Corollaries. I.e., none of
the remaining 87 6-tuples exist, and none of the 7-, 8-, or 9- tuples listed

in the Corollaries exist.
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X.2: The proofs of existence

In this section we will prove Theorem (X.1l.l), and “construct" elliptic
K3 surfaces realizing the 112 6-tuples listed there. To construct one of
these, it suffices to construct its J-map: the elliptic surface is then
obtained by pulling back one of the surfaces with J = identity, and performing
some quadratic twists to remove *-fibers.

To construct the J-map, note that in the case of the 112 6-tuples, J has
degree 24 and is branched only over 0, 1, and «. HMoreover, every Iinverse
image of J = 0 has multiplicity 3, every inverse image of J = 1 has
multiplicity 2, and the six inverse images of J = = have multiplicities equal
to the 6 integers {ni]. Upon: choosing a base point in Pl, the monodromy

. : : . . 8
around 0 for the covering is a permutation ¢, in 8§ , with cycle structure 3 ;

the monodromy around 1 is a permutation oy ig 524 iith cyele structure 212;
and the monodromy around = is a permutation o in 524 with cycle structure
(nl,...,ns). These permutations satisfy 0940170, = identity, and  they
generate a transitive subgroup of 524.

Conversely, if one can find three such permutations in 8§ one builds

247
the covering with covering map J in the usual way, and Hurwitz's formula along

with the transitivity ensures that the cover has genus 0; the cycle structures

guarantee that the ramification is as desired. Therefore:

(X.2.1)Lemma: A 6-tuple {ni] with Zni = 24 exists if and only if there exist

and ¢ in S such that

three permutations oqr 91 - 2%

{(a) the cycle structure of % is 37;
(b) the cycle structure of o is 212;
{c} the cyele structure of o is (nl,...,n6);

(d) 90010, = identity;

(e) Tor T1> and o generate a transitive subgroup of 324.

Now the procf of Theorem (X.1.,1) 1is, wunhappily, simply a 1list of
permutations, one set for each of the 112 6-tuples. I will use the letters
a,b,e,...,v,w,Xx as the symbols in 824, and normalize the symbols so that in
every case g, = (abc)(def)(ghi)(jkl)(mno)(pqr)(stu)(vwx).- Therefore I will
only give, for a particular 6-tuple, the permutation g,; to verify the
statement In any one case the reader must first compute

PPl o, = (ach) (dfe) (gih) (j1k) (mon) (prq) (sut) (vxw) and check that it

1 70
has cycle structure (nl,...,n6). Then one must finally check that %40 and 9y

o = O U
(=]
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generate a transitive subgroup of 524 (am is of course not needed).

The product of two permutations a+f means that first g8 is done, then «.

(X.2.2)Iable of permutations ¢, proving the existence of the 112 6-tuples.

1

[n1n2n3nhn5n6] o1

(1111119] (ab) (en) (df) (ek) (gi) (h1l) (jm) (ow) (pq) (rx) (st) (uv)
(11112 18] (ae) (bl) (ck) (df) (gi) (hn) (jm) (ow) (pg) (rx) (st) (uv)
(1111317]: (al) (bh) (en) (df) (ek) (gi) (jm) (ow) (pq) (rx) (st) (uv)
(11 11416]: (ac) (bt) (dk) (ef) (gh) (iw) (jr) (1v) (mo) (ng) (pu) (sx)
[1111515]: (aq) (bc) (de) (£5) (gw) (hn) (iu) (jt) (k1) (mo) (pv) (rx)
(11116 14]: (an) (bk) (eh) (df) (el) (gi) (jm) (ow) (pq) (rx) (st) (uv)
(11117 13]: (as) (be) (df) (eg) (hn) (it) (jm) (k1) (ow) (pg) (rx) (uv)
(11118911]: (ae) (bk) (cn) (df) (gi) (h1) (jm) (ow) (pq) (rx) (st) (uv)
[11111010]: (an) (bq) (cj) (de) (fm) (gh) (ip) (k1) (ow) (rx) (sv) (tu)
[L112217]: (am) (bj ) (en) (df) (ek) (gq) (hl) (ir) (ow) (puw) (st) (vx)
[1112316]: (at) (be) (dk) (em) (fo) (gh) (iw) (1) (ng) (px) (rs) (uv)
[1112415]: (ab) (eq) (Af) (en) (gh) (ip) (jm) (ku) (1t) (ow) (rx) (sv)
[1112514]: (am) (bn) (cj) (df) (ek) (gq) (hl) (ir) (ow) (pu) (st) (vx)
[1112613]: (ae) (bd) (cj) (fm) (gh) (ip) (k1) (nq) (ow) (rx) (sv) (tu)
(1 112712]: (ab) (cx) (dk) (em) (£t) (gh) (iw) (1) (ngq) (op) (rs) (uv)
[L112811]: (ad) (b£) (cg) (en) (gh) (ip) (Jm) (k1) (ow) (rx) (sv) (tu)
(1112910]: (ak) (bn) (cj) (df) (em) (gg) (hl) (ixr) (ow) (pu) (st) (vx)
1 113315]: (ac) (bg) (de) (£t) (hm) (iq) (js) (k1) (nv) (or) (px) (uw)
[1113414): (am) (bt) (ci) (de) (£h) (gs) (j1) (kn) (ow) (pq) (rx) (uv)
(1113513} (ar) (bx) (en) (dh) (ek) (£f1) (g1) (jm) (ow) (pq) (st) (uv)
[1113612]: (aq) (be) (df) (eg) (hn) (ij) (k1) (mt) (ow) (ps) (xx) (uv)
{11137 11]: (av) (bn) (c£) (do) (ew) (gh) (ir) (j1) (kq) (mp) (su) (tx)
[1113810]: (ac) (bj) (dm) (ek) (fu) (gh) (10) (1p) (nt) (gs) (zw) (vX)
f1L114611]: (ab) (co) (df) (et) (gk) (hi) (jm) (1p) (nw) (qu) (rx) (sv)
[1114710]: (au) (bh) (en) (df) (ek) (gi) (jm) (1s) (ow) {pq) (rx) (tv)
(11155 11]: (ap) (bj) (en) (df) (eh) (gm) (i0) (k1) (gw) (xx) (st) (uv)
(11156 10]: (ax) (br)(en) (dh) (ek) (£1) (gi) (jm) (ow) (pq) (st) (uv)
(111357 9]: (ae) (bk) (en) (df) (gi) (h1l) (jm) (ot) (pq) (xrx) (sw) (uv)
(11167 8]: (ad) (bm) (cq) (en) (£j) (gh) (ip) (k1) (ow) (xx) (sv) (tu)
(L11777]: (ak) (bx) (en) (df) (ei) (gm) (h1l) (jx) (ow) (pq) (st) (uv)
[1122216]: (at) (be) (dk) (em) (fo) (gh) (iw) (jx) (1v) (ng) (pu) (rs)
f1122315]: (ad) (bg) (ce) (£t) (hi) (js) (k1) (mq) (nv) (ox) (px) (uw)
f1122414]: (ag) (be) (df) (em) (h1) (ik) (jv) (ng) (ow) (pu) (rs) (tx)
(1122513]: (ak) (bj) (en) (dg) (ei) (fm) (h1) (ow) (pq) (¥rx) (st} (uv)
(1122612]: (am) (bj) (en) (ds) (ek) (ft) (gi) (hl) (ow) (pq) (rx) (uv)
(11227 11]: (ad) (b£f) (en) (ek) (gq) (hl) (ir) (jm) (ow) (pu) (st) (vx)
[112299]: (am) (bj) (en) (dp) (ek) (£q) (gi) (hl) (ow) (rx) (st) (uv)
[1123314}: (an) (bd) (cj) (em) (£k) (gq) (hl) (ir) (ow) (pu) (st) (VX)
[1123413]: (ai) (bd) (en) (ek) (£]) (gm) (hl) (ow) (pq) (rx) (st) (uv)
[1123512]: (ac) (bm) (dw) (eh) (££) (gq) (ik) (j1) (nx) (op) (sx) (uv)
[1123611): (ai) (bj) (en) (df) (ek) (gm) (h1) (os) (pq) (xx) (tw) (uv)
(1123710}: (ah) (bl) (en) (di) (ew) (£fg) (jm) (kv) (ow) (pg) (rx) (st)
(1123389]: (ab) (cq) (df) (en) (gs) (hu) (ip) (jm) (kv) (1t) (ow) (rx)
(1124412]: (ae) (bk) (ew) (dq) (£fs) (go) (hn) (iu) (j1) (mx) (pr) (tv)
[1124511]: (ac) (bm) (dw) (ev) (£g) (hu) (ik} (j1) (nr) (op) (qt) (s¥)
[1124610]: (ad) (bf) (cr) (ex) (gi) (hl) (jm) (kt) (ns) (ow) (pq) (uv)
[112479]: (ag) (bw) (ch) (dk) (ef) (it) (jq) (1v) (mo) (nr) (pu) (sx)
[11242838]: (at) (be) (dk) (em) (£0) (gh) (iw) (ju) (1v) (ng) (px) (rs)
[L125510]: (aw) (bp) (eq) (de) (fr) (gi) (hs) (jv) (kx) (1n) (mu) (ot)



[n.n,n,n, 0.0, ]

112350
[L12569]:
[L12578]:
[L1266 8]:
[11336412];
[1133511]:
[1L13388]:
[1134411]:
[L13469]:
11347 8]:
[11356 8]:
[113577]:
(L1447 7]:
[L1456 7]:
[11466 6]:
[L1556 6]:
(L2223 14]:
[1222512]:
[L22 27 10]:
[122 33 13]:
[1223412]:
[1223511]:
[1 2236 10]:
[L223709]:
[1 2245 10]:
[122478]:
[L22559]:
[L2256 8]:
[12266 7]:
[1233312):
[1233411]:
[123369]:
[123378]:
[1 2344 10]:
[1234509]:
[1L 2346 8]:
[1L2356 7]:
[1246467]:
(L2455 7]:
[12456 6]:
[133359]:
L3345 8]:
(13356 6]:
(13444 8]:
L3445 7]:
[2 2228 8]:
[2223312]:
[222 35 10]:
[2 2246 8]:
[222 66 6]:
[2 2334 10]
[223377]:
[2 2345 8]:
[22355 7]
[2 2444 8]
[2 2446 6]
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1

(ab) (eq) (df) (en) (gs) (hv) (ip) (jm) (ku) (1t) (ow) (rx)
(aq) (be) (de) (£s) (gw) (hn) (iw) (jt) (km) (Llo) (pv) (rx)
(at) (bf) (cx) (dk) (em) (gh) (iw) (j1) (nq) (op) (rs) (uv)
(af) (bj) (en) (di) (ek) (gm) (hl) (ow) (pq) (xx) (st) (uv)
(ac) (bm) (dh) (ev) (£g) (ik) (j1) (nr) (o=) (px) (qt) (uw)
(at) (bf) (co) (dk) (em) (gh) (iw) (1) (nq) (px) (rs) (uv)
(ao) (bh) (c¢j) (dg) (ew) (£s) (ip) (k1) (mv) (ng) (rx) (tu)
(ah) (bl) (c£) (di) (eu) (gn) (jm) (kv) (ow) (pq) (rx) (st)
(ab) (cq) (df) (es) (gn) (hu) (ip) (jm) (kv) (1t) (ow) (rx)
(ai) (bj) (en) (df) (ek) (gm) (h1) (op) (gw) (rx) (st) (uv)
(ai) (bs)(cn) (df) (ek) (gm) (h1l) (jt) (ow) (pq) (xx) (uv)
(ao0) (bh)(cj) (dg) (ew) (fm) (ip) (k1) (nq} (rx) (sV) (tu)
(ac)(bg) (di) (eq) (fn) (hm) (js) (k1) (or) (px) (tv) (uw)
(ac) (bh) (dm) (ek) (£q) (gv) (11) (jx) (nt) (op) (rw) (su)
(ac) (bm) (dh) (ev} (£g) (ik) (j1) (nr) (op) (qt) (sx) (uw)
(ak) (be) (dj) (el) (£g) (ht) (is) (mp) (nr) (ox) (qw) (uv)
(am) (bj) (en) (ds) (ek) (ft) (gg) (h1l) (ir) (ow) (pu) (vx)
(ax) (be)(dj) (el) (fg) (ht) (is) (ko) (mp) (nr) (qw) (uv)
(au) (bt) (cd) (eq) (fs) (gx) (hk) (ij) (1v) (mn) (op) (xw)
(ab) (ed) (eq) (£3) (gx) (hk) (1) (1v) (mu) (nt) (op) (rw)
(ak) (bv) (co) (df) (eh) (gt) (is) (jr) (1p) (mx) (nw) (qu)
(at) (bj) (cl) (dk) (em) (£o) (gh) (iw) (ng) (px) (rs) (uv)
(ad) (bt) (ce) (£s) (gm) (hw) (in) (ju) (kx) (1v) (op) (qr)
(ac)(bl)(dk) (eh) (£g) (1t) (jq) (mv) (ns} (ow) (pu) (rx)
(ac) (bd) (em) (£fk) (gj) (hl) (ir) (ng) (ow) (pu) (sv) (tx)
(am) (bn) (e¢j) (ds) (ek) (£t) (gq) (hl) (ir) (ow) (pu) (VX)
(ag) (bq) (en) (df) (em) (h1) (ik) (jv) (ow) (pu) (rs) (tx)
(ap) (be) (dj) (el) (fg) (ht) (is) (ko) (mx) (nr) (qw) (uv)
(ag) (bd) (¢j) (em) (£k) (hl) (ir) (no) (pu) (qw) (sv) (tx)
(au) (bm) (cd) (eq) (£s) (gi) (hk) (jx) (1v) (nt) (op) (xw)
(ac) (bt) (dv) (ej) (£s) (gm) (hr) (in) (kx) (1u) (op) (gw)
(ao) (bv) (cq) (di) (el) (£g) (hk) (jm) (np) (rx) (st) (uw)
(ax) (bd) (cj) (em) (fk) (gi) (hl) (ng) (ow) (pw) (sVv) (tx)
(ah) (bp) (cu) (dm) (es) (fr) (gi) (jv) (kx) (1n) (ot) (qw)
(ap) (be) (dj) (ew) (£g) (ht) (is) (ko) (1q) (mx) (nr) (uv)
(a)) (bv) (co) (df) (eh) (gt) (is) (kr) (1p) (mx) (nw) (qu)
(ab) (ej)(dg) (em) (fk) (hl) (ir) (nq) (ow) (pu) (sv) (tx)
(au) (bh) (en) (df) (ek) (gp) (iq) (jm) (1s) (ow) (xx) (tv)
(ag) (bd) (¢j) (em) (fh) (ir) (k1) (ng) (ow) (pu) (sv) (tx)
(ac) (bw) (dj) (ep) (fg) (ht) (ik) (1q) (mx) (nr) (os) (uv)
(ag) (bd) (co} (eg) (£f1) (hn) (1] ) (km) (pv) (rx) (su) (tw)
(ac)(bj) (dl) (ev) (fg) (hm) (ik) (nr) (os) (px) (qt) (uw)
(ag) (bw) (ef) (dk) (eb) (it) (jr) (1v) (mo) (nq) (pu) (sx)
(ah) (bl) (cq) (di) (eu) (£p) (gn) (Jm) (kv) (ow) (rx) (st)
(at) (bh) (eg) (dk) (em) (fo) (iw) (Jx) (1v) (nq) (pu) (rs)
(aq) (bd) (cf) (eg) (hn) (1j) (km) (Lo} (ps) (rx) (tw) (uv)
(ad) (bg) (ce) (£t) (hl) (ik) (js) (mq) (nv) (oxr) (px) (uw)
(ag) (bd) (c£) (em) (hl) (ik) (jv) (ng) (ow) (pu) (rs} (tx)
(am} (bj) {cn) (ds) (ek) (£t} (gp) (hl) (iq) (ow) (rx) (uv)
(ae) (bd) (cj) (fk) (gm) (hl) (ir) (nq) (ow) (pu) (sv) (tx)
(an) (bd) {(cj) (em) (fk) (gq) (hl) (ix) (ow) (pu) (sv) (tx)
(ag) (bd) (cj) (el) (fk) (hm) (ir) (nq) (ow) (pu) (sv) (tx)
(ag) (bd) (ej) (em) (fo) (hl) (ir) (kw) (ng) (pu) (sv) (tx)
(ag) (bt) (ch) (dk) (em) (fo) (iw) (jr) (1v) (ng) (pu) (sx)
(av) (bl) (cd) (eq) (£5) (gx) (hk) (1}) (mu) (nt) (op) (xw)
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[n1n2n3n4n5n6] o

(22555 35]): (an) (b1) (es) (dk) (eh) (£g) (it) (jq) (mv) (ow) (pu) (rx)
[233349]): (aq) (bd) (co) (eg) (£1) (hn) (1]) (km) (ps) (rx) (tw) (uv)
[233457]: (ag) (bd) (cj) (em) (fk) (h1) (ir} (nq) (ow) (pu) (sV) (tx)
[2 3346 6]: (at) (bj) (eg) (dk) (em) (fo) (hl) (iw) (ng) (px) (rs) (uv)
[2344506]: (ap) (bw) (ce) (dj) (fg) (ht) (is) (ko) (1g) (mx) (nx) (uv)
[333366]: (al) (bx) (co) (dp) (ei) (fw) (gr) (hu) (jn) (kv) (mt) (gs)
(33445 5]: (at) (bl) (cq) (di) (eu) (fp) (gn) (hs) (jm) (kv) (ow) (rx)
[4 4 4 &4 4 4] (a0) (bt) (ch) (dk) (em) (£g) (1w) (jr) (1v) (ng) (pu) (sx)

As a remark, one can use this same method to construct the 6 Beauville
surfaces, namely the 6 semistable rational elliptic surfaces with exactly 4

singular fibers of type I_. Here one needs to find three permutations o., o,
n 0 1

6

and o in § with cycle structures 34, 27, and (nl,...,n4), to realize

12
[nl,...,na]; one of course also needs 03200, = identity and they mnust
generate a transitive subgroup of 812. 12 is a small enough numbex that these
computations can be done by hand, and I get the following possibilities, up to

conjugacy.

(X.2.3)Table of permutations demonstrating the existence of the six Beauville

surfaces. Ty = (123)(456)(789) (abc)

[ni] 71 o,

[9111]: (13)(2a) (46)(5b}(79) (8c) (1) (4)(7)(23a8%c56b)
[8211]: (13)(46)(27)(5a) (8c) () (1)(4)(9¢) (237b56a8)
[6321]: (13)(24) (57) (6a) (8c) (9b) (1) (9c) (67b) (234a85)
[5511]: (13)(46)(27)(8a) (9b) (5¢) {1)(4)(37b82) (6c9a5)
[4422]: (14)(26)(37)(5a)(%)(8c) (24)(9c) (17b5)(36a8)
[3333]: (14)(27)(68)(3a)(9b) (5c) (1a5) (248)(37b) (6c9)

The reader can check that in fact these are unique up to conjugacy, and
so gives a proof of the uniqueness of the 6 Beauville surfaces.

In the K3 case, it is not so easy to do the computations by hand: they
are due to U. Persson and I, and we used a computer to generate them. We do
not know that they are unique up to conjugacy: this is an open problem.

Let us turn to proving that the rest of the s-tuples do not exist, in the

K3 case.
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X.3: Applications of the existence of torsion

Assume that m:X — Pl is a semistable K3 elliptic surface with section
SO realizing an s-tuple [nl,...,ns]. For each In singular fiber of «, label

the components C "Gn-l going around the cycle, with C0 being the component

0’
meeting SO. Using the notation of Lecture VII, we  have that

= Z/nlx...xl/ns (Lemma (VII.2.6)); moreover in this identification the

G
R
coset of the dual element to Ck is represented by Lk (mod ni) in the ith

factor. Any torsion section S  induces a class in GR’ and by
Corollary (VII.3.l), this assignment is 1-1; hence a section is determined by

an s-tuple (klmod n ..,ksmod ns), where this means that S meets Ck in the

3

jth singular fiber. Not all such s-tuples are achieved, however, and it is a

1’

tricky problem to determine the torsion subgroup TMW of the Mordell-Weil group
of sections; in any case we can view TMW as a subgroup H of GR’ as described
in section 3 of Lecture IX. Since this subgroup must be totally isotropic for

the quadratie form q on G, described in section 1 of Lecture IX, we must have

R
that

(n.-1)
. i 2 .
(X.3.1) if S € TMW represents (kp,...,k ) €Gp, then Z——iEI— ki e Z;

this follows by the computation (IX.l.4).
Assume S is a torsion section of prime order p. Let us denote by Tg the
automorphism of X given by translation by S§; Tg has order p. Let Y denote the

minimal resolution of singularities of the quotient X/TS. Since r_, preserves

S
the fibers of w#, and on a smooth fiber, Tg restricts to translation by a
torsion point of order p (which has as quotient a smooth elliptic curve), we
. . . . . 1
see that n induces an elliptic fibration WS:X/TS — P~ Ty has at most s

singular fibers, underneath the s singular fibers of =,

Our first task 1is to  determine the singular fibers of the
desingularization Y. The question is local on the base curve, so let us focus
on the ith singular fiber In of #. Assume S represents (kl""’ks)’ so that

th 1 '
5 meets Ck. in the i~ fiber.

if kilis not zero, then Tgo when restricted to this singular fiber, is a
translation by a point which is not in the connected component CO of the
identity in the group law on the smooth points of the fiber. Therefore Tg

must permute the components, and since the group of components 1is isomorphic
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to Z/ni, {(Lemma (VII.3.5)), we see that Tg simply ‘"rotates" the fiber

components, by the amount ki: the points of Cj are sent to the points of

In particular, there are no fixed points to r_, on this fiber, and the

Cj+ki' s
gquotient X/rs is smooth in a neighborhood of this fiber, with a singular fiber

of type In /p° (Note that 1f S has order p, then ki = rni/p for some r, and
i

the orbits of translation by § have size p.) Note finally that if ki is not
zero, then n, must be divisible by p.

If ki is zero, then r_, is translation by a point of order p in CO, and

S

hence preserves the components Cj; in each component (whose smooth points form
*

a torsor under the smooth points of GO' which is a group isomorphic to C ),

. s oas ! ‘s th .
translation by r_, acts as multiplication by a nontrivial p root of wunity.

s
In particular, the n, nodes of the fiber are fixed under Tgs and the fiber of
X/TS under this fiber is a cyecle of n; Pl's, meeting in a cycle. However
since the local action of 7 at a node can be given by a 2x2 matrix [g ?-l]

for some pth root of unity ¢, the surface X/rS has Ap-l singularities at the
n, nodes of the eyele, Therefore the desingularization Y "inserts" a chain of
p-1 Fl's at every node, giving a total of n, + (p-l)(ni) = n.p Pl’s in a
cycle, Therefore Y has a singular fiber of type In P
i

Summarizing, we have the following.

(X.3.2)Lemma: Let S be a torsion section of n of prime order p, representing
(kl,...,ks) in GR'

elliptic fibration on Y, which alsc has exactly s singular fibers of type In’

Let Y be the desingularization of X/rs. Then n induces an

one underneath each singular fiber of X. Moreover:

(a) If ki # 0 then plni and the fiber of Y is of type In /o’

i
(b) 1f ki = 0 then the fiber of Y is of type In D
i
{¢) Y is again a K3 surface.
Proof: Only (c¢) needs any further remarks. We only need to prove that the

holomorphic 2-form on X descends to X/TS, since X/TS has only rational
singularities; but this follows since there are only a finite number of fixed

points for the action, M
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(X.3.3)Corollary: Let 8 be a torsion section of w of prime order p,
representing (k;,...,k ) in G;. Then z{nilki = 0} = 24/(p+1).

Proof: Since Y is again a K3 surface, the sum of the subscripts on its

singular fibers must be 24; hence Z{ni/p|ki#0}+2{nip|ki=0} = 24, Multiplying

through by p and noting that Zni = 24 gives 24 + (p2-l)Z{ni|ki=O} = 24p, which

proves the result. =

This leads to the following useful condition for the existence of a

torsion section of prime order.

(X.3.4)Corollary: (The Fixed Point Rule): Let X be a semistable elliptic K3

,ns], and assume that X has a torsion section of

surface realizing [nl,...

prime order p. Then some subset of {ni{p]ni} must sum to 24p/(p+l).

Proof: From the previous Corellary,
E[ni]ki # 0} = 24 - 24/(p+l) = 24p/(p+l), and so the Fixed Point Rule follows

by recalling that if k, » 0 then p]ni. [ ]

The Fixed Point Rule is the main tool for determining that a K3 elliptic
surface X realizing [ni] cannot have a torsion section of some particular
prime order. This, combined with the Length and Discriminant Criteria
(Propositions (IX.3.1) and (IX.3.2)), which force torsion sections to exist,
form the backbone of the proofs on non-existence of the s-tuples [ni] listed

in section 1.
X.4: The 135 impossible s-tuples

In this section (and those following) I will present the proofs of the
non-existence of the s-tuples as described in section one. We work "from the
bottom up", and begin with the three 9-tuples which are not yet proved to

exist: in fact they do not.

(X.4.1)yProposition: The three 9-tuples
[1,2,2,2,2,2,2,2,9], [2,2,2,2,2,2,2,3,7], and [2,2,2,2,2,2,2,5,5]

do not exist,
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Proof: By the Length Criterion (Proposition (IX.3.1)), if any of these
existed, there would be 2-torsion in TMW, i.e., a section of order 2 would
exist. However in each of these cases the Fixed Point Rule is wviolated: for
p = 2, 24p/(p+l) = 16, and the sum of all the even ni's is only 14 in each

case. n

Once we know that one s-tuple does not  exist, we can  apply
Lemma (VIII.2.1l) to conclude that any "degeneration" of that s-tuple (i.e.,
one obtained by replacing twe of the ni's with their sum) can not exist. We
will repeatedly use this remark, and "bootstrap" ocur way into the next lower
s-level.

OQur first application is to eliminate 7 of the 8-tuples, mnamely
(1,2,2,2,2,2,2,11), [1,2,2,2,2,2,4,9], [2,2,2,2,2,2,2,10], [2,2,2,2,2,2,3,9],
[2,2,2,2,2,2,5,7], [2,2,2,2,2,3,4,7], and [2,2,2,2,2,4,5,5]; each of these is
an cbvious degeneration of one of the three impossible 9-tuples. This leaves
four remaining 8-tuples to discuss, namely {1,1,1,4,4,4,4,5};
[1,1,3,3,3,3,3,71, [1,3,3,3,3,3,4,4], and {2,2,3,3,3,3,3,5].

For the latter three, the Length Criterion implies that there must be
3-torsion in TMW. TFor p = 3, 24p/(p+l) = 18, so some subset of the numbers
divisible by 3 must sum to 18 in these cases. However the total sum of all
numbers divisible by 3 is 15 in each of these cases: this contradiction shows
that these are impossible,

This leaves only the last case [1,1,1,4,4,4,4,5]. Here the Discriminant
Criterion (Proposition (IX.3.2)) implies that there must be 2-torsion in TMW.
Let § be a section of order 2. It must represent  the element
(0,0,0,2,2,2,2,0) in GR’ by Lemma (X.3.,2(a)) and Corollary (X.3.3). The
guotient by Tg gives a surface Y realizing the 8-tuple {2,2,2,2,2,2,2,10], by
Lemma (X.3.2); this we have seen above does not exist, since it deforms to
i1.,2,2,2,2,2,2,2,9]. This contradiction proves that [1,1,1,4,4,4,4,5] does

not exist, and finishes the analysis of the 8-tuples:

(X.4.2)Proposition: The 11 8-tuples listed in Corollary (X.1.3) do not

exist.

Let us turn our attention to the 7-tuples, Of the 34 7-tuples listed in
Corollary (X.1.2), 31 of them are degenerations of one of the 11 impossible
8-tuples, Therefore these 31 do not exist, and we are left to analyze the

remaining three 7-tuples [1,1,3,4,5,5,5], [1,2,3,3,5,5,5], and
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[2,3,3,4,4,4,4],

The first two must have 5-torsion by the Discriminant Criterion. For
P =5, 24p/(p+l) = 20; since the sum of the numbers in both of these 7-tuples
divisible by 5 add up to only 15, we obtain a contradiction wusing the Fixed
Point Rule, Therefore these two do not exist,

We are left then to discuss [2,3,3,4,4,4,4], By the Fixed Point Rule,
the only possible torsion is 2-torsion, so TMW iz a finite abelian 2-group.
The Length Criterion forces at least one section S of order two, and the only
possibility is that S represents the element (0,0,0,2,2,2,2) in GR’ according
to Lemma (X.3.2(a)) and Corollary (¥X.3.3). Note that since there is then a
unique element of order two, TMW is a cyclic 2-group.

Assume that TMW has an element S, of order 4. Then 28, must represent

1 1
(0,0,0,2,2,2,2) in GR’ 80 S1 must represent an element of the form
(0 or 1,0,0,%1,41,+1,%1) in GR. However none of these elements are isotropic:

they all violate (X.3.1). Hence TMW has no element of order four, so since
TMW is a cyclic 2-group, we have that TMW has order 2, consisting of the =zero
section S, and the order two section S obtained above.

0
let H be the isotropic subgroup of GR corresponding to  TMW;
H= {0,(0,0,0,2,2,2,2)}. A calculation shows that Hi/H is abstractly
isomorphic to (2/2)3 X (2/4)2 X (2/3)2, so that the length of Hl/H is 5.

We now obtain a contradiction wvia the following general fact.

(X.4.3)Lemma: Let m:X — Pl be a semistable elliptic K3 surface realizing
the s-tuple [nl,...,ns}. Assume that the group of torsion sections TMW
corresponds to the isotropic subgroup H of GR. Then 1ength(HL/H) =5 - 4,

Proof: Let U be the unimodular rank 2 sublattice of Hz(X,Z) generated by
the zero section Sy and the fiber F. The lattice R generated by components of
fibers not meeting SO sits inside Ui, with quotient equal to the Mordell-Weil
group MW(X), by (VII.2.5); moreover, the torsion part TMW(X) is mnaturally
identified with H = RLL/R. Since HZ(X,Z) and U are both unimodular, so is Ul,
and since H2(X,Z) has rank 22, U“L has rank 20. Note that R has rank

E(ni-l) = 24 - s, so that R‘L (taken inside Ui) has rank 20 - (24 - s} = 8 - 4.
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Therefore
Llength (H/H)

length(G ) (by Lemma (IX.1.6))
RJ.J.

length(G J_) (by Lemma (IX.1.7))
R
rank(rR") (by (IX.1.2))

=8 -4, N

1A

In the case under discussion, we have s = 7 and length(Hl/H) = 5,

violating the lemma. Hence [2,3,3,4,4,4,4] does not exist. Thus:

(X.4.4)Proposition: The 34 7-tuples listed in Corollary (X.1.2) do not exist.

Finally we deal with the 87 6-tuples not yet known to exist, mnamely the
complement of the 112 6-tuples 1listed in Theorem (X.1.1). 0f these 87
6-tuples, 78 of them are degenerations of one of the 34 7-tuples now known not
to exist; therefore these 78 do not exist, and we are 1left to discuss the
following 9 separately: [1,1,1,1,8,12], [1,1,1,3,9,97, [1,1,1,6,6,9],
(1,1,2,2,8,10}, [1,1,2,6,7,7], [1,2,2,3,8,8], [1,2,2,5,7,7), 1[1,2.,3,4,7,71,
and [1,2,3,6,6,6].

For {1,1,1,1,8,12], the Discriminant Criterion forces a 2-torsion
section, violating the Fixed Point Rule. For both |[1,1,1,3,9,9] and
[1,1,1,6,6,9], the Length Criterion forces a 3-torsion section. In the case
of [1,1,1,3,9,9], a section of order 3 must be (0,0,0,0,%3,£3) according to
Lemma (X.3.2) and Corollary (X.3.3); the quotient by such a section would then
realize [3,3,3,9,3,3] by Lemma (X.3.2), and this is one of the 78 already
eliminated: indeed, it obviously deforms to [1,1,3,3,3,3,3,7], which is an
8-tuple previously eliminated. In the case of [1,1,1,6,6,9], the existence of
3-torsion violates the Fizxed Point Rule.

For both [1,1,2,2,8,10] and [1,2,3,6,6,6], the Length Criterion forces a
2-torsion section, violating the Fixed Point Rule. For each of [1,1,2,6,7,7],
(1,2,2,5,7,7], eand [1,2,3,4,7,7], the Discriminant Criterion  forces a
7-torsion section, violating the Fixed Point Rule.

This leaves only [1,2,2,3,8,8], which by the Length Criterion must have a
section of order 2, which must be (0,0,0,0,4,4) by Lemma (X.3.2) and
Corollary (¥X.3.3). The quotient then realizes [2,4,4,6,4,4], which is again
one of the 78 previously eliminated: it is a degeneration of [2,3,3,4,4,4,4],

which is a 7-tuple eliminated above.
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This completes the analysis of the 6-tuples:

(X.4.5)Proposition: The only 6-tuples which exist are those 1listed in
Theorem (X.1.1).
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