
Darcy+: Finite Element Solvers for Flow
and Transport in Porous Media

Implemented in C++

James “James” Liu
Graham Harper

Department of Mathematics
Colorado State University

Fort Collins, CO 80523-1874, USA
{liu,harper}@math.colostate.edu

May 18, 2018

Contents

1 Flow and Transport in Porous Media 1
1.1 The Darcy Equation . 1
1.2 Transport Equations . 2
1.3 Steady-state Equations . 2
1.4 Two-phase Flow . 2

2 Poroelasticity 3
2.1 Linear Elasticity . 3
2.2 Linear Poroelasticity . 3
2.3 Poroelasticity in Life Sciences . 4
2.4 Some Benchmarks for Poroelasticity 4

3 FEM Preliminaries 5
3.1 Some Nice Properties of Tetrahedra 5
3.2 FEMs . 6
3.3 Meshes . 7

3.3.1 Brick Meshes . 7
3.3.2 Tetrahedral Meshes . 7
3.3.3 Hexahedral Meshes . 7
3.3.4 Other Types of Meshes . 8

3.4 Approximation Spaces on Hexahedra 8
3.5 Quadratures . 9
3.6 Linear Solvers . 9

4 FEMs for the Darcy Equation 10

5 FEMs for Transport Equations 11

6 FEMs for Linear Elasticity and Poroelasticity 12
6.1 FEMs for Linear Elasticity . 12

6.1.1 Continuous Galerkin FEMs for Linear Elasticity 12
6.1.2 Weak Galerkin FEMs for Linear Elasticity 12

6.2 FEMs for Linear Poroelasticity . 14

1

6.3 A Marching-OS FE Solver for Poroelasticity 15

7 Testcases 17
7.1 Testcases for 3-dim Darcy Equation 17

7.1.1 Simple Testcases for 3-dim Darcy Equation 17
7.1.2 More Testcases for 3-dim Darcy/Poisson 18
7.1.3 Benchmark Listed at Univ-MRS 19

7.2 Testcases for 3-dim Transport Equations 21
7.2.1 Testcases for Transient Convection-Diffusion Equations 21
7.2.2 Testcases for Steady Convection-Diffusion Equations 21

7.3 Testcases for 3-dim Linear Elasticity 21
7.4 Testcases for 3-dim Linear Poroelasticity 21

8 Design and Implementation of Darcy+ 23
8.1 Implementation of FEMs . 23

8.1.1 Basis Functions on a Line Segment/Beam 23
8.1.2 Bases for RT0 on Triangles . 24

9 Use of Darcy+ 26
9.1 Running a C++ Project with Darcy+ 26
9.2 Mesh Generation . 26

10 LinLite 27
10.1 Block Diagonal Schur Complement Solver: BDSchur 27

11 Interface to Other Packages 29
11.1 Interface to PETSc . 29
11.2 Interface to TetGen . 29
11.3 Interface to Trelis/CUBIT . 29
11.4 Interface to Silo . 29
11.5 Interface to VisIt . 29

12 Extra Stuff To Be Reorganized 30
12.1 More About Meshes . 30

12.1.1 Predefining a Domain for TetGen 30
12.1.2 Implementation of THex Algorithm 31

12.2 H(div)- and WG Finite Elements . 33
12.3 A Usual Procedure for WG in C++ 33

12.3.1 Assembly . 34
12.3.2 Modifying . 34
12.3.3 Solving . 35

12.4 Lowest-order WGFEMs for Linear Elasticity on Hexahedral Meshes . 37
12.5 WG(P 3

1 , Prm;P 3×3
0 , P0) for Linear Elasticity on Hexahedral Meshes . . 40

2

12.6 Lowest-order WGFEM for Elasticity on Tetrahedral Meshes 41

3

Abstract

Darcy+ is a C++ code package for finite element solvers for flow and transport prob-
lems in porous media. The package concentrates on 3-dim problems, although it can
solve 2-dim problems also. The “workhorse” in this code package is the family of the
novel weak Galerkin finite element methods. Applications focus on flow and transport
in biological porous media, especially drug delivery.

Keywords: anisotropy, Darcy flow, heterogeneity, porous media, weak Galerkin

Chapter 1

Flow and Transport in Porous
Media

See [?, 4, ?, ?, 6, 7, 8]. See also [16, 14, 10].

1.1 The Darcy Equation

The Darcy’s law is a fundamental equation for modeling flow in porous media. It is
usually further coupled with transport equations. Two examples amongst the vast
applications in this regard are oil recovery in petroleum reservoirs [?, 7, 19] and drug
delivery to tumors.

We consider 2-dim elliptic boundary value problems (Darcy problems) formulated
as {

∇ · (−K∇p) ≡ ∇ · u = f, x ∈ Ω,

p = pD, x ∈ ΓD, u · n = uN , x ∈ ΓN ,
(1.1)

where Ω ⊂ Rd(d = 2, 3) is a bounded polygonal/polyhedral domain, p the primal
unknown (pressure), K a permeability tensor that is uniformly symmetric positive-
definite, f a source term, pD, uN are respectively Dirichlet and Neumann boundary
data, n the unit outward normal vector on ∂Ω, which has a nonoverlapping decom-
position ΓD ∪ ΓN .

Define a subspace and manifold for scalar-valued functions as follows

HD,0(Ω) = {p ∈ H1(Ω) : p|ΓD = 0}, HD,pD(Ω) = {p ∈ H1(Ω) : p|ΓD = pD}.

The variational formulation for the primal variable pressure reads as: Seek p ∈
H1
D,pD

(Ω) such that∫
Ω

K∇p · ∇q =

∫
Ω

fq −
∫

ΓN

uNq ∀q ∈ H1
D,0(Ω). (1.2)

1

The Darcy equation can also be rewritten as a system of two first-order equations
by considering the primal variable (pressure) and flux (velocity u = −K∇p) as follows

K−1u +∇p = 0, ∇ · u = f. (1.3)

Define a subspace and manifold for vector-valued functions as follows

HN,0(div,Ω) = {v ∈ L2(Ω)2 : divv ∈ L2(Ω),v|ΓN = 0},

HN,uN (div,Ω) = {v ∈ L2(Ω)2 : divv ∈ L2(Ω),v|ΓN · n = uN}.

The mixed variational formulation is then: Seek u ∈ HN,uN (div,Ω) and p ∈ L2(Ω)
such that the following hold

∫
Ω

(K−1u) · v −
∫

Ω

p(∇ · v) = −
∫

ΓD

pDv · n ∀v ∈ HN,0(div,Ω),

−
∫

Ω

(∇ · u)q = −
∫

Ω

fq ∀q ∈ L2(Ω).
(1.4)

1.2 Transport Equations

1.3 Steady-state Equations

1.4 Two-phase Flow

In this section, we focus on the flow and transport in a domain Ω with heterogeneous
permeability, governed by an immiscible two-phase system with a wetting phase and
a nonwetting phase (denoted by w and o respectively), for example, water and oil.
For simplicity of presentation, capillary pressure and gravity are not included in the
model. The Darcy’s law combined with a statement of conservation of mass are
expressed as

∇ · u = q, where u = −λ(S)k(x)∇p, (1.5)

and
∂S

∂t
+∇ · (f(S)u) = qw, (1.6)

where u is the Darcy velocity, S is the saturation of the wetting phase, and k is
the permeability coefficient. The total mobility λ(S) and the flux function f(S) are
respectively given by

λ(S) = krw(S)
µw

+ kro(S)
µo

, f(S) = krw(S)/µw
λ(S)

, (1.7)

where krα(α = w, o) is the relative permeability of the phase α.

2

Chapter 2

Poroelasticity

2.1 Linear Elasticity

A common form of the linear elasticity is
−∇ · σ(u) = f ,

u|ΓD
= uD, x ∈ ΓD,

σn = tN , x ∈ ΓN ,

(2.1)

where u is the unknown displacement (deformation) vector, the strain and stress are
respectively defined as

ε(u) =
1

2

(
∇u + (∇u)T

)
,

σ(u) = 2µ ε(u) + λ(∇ · u)I = 2µ ε(u) + λ tr(ε(u)).

Furthermore, f is a body force. Dirichlet condition or displacement boundary condi-
tion; Neumann condition or traction boundary condition;

Note that the above equation (2.1) can be rewritten as

−µ∆u− (µ+ λ)∇(∇ · u) = f . (2.2)

2.2 Linear Poroelasticity

Poroelasticity couples elasticity and flow in porous media.

Let u be the solid displacement /deformation, p be the solid pressure

ε(u) =
1

2

(
∇u + (∇u)T

)
be the ... and the total stress tensor

σ = 2µε(u) + λ(∇ · u)I− αpI

3

Two equations 
−∇ ·

(
2µε(u) + λ(∇ · u)I− αpI

)
= f

∂t (c0p+ α∇ · u) +∇ ·
(
−K

µf
∇p
)

= s
(2.3)

It is interesting to note that [13] for the two terms for the fluid content, c0p
characterizes the amount of fluid that can be squeezed into a fixed volume?!, α∇ · u
characterizes the amount of fluid that can be squeezed out of where?!.

2.3 Poroelasticity in Life Sciences

See [12, 18, 20].

Cell Cytoplasm Modeled as a Poroelastic Material. In [12], experimental
evidence is provided to validate a cellular rheology model that treats the cytoplasm
of living cells as a poroelastic material. This biphasic material consists of an elastic
solid network (cytoskeleton, organelles, macromolecules) bathed in an interstitial fluid
(cytosol). The cellular deformation is limited by the rate at which intracellular water
can redistribute with the cytoplasm.

A Poroelastic Model for Hydrogel Scaffold in Tissue Engineering. In [20],
a poroelastic model for a highly porous hydrogel subject to cyclic strain is validated
by matching the predicted bead penetration into the hydrogel with experimental
observations. The results provide insight into nutrient transport within a cyclically
strained hydrogel, which could lead to improved designs of engineered tissues.

A Poroelastic Model for Brain Tissue in Convection-enhanced Drug
Delivery. In [18],

2.4 Some Benchmarks for Poroelasticity

3-dim Unconfined Compression. See [?, 3, 5].

4

Chapter 3

FEM Preliminaries

3.1 Some Nice Properties of Tetrahedra

Lemma. Let T be a tetrahedron and λi(i = 1, 2, 3, 4) be the barycentric coordi-
nates. Let α, β, γ, δ be nonnegative integers. Then∫

T

λα1λ
β
2λ

γ
3λ

δ
3dT =

|T | α! β! γ! δ! 3!

(α + β + γ + δ + 3)!
. (3.1)

Lemma. Let T be a tetrahedron and λi(i = 1, 2, 3, 4) be the Lagrangian basis
functions. Then the Gram matrix is

|T |
20


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

 .
Let (xc, yc, zc) be the center of a tetrahedron T . Let X = x− xc, Y = y − yc, Z =

z − zc be the normalized coordinates. Then∫
T

λ1X =

∫
T

λ1x− xc
|T |
4

=
|T |
80

(3x1 − x2 − x3 − x4).

Similarly, ∫
T
λ1Y = |T |

80
(3y1 − y2 − y3 − y4),∫

T
λ1Z = |T |

80
(3z1 − z2 − z3 − z4).

Furthermore, ∫
T
λ2X = |T |

80
(−x1 + 3x2 − x3 − x4),∫

T
λ2X = |T |

80
(−y1 + 3y2 − y3 − y4),

. . .∫
T
λ4Z = |T |

80
(−z1 − z2 − z3 + 3z4).

5

If we introduce two matrices,

C =

 x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

 , D =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

 ,
and set B as another 3× 4 matrix

B =


∫
T
Xλj∫

T
Y λj∫

T
Zλj


j=1,2,3,4

,

then it is clear that
B = C D.

3.2 FEMs

For convenience of presentation, we concentrate on the three-dimensional model of
the Darcy equation, which is usually formulated as

∇ · (−K∇p) ≡ ∇ · u = f, x ∈ Ω,

p = pD, x ∈ ΓD,

u · n = uN , x ∈ ΓN ,

(3.2)

where Ω ⊂ Rd(d = 2, 3) is a bounded polygonal/polyhedral domain that can be
equipped with ... tetrahedral or hexahedral meshes, p the unknown pressure, u the
Darcy velocity, K a permeability tensor that is uniformly symmetric positive-definite,
f a source term, pD, uN are respectively Dirichlet and Neumann boundary data, n
the unit outward normal vector on ∂Ω, which has a nonoverlapping decomposition
ΓD ∪ ΓN . When ΓD 6= ∅, the problem has a unique solution.

In many applications, the permeability matrix is a 3-by-3 full tensor. For some
medical phenomena, cylindrical coordinates are more suitable [17]. The diffusion/permeability
is anisotropic in the radial, angular, and vertical directions. In the cylindrical coor-
dinates, one has a diagonal matrix

D =

 Dr

Dθ

Dz

 .
But transformation into the Cartesian coordinates gives a full 3-by-3 permeability
tensor.

6

The weak Galerkin finite element methods introduced in [22] adopt a completely
different approach. In [7], it is demonstrated through two-dimensional examples that
WGFEMs can handle well the anisotropy and heretogeneity in Darcy flow problems
and WGFEMs are viable alternatives of the classical MFEMs. WGFEMs can be
extended three-dimensional Darcy problems on brick and tetrahedral meshes with
little technical treatment. However, extension of WGFEMs to general hexahedral
meshes is nontrivial.

Mixed finite element methods with multipoint flux have been developed for hex-
ahedral meshes [10].

Numerical schemes on two-dimensional quadrilateral meshes have been developed
and analyzed for elliptic and parabolic problems in [?].

Properties of hexahedron and quadratures on it have been investigated in [23, 24].

Existing work [16], [?], [14].

3.3 Meshes

3.3.1 Brick Meshes

3.3.2 Tetrahedral Meshes

3.3.3 Hexahedral Meshes

For many applications, hexahedral meshes are desired and are preferred over the
tetrahedral meshes. Hexahedral meshes with good quality can be generated using
CUBIT/Trelis.

Characterization of Hexahedra For the unit cube Ê = [0, 1]3, we label its
vertices using binary numbers: 000 for the origin (0, 0, 0), 100 for the vertex (1, 0, 0),
and so on so forth, instead of using 0, 1, 2, . . . , 7. In general we use ijk for the vertex
(i, j, k) where i, j, k ∈ {0, 1}. These should be a bit convenient as we shall see bitwise
operations and triple-loops for tensor products.

Let E be a generic hexahedron with vertices labeled as Pijk. as shown in Figure
??. Here ??? characterizes the deviation of face from being a parallelogram. Similarly
for all other five faces.

Let φ0(s) = 1−s, φ1(s) = s for s ∈ [0, 1]. The trilinear Lagrangian basis functions
associated with the vertex (i, j, k) of the unit cube is φi(x̂)φj(ŷ)φk(ẑ), where 0 ≤
x̂, ŷ, ẑ ≤ 1. For any (x̂, ŷ, ẑ), one can use the 8-tuple

(φ0(x̂)φ0(ŷ)φ0(ẑ), φ1(x̂)φ0(ŷ)φ0(ẑ), · · · , φ1(x̂)φ1(ŷ)φ1(ẑ),)

as its generalized barycentric coordinates.

7

Consider a general hexahedron E with vertices Pijk, i, j, k ∈ {0, 1}. The trilinear

transformation from the unit cube Ê to the hexahedron E is given as

p = p0 + vax̂+ vbŷ + vcẑ + vdŷẑ + veẑx̂+ vf x̂ŷ + vgx̂ŷẑ.

where
va = p100 − p000,
vb = p010 − p000,
vc = p001 − p000,
vd = (p011 − p000)− (vb + vc),
ve = (p101 − p000)− (vc + va),
vf = (p110 − p000)− (va + vb),
vg = (p111 − p000)− ((va + vb + vc) + (vd + ve + vf)).

Our notations are similar to those in [15] but emphasize the cyclic symmetry.

Clearly vf characterizes deviation of the bottom face from being a parallelogram,
whereas vg characterizes deviation of the hexahedron from being a parallelepiped.

The tangential vectors or covariant vectors [15] are respectively

∂x̂p = a + f ŷ + eẑ + gŷẑ,
∂ŷp = b + dẑ + f x̂+ gẑx̂,
∂ẑp = c + ex̂+ dŷ + gx̂ŷ.

.

It is interesting to note that ∂x̂p =: X(ŷ, ẑ) does not depend on x̂. We use these three
tangential vectors to form the Jacobian matrix of the trilinear mapping

J = [∂x̂p, ∂ŷp, ∂ẑp].

It is clear that the mixed mixed product of these covariant vectors gives the determi-
nant of the Jacobian matrix

det(J(x̂, ŷ, ẑ)) = (X(ŷ, ẑ)×Y(ẑ, ẑ)) · Z(x̂, ŷ).

h2-parallelepiped Assumptions

3.3.4 Other Types of Meshes

3.4 Approximation Spaces on Hexahedra

The K-transformation induced by the permeability matrix K maps the RT[0] basis
into the P 3

1 space

The 6 basis functions wi, 1 ≤ i ≤ 6 are 1
0
0

 ,
 0

1
0

 ,
 0

0
1

 ,
 X

0
0

 ,
 0
Y
0

 ,
 0

0
Z

 ,
8

The 12 basis functions vi, 1 ≤ i ≤ 12 are 1
0
0

 ,
 0

1
0

 ,
 0

0
1

 ,
 X

0
0

 ,
 Y

0
0

 ,
 Z

0
0

 ,
 0
X
0

 ,
 0
Y
0

 ,
 0
Z
0

 ,
 0

0
X

 ,
 0

0
Y

 ,
 0

0
Z

 ,
The 12× 6 matrix is 

K11 K12 K13

K21 K22 K23

K31 K32 K33

1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1


3.5 Quadratures

3.6 Linear Solvers

9

Chapter 4

FEMs for the Darcy Equation

Hexhedral Mesh or Tetrahedral Mesh?

10

Chapter 5

FEMs for Transport Equations

11

Chapter 6

FEMs for Linear Elasticity and
Poroelasticity

6.1 FEMs for Linear Elasticity

6.1.1 Continuous Galerkin FEMs for Linear Elasticity

CG P 3
1 works well for linear elasticity if the locking issue needs to be addressed.

6.1.2 Weak Galerkin FEMs for Linear Elasticity

See [?].

WGFEM:

Bilinear form

A(uh,v) = 2µ(∇w,nuh,∇w,nv) + λ(∇w,n · uh,∇w,n · v) (6.1)

Stabilizer
S(uh,v) =

∑
E∈Eh

(Q∂
hu
◦
h − u∂h, Q

∂
hv
◦ − v∂), (6.2)

that is consider the difference between the boundary piece and the (projection of) of
the interior piece.

Now we establish the concepts and computation procedures for discrete weak
divergences and discrete weak gradients of vector-valued discrete (polynomial) weak
functions via integration by parts.

We shall Φ = {Φ◦,Φ∂} to denote a discrete (polynomial) weak function.

Its discrete weak divergence ∇w,n · Φ is a scalar-valued function on E such that∫
E

(∇w,n · Φ) w =

∫
E∂

Φ∂ · (w n)−
∫
E◦

Φ◦ · (∇w), ∀w ∈ P n(E). (6.3)

12

Here w is a scalar-valued degree n polynomial, and ∇w is taken in the usual sense
and hence a vector-valued polynomial.

Its discrete weak gradient ∇w,nΦ is a matrix-valued polynomial function on E
such that∫

E

(∇w,nΦ) : W =

∫
E∂

Φ∂ · (W n)−
∫
E◦

Φ◦ · (∇ ·W), ∀W ∈ P n(E)d×d. (6.4)

Here W is a matrix-valued degree n polynomial, and the divergence ∇ ·W is taken
in the classical sense and hence a vector-valued polynomial. On the left-hand side of
this equation, we have colon product of two matrices.

Let E be a triangle, quadrilateral, or polygon in 2-dim. Consider WG

(P1(E◦)2, P1(E∂)2;P 2×2
0 + P0)

finite element, that is, 2-dim vector-valued polynomial in element interior and 2-dim
vector-valued polynomial on element boundaries, but its discrete weak gradient is
specified as a 2× 2 matrix with constant entries, its discrete weak divergence is just
a constant. Notice that in this case, in Equation (?), w is actually taken as constant
1, so ∇w is the zero vector, and hence we have∫

E

(∇w,0 · Φ) w =

∫
E∂

Φ∂ · (w n) (6.5)

Similarly, in equation (?), W will be taken as one of these four matrices:[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
,

so their divergence will be the usual zero vector in R2. Hence we have∫
E

(∇w,0Φ) : W =

∫
E∂

Φ∂ · (Wn). (6.6)

As before, we take these functions as a basis for P1(E◦)2:[
1
0

]
,

[
0
1

]
,

[
X
0

]
,

[
0
X

]
,

[
Y
0

]
,

[
0
Y

]
, (6.7)

where X = x− xc, Y = y − yc are normalized coordinates, (x, y) are natural coordi-
nates, (xc, yc) is the element center. For P1(e)2 on any edge of E, we use these four
functions as its basis: [

1
0

]
,

[
0
1

]
,

[
Z
0

]
,

[
0
Z

]
. (6.8)

By the definition, their discrete weak gradients are ... their discrete weak divergences
are ...

13

6.2 FEMs for Linear Poroelasticity

See [?, 3].

Here are some fundamental issues regarding FEMs for (linear) poroelasticity.

• Time-marching should be the approach;
– Investigate implicit Euler first;
– Investigate Crank-Nicholson.

• Both operator-splitting (OS) and monolithic system (MS) are to be investigated;
– OS allows utilization of existing elasticity and Darcy solvers;
– MS involves coupling of different types of large sparse matrices.

• For simple operator splitting at each time step:
– Solving displacement and then pressure;
– Solving pressure and then displacement;
Both will be investigated.

• For Strang-type operator splitting at each time step:
– Displacement -¿ pressure -¿ displacement -¿ pressure;
– Pressure -¿ displacement -¿ pressure -¿ displacement;
Both will be investigated.

• For solving solid displacement (linear elasticity equation):
CG, NC (non-conforming), WG each should be allowed;
Need to design lowest-order WGFEMs on tetrahedral, brick, hexaherdral meshes.
(lower than those in Wang2Zhang-JCAM-2016, should be possible)

• For solving fluid pressure (Darcy equation):
WG on tetrahedral, brick, hexaherdral meshes all will be utilized.

14

6.3 A Marching-OS FE Solver for Poroelasticity

This is based on implicit Euler for time-marching and operator-splitting (OS) in space.

The 1st equation is rewritten as (simplified to) an elasticity equation

−µ∆u− (µ+ λ)∇(∇ · u) + α∇p = f , (6.9)

and hence can be solved as a linear elasticity problem

µ
(
∇u

(n+1)
h ,∇v

)
+ (µ+ λ)

(
∇ · u(n+1)

h ,∇ · v
)

=
(
f (n),v

)
− α

(
∇p(n)

h ,v
)
. (6.10)

JKL Remark: For ease of presentation, we assume the fluid viscosity

constant µf has been absorbed into the permeability tensor K.

Applying the implicit Euler time discretization, the 2nd equation

∂t(c0p+ α∇ · u) +∇ · (−K∇p) = s (6.11)

is discretized and simplified as an equation for fluid pressure:

c0

(
p

(n+1)
h − p(n)

h

∆t
, q

)
+ α

(
∇ · u(n+1)

h −∇ · u(n)
h

∆t
, q

)
+
(
K∇p(n+1)

h ,∇q
)

= (s, q).

(6.12)
This is further reorganized as

c0

(
p

(n+1)
h , q

)
+ ∆t

(
K∇p(n+1)

h ,∇q
)

= c0

(
p

(n)
h , q

)
+ ∆t

(
s(n), q

)
− α

(
(∇ · u(n+1)

h , q)− (∇ · u(n)
h , q)

)
.

(6.13)

Subproject 1:
– Use CG P 3

1 for u
(n+1)
h on a tetrahedral mesh;

– Use WG (P0, P0, RT0) to solve p
(n+1)
h on a tetrahedral mesh;

– Need compute interaction between CP 3
1 and RT0 for

(
∇p(n)

h ,v
)

.

Subproject 2:
– Use CG Q3

1 for u
(n+1)
h on a brick mesh;

– Use WG (Q0, Q0, RT[0]) to solve p
(n+1)
h on a brick mesh;

– Need compute interaction between CQ3
1 and RT[0] for

(
∇p(n)

h ,v
)

.

JKL Remark: A critical issue: The approximation subspaces for u, p should

match. In details: the discrete weak gradient of p(n) should match v; the

discrete weak divergence of u(n+1),u(n) should match q. Lifting technique?

15

Note that the above operator-splitting iterative scheme is actually a Gauss-Seidel
type iterative algorithm. Let x1, x2 be the vectors obtained from discretizing the
unknown functions with appropriate finite elements and A11, A12, A21, A22 be the ma-
trices obtained from discretizing the corresponding bilinear forms (with appropriate
finite elements). We have a linear system[

A11 A12

A21 A22

]
=

[
b1

b2

]
(6.14)

. Here A12, A21 reflect the interaction of the two finite element subspaces. Actually
A11, A22 are two SPD matrices. Knowledge about the eigenvalues of A11, A22 and
properties of A12, A21 helps determine convergence of the operator-splitting algorithm.

The operator-splitting approach has some obvious advantages

• The sizes of the two separated linear systems being solved are significantly
smaller than that of the single linear system. It is well known that solving
linear systems is the major part of computational costs of FEMs.

• Virtually all FE solvers for elasticity and Darcy flow can be incorporated in this
framework.

16

Chapter 7

Testcases

7.1 Testcases for 3-dim Darcy Equation

7.1.1 Simple Testcases for 3-dim Darcy Equation

Example 1. Consider Ω = [0, 1]3 (the unit cube), K = I3 (the order-3 iden-
tity matrix), a known exact solution p(x, y, z) = sin(πx) sin(πy) sin(πz), and hence
f(x, y, z) = 3π2 sin(πx) sin(πy) sin(πz), accordingly a homogeneous Dirichlet bound-
ary condition on the whole boundary ∂Ω. This is probably the simplest example.
But unlike its 2-dim counterpart, the numerical (or exact) pressure cannot be easily
visualized, e.g., by VisIt, since the pressure value on the domain boundary is simply
zero. Slicing is needed (or utilized) to visualize the interior pressure value.

Example 2. Consider Ω = [0, 1]3 (the unit cube), K = I3, a known exact solution
p(x, y, z) = cos(πx) cos(πy) cos(πz), and hence f(x, y, z) = 3π2 cos(πx) cos(πy) cos(πz).
Now one has a nonzero Dirichlet boundary condition. But the numerical pressure can
be easily visualized, e.g., by VisIt.

Example 4. JL Remark: To be done by GH and JKL.

Consider an example similar to the above example but the domain Ω is the unit cube
minus a brick. More precisely,

Ω = [0, 1]3 \ ΩI , ΩI =

{
(x, y, z) :

1

4
< x, y <

3

4
, 0 < z < 1

}
.

Example 4. JL Remark: To be done by GH and JKL.

Consider an example similar to the above example but the domain Ω is the unit cube
minus a cylinder that has the z-axis as its axis, passes through the origin and has a ra-
dius 1/4. The permeability is still K = I3, a known exact solution is set as p(x, y, z) =

17

cos(πx) cos(πy) cos(πz), and hence f(x, y, z) = 3π2 cos(πx) cos(πy) cos(πz). The
Dirichlet boundary value on the exterior flat faces of the unit cube and on the interior
circular face of the cylinder are determined by the exact solution.

The focus of this testcase will be on trying tetrahedral and hexahedral meshes.

(i) Use TetGen to generate a sequence of tetrahedral meshes, then test CGP1,

WG(P0,P0,RT0)Tetra on these meshes.

(ii) Use Trelis/CUBIT to generate a sequence of hexahedral meshes, then test
WG(P0,P0,RT[0])Hexa on these meshes.

(iii) Use Trelis/CUBIT THex algorithm to generate a sequence of nested tetrahe-
dral and hexahedral meshes, then compare the results on the tetrahedral and
hexahedral meshes.

A sample mesh would be look like what is shown in Figure ??.

Example 4. JL Remark: To be done by GH and JKL.

Further variation from the above example with a varying permeability.

7.1.2 More Testcases for 3-dim Darcy/Poisson

Example 1. See [10] (p.166). Consider Ω = [0, 1]3 (the unit cube), a full permeability
tensor

K =

 a 1 1
1 2 1
1 1 2

 ,
where the parameter a could take a value of 1, 10, 100, 1000. A known exact solution
is specified as

p(x, y, z) = x2(1− x)2y2(1− y)2z2(1− z)2.

Accordingly
f(x, y, z) = ...

Example 2. See [10] (p.167). Consider Ω = [0, 1]3 (the unit cube) and a varying full
permeability tensor

K =

 y2 + 2 cos(xy) sin(xz)
cos(xy) (x+ 3)2 cos(xz)
sin(xz) cos(yz) (x+ 1)2 + z2

 .
A known exact solution is specified as

p(x, y, z) = x2(1− x)2y2(1− y)2z2(1− z)2.

Accordingly
f(x, y, z) = ...

18

7.1.3 Benchmark Listed at Univ-MRS

These five problems are listed at
https://www.latp.univ-mrs.fr/latp_numerique/?q=node/163

Unless specified, the domain is the unit cube.

Test 1. Consider Ω = [0, 1]3 (the unit cube) and a constant full permeability tensor

K =

 1 0.5 0
0.5 1 0.5

0 0.5 1

 .
A known exact solution is specified as

p(x, y, z) = 1 + sin(πx) sin(π(y +
1

2
)) sin(π(z +

1

3
)).

Accordingly
f(x, y, z) = ...

Test 2. Consider Ω = [0, 1]3 (the unit cube) and a varying full permeability tensor
(anisotropic and heterogenous)

K =

 y2 + z2 + 1 −xy −xz
−xy x2 + z2 + 1 −yz
−xz −yz x2 + y2 + 1

 .
A known exact solution is specified as

p(x, y, z) = x3y2z + x sin(2πxz) sin(2πxy) sin(2πz).

Accordingly
f(x, y, z) = ...

Test 3. Consider Ω = [0, 1]3 (the unit cube), a constant full permeability tensor

K =

 1 0 0
0 1 0
0 0 103

 ,
and a known exact solution

p(x, y, z) = ...

Test 4.

19

Test 5. Consider Ω = [0, 1]3 (the unit cube), a piecewise constant diagonal perme-
ability tensor

K =

 K
(i)
11 0 0

0 K
(i)
22 0

0 0 K
(i)
33

 on Ωi (i = 1, 2, 3, 4),

where the four subdomains Ωi(i = 1, 2, 3, 4) of Ω are defined as follows

Ω1 = {(x, y, z) : 0 <= x <= 1, y <= 0.5, z <= 0.5},
Ω2 = {(x, y, z) : 0 <= x <= 1, y > 0.5, z <= 0.5},
Ω3 = {(x, y, z) : 0 <= x <= 1, y > 0.5, z > 0.5},
Ω4 = {(x, y, z) : 0 <= x <= 1, y <= 0.5, z > 0.5}.

by bisection in the y, z-directions. So Ω1 is opposite to Ω3, whereas Ω2 is opposite
to Ω4. The permeability tensor components are specified in the following table with
assignments

a1 = 0.1, a2 = 10, a3 = 100, a4 = 0.01.

It is observed that the values of K22 and K33 are swapped in the opposite subdomains.

i 1 2 3 4
Ki

11 1 1 1 1
Ki

22 a2 a1 a4 a3

Ki
33 a4 a3 a2 a1

The exact solution on these four subdomains are prescribed as

p(x, y, z) = ai sin(2πx) sin(2πy) sin(2πz), (x, y, z) ∈ Ωi (i = 1, 2, 3, 4).

Accordingly,

f(x, y, z) = 4π2Ai sin(2πx) sin(2πy) sin(2πz), (x, y, z) ∈ Ωi (i = 1, 2, 3, 4),

where
A1 = a1(1 + a2 + a4), A2 = a2(1 + a1 + a3),
A3 = a3(1 + a2 + a4), A4 = a4(1 + a1 + a3).

20

7.2 Testcases for 3-dim Transport Equations

7.2.1 Testcases for Transient Convection-Diffusion Equations

7.2.2 Testcases for Steady Convection-Diffusion Equations

7.3 Testcases for 3-dim Linear Elasticity

A Simple Example on the Unit Cube. This example is derived from [3] Section
6.2. Here Ω = (0, 1)3. An analytical solution for displacement is specified as

u(x, y, z) =
−1

6π

 cos(2πx) sin(2πy) sin(2πz)
sin(2πx) cos(2πy) sin(2πz)
sin(2πx) sin(2πy) cos(2πz)

 .
Accordingly

∇ · u = sin(2πx) sin(2πy) sin(2πz),

and
∇(∇ · u) = ∆u = −12π2u,

and hence

f = −(2µ+ λ)(2π)

 cos(2πx) sin(2πy) sin(2πz)
sin(2πx) cos(2πy) sin(2πz)
sin(2πx) sin(2πy) cos(2πz)

 .
Iron Piece of Hardware. See [1], pp.257–258,261–262. For this example, the

domain models an iron piece of hardware. There are three (3) holes centered re-
spectively at (17,−1.5, 21), (48,−1.5, 21), and (20,−77, 11.5). Homogeneous Direct
boundary conditions are posed around the inner edges by the first two holes. For the
third hole, a nonzero Dirichlet boundary condition is posed by the inner edge that
describes a lift in the z-direction by 0.1 unit that is, uD = (0, 0, 0.1). The remaining
boundary is equipped with a traction-free boundary condition, that is homogeneous
Neumann boundary condition.

7.4 Testcases for 3-dim Linear Poroelasticity

Testcase 1. In this example, in the domain Ω = (0, 1)3, two-layered porous medium
saturated with incompressible fluid. The interface is at 0.5 (JL Remark: The original

paper has ? = 0.5.) The time interval is [0, 1]. For the lower layer, λ1 = 104,
µ1 = 104, κ1 = 10−1. For the upper layer, λ2 = 1, µ2 = 1, κ2 = 10−4. These
parameters indicate that the upper layer is softer, but less permeable than the lower
one.

21

A local load is applied on the top surface in a rectangular domain R = [a, b] ×
[c, d] = [0.15, 0.25]2. The top (z = 1) and bottom (z = 0) surfaces are free to drain,
the lateral walls are rigid and impermeable. After the load is applied, the porous
medium deforms and fluid flows through the layered medium.

Here are the boundary conditions: On the bottom surface: Sn = 0, p = 0. On the
top surface: Sn = Slocal if (x, y) ∈ R, Sn = 0 otherwise. Here Sn denotes the normal
component of the stress tensor. Slocal is the local load. On the side surfaces (x = 0
or x = 1 or y = 0 or y = 1), the displacement u = 0 and the fluid velocity normal
component vn = 0.

Testcase 2: 3-dim Unconfined Compression. See [?, 3, 5]. This testcase
examines a cylinder-shaped sepcimen that undergoes unconfined compression. The
specimen/tissue is subject to a prescribed displacement in the axial direction but
expand freely in the radial direction, due to the interstitial fluid flow through the
radial boundary.

A closed-form analytical solution for the displacement at the outer radius a is
given in an infinite series

u(a, t)

a

1

ε0
= ν + (1− ν)(1− 2ν)

∞∑
n=1

e−α
2
n t̃

α2
n(1− ν)2 − (1− ν)

, (7.1)

where t̃ = KM
a2
t and αn are the roots of the characteristic equation

J1(x)− 1− ν
1− 2ν

xJ0(x) = 0.

Here J0(x), J1(x) are Bessel functions. Moreover, ε0 is the magnitude of applied strain,
K = is the permeability constant, M = λ + 2µ is the P-wave modulus of the elastic
solid skeleton .

22

Chapter 8

Design and Implementation of
Darcy+

8.1 Implementation of FEMs

8.1.1 Basis Functions on a Line Segment/Beam

Line segments (beams, intervals) are encountered in all FEM applications.
Basis functions based on baby coordinates are good for certain cases.
Normalized basis functions should be good also (at least from some case, e.g., the
Gram matrix and hence its inverse will be diagonal in some cases.
But how to normalize? Let P0, P1 are the beginning and ending vertices (in 1d, 2d,
3d). Let Pc be the center or midpoint and P be an arbitrary point on this line
segment. It seems there are 3 or more choices.

• Choice 1: Let
u = 〈PcP, P0P1〉/‖P0P1‖2.

Then u ∈ [−1
2
, 1

2
]. Then for the P1 space on this line segment, 1, u as an

orthogonal basis, the Gram matrix and its inverse are respectively[
1 0
0 1

12

]
,

[
1 0
0 12

]
.

We could call v = P0P1/‖P0P1‖2 the (a) direction(al) vector for the line seg-
ment.

•

•

23

8.1.2 Bases for RT0 on Triangles

Normalized Basis

The natural basis is [
1
0

]
,

[
0
1

]
,

[
x
y

]
,

The normalized basis is

w1 =

[
1
0

]
, w2 =

[
0
1

]
, w3 =

[
X
Y

]
,

where X = x− xc, Y = y − yc and (xc, yc) is the element center.

Intrinsic Basis

Let Pi(i = 1, 2, 3) be the vertices, ei be the opposite edges, |ei| be the length of the
i-th edge, |E| the element area, ni the unit outward normal vector on the i-th edge.
We define

φi =
|ei|
2|E|

(P − Pi). (8.1)

Then one can verify that

• φi · nj = δij

• ∇ · φi = |ei|/|E|.

Conversion between the Normalized and Intrinsic Bases

From the normalized basis to the intrinsic basis: Note that

φ1 =
|e1|
2|E|

(P − P1) = − |e1|
2|E|

[
x1

y1

]
+
|e1|
2|E|

[
x
y

]
= − |e1|

2|E|

[
x1

y1

]
+
|e1|
2|E|

[
X + xc
Y + yc

]
=
|e1|
2|E|

[
xc − x1

yc − y1

]
+
|e1|
2|E|

[
X
Y

]
Thus we have

φ1 =
|e1|
2|E|

(xc − x1) w1 +
|e1|
2|E|

(yc − y1) w2 +
|e1|
2|E|

w3,

where wi(i = 1, 2, 3) is the normalized basis. Similar formulas hold for φ2, φ3.

24

Using matrix notation, we have

 φ1

φ2

φ3

 =
1

2|E|


|e1|(xc − x1) |e1|(yc − y1) |e1|

|e2|(xc − x2) |e2|(yc − y2) |e2|

|e3|(xc − x3) |e3|(yc − y3) |e3|


 w1

w2

w3



25

Chapter 9

Use of Darcy+

9.1 Running a C++ Project with Darcy+

9.2 Mesh Generation

Here are some common ways for generating a 3-dim (brick, tetrahedral, hexahedral,
etc.) mesh.

(1) Writing a simple C++ function to generate a tetrahedral or brick mesh. A
hexahedral mesh can be generated by perturbing the nodes of a brick mesh.

(2) Using TetGen to generate tetrahedral meshes. Use a .poly file when needed.
The mesh files can be obtained via FFT (flat file transer) or incorporating the
header file and binary library provided by TetGen.

(3) Using Gmsh to generate tetrahedral or hexahedral meshes. The mesh files can
be obtained via FFT (flat file transer). Gmsh file format .msh could be ASCII
(plain text) or binary.

(4) Using Trelis/CUBIT to generate tetrahedral or hexahedral meshes. The THex

algorithm provided by Trelis/CUBIT can refine a tetrahedral mesh into a hex-
ahedral mesh. Trelis/CUBIT provides several file formats mesh files, but it is
hard to tell which one is really good.

TetGen and Gmsh are free of charges, but Trelis is not and a license needs to be
purchased.

26

Chapter 10

LinLite

10.1 Block Diagonal Schur Complement Solver: BDSchur

Schur complement is useful in certain special cases. Here we illustrate this procedure.
Suppose a large linear system is organized as[

A00 A01

A10 A11

] [
x0

x1

]
=

[
b0

b1

]
. (10.1)

This is encountered often in FEM programming. Just imagine 0 corresponds to some-
thing related element interior, 1 corresponds to something about element interfaces.
Suppose we want to eliminate the unknowns represented by vector x0. The first
equation is

A00x0 + A01x1 = b0.

Assuming A00 is invertible, we obtain

x0 = A−1
00 (b0 − A01x1) . (10.2)

This implies that x0 is available if x1 is known. On the other hand, we could plug
the above equation into the original 2nd equation to get(

A11 −
(
A10A

−1
00

)
A01

)
x1 = b1 −

(
A10A

−1
00

)
b0. (10.3)

The above linear system is about just x1 and surely has a smaller size than the original
linear system. We solve it to get x1 and then use Equation (?) to get x0.

Here Â11 := A11 − A10A
−1
00 A01 is named as the Schur complement matrix of the

original coefficient matrix.

In this elimination/solving process, two quantities appear more than once and
hence new notations are introduced:

Â00 := A−1
00 , Â10 := A10A

−1
00 . (10.4)

27

Note that for real applications, e.g., finite element schemes, x1 represents the
unknowns on (2-dim) edges or (3-dim) faces and a part of it is actually known, e.g.,
through Dirichlet boundary condition. But we assume modification of the linear
system is done after assembly but before Schur complement.

For the weak Galerkin finite element methods, it is known that A00 is a block
diagonal matrix, A01, A10, A11 are sparse block matrices, b0, b1 are known vectors, and
all these data items have compatible sizes.

In summary, we have the following procedure for the Block Diagonal Schur com-
plement solver.

• Step 1: Finding Â00 = A−1
00 ;

(BlockDiagMatrix inverse)

• Step 2.1: Computing Â10 := A10Â00;
(SparseBlockMatrix and BlockDiagMatrix multiplication)

• Step 2.2: Computing Â10A01;
(SparseBlockMatrix multiplication (compatible patterns))

• Step 2.3: Computing Â11 := A11−Â10A01 to form the Schur complement matrix;
(SparseBlockMatrix subtraction (the same pattern))

• Step 3.1: Computing b̂1 := b1 − Â10 b0;
(SparseBlockMatrix and Vector multiplication; Vector subtraction)

• Step 3.2: Reducing the Schur complete system by using vector b2 in the “gentle”
approach; See [9] (Liu,Sadre,Wang, Proc.Comput.Sci.(2016) p.1308)

• Step 3.3: Solving the reduced Schur system by using CG, GMRES, etc.

• Step 4: Computing x0 = Â00(b0 − A01x1)
(SparseBlockMatrix and Vector multiplication;
Vector subtraction;
BlockDiagMatrix and Vector multiplication)

It is obvious that certain parts of this procedure are parallelizable.

28

Chapter 11

Interface to Other Packages

Mesh generation
X PolyMesher Matlab code (thru Flat File Transfer (FFT))
X TetGen A tetrahedral mesh generator (FFT, Linking)
... CUBIT/Trelis A hexahedral mesh generator

Linear Solvers: PETSc

Visualization
X Silo A mesh & field I/O library, scientific database
... VisIt An interactive visualization tool (interactive computing!)

? FreeFEM++: Use its script language

11.1 Interface to PETSc

11.2 Interface to TetGen

11.3 Interface to Trelis/CUBIT

11.4 Interface to Silo

11.5 Interface to VisIt

29

Chapter 12

Extra Stuff To Be Reorganized

JKL Remark: Most parts are to be finished by GH.

12.1 More About Meshes

12.1.1 Predefining a Domain for TetGen

Mesh generation
There are many methods available to load a piecewise linear complex (PLC) into
TetGen’s C++ interface as the domain for the Darcy flow problem. The easiest way
is to define a .poly file beforehand and load it into the input tetgenio class with the
load poly(char *) command, where the character array represents the file name.

The format of a .poly file is relatively simple. It can be opened and modified
in any text editor. If the first character in a line is #, the line is commented out.
The basic layout of the file can be found on wias-berlin.de/software/tetgen/

fformats.poly.html but the main focus here is defining more complicated objects
with .poly files. For example, to define the unit cube with a square cut through
perpendicular to the z axis, the first line to define the top facet with the square hole
in it should be 2 1 1. This means that the facet is made up of 2 regions with 1 hole
and it has a boundary marker of 1. Since the facet is made up of 2 regions with a
hole, the following lines should describe the shape it takes. 4 5 6 7 8 means that
the first region is a quadrilateral with 4 nodes, which are nodes 5, 6, 7, and 8. Then
4 13 14 15 16 means the second region is a quadrilateral with 4 nodes, which are
nodes 13, 14, 15, and 16. These two quadrilaterals should be square forming the unit
cube, then the square forming the hole cut through the center. The last line to add to
this facet is the hole, and it is already known that the second region defines the hole.
Thus 1 0.5 0.5 1 means that hole 1 is located at coordinates (0.5, 0.5, 1), which is
the center of the second region. This tells TetGen to remove the second region from
the first, which leaves a facet with a square hole in the center, as desired.

30

12.1.2 Implementation of THex Algorithm

The THex algorithm divides each tetrahedron into four (4) hexahedra and hence
refines a tetrahedral mesh into a hexahedral mesh. In this process, we see proliferation
of nodes, faces, and elements. Besides the original nodes of the tetrahedral mesh, we
create

• A new node at the centroid of each (original) tetrahedron,

• A new node at the centroid of each (original) triangular face,

• A new node at the midpoint of each (original) edge.

Similarly,

• Each original triangular face is divided into three (3) flat quadrilateral faces,

• Six (6) new quadrilateral faces are created inside each original tetrahedron.

JKL Remark: Conjecture: These six (6) new interior faces are flat also.

See Figure ? for an illustration: A tetrahedron is partitioned into 4 hexahedra.

For a given tetrahedral mesh, we use respectively NumNdsT, NumEgsT, NumFcsT,
NumEmsT, to denote the numbers of nodes, edges, triangular faces, and tetrahedra.
Similarly, we use NumNdsH, NumFcsH, NumEmsH, to denote the numbers of nodes, quadri-
lateral faces, and hexahedra of the resulting hexahedral mesh. Then it is interesting
to see that

NumNdsH = NumNdsT + NumEgsT + NumFcsT + NumEmsT;

NumFcsH = 3*NumFcsT + 6*NumEmsT;

NumEmsH = 4*NumEmsT;

It is not difficult to handle just one tetrahedron. However, it is nontrivial to handle
an entire tetrahedral mesh. The main difficulty lies in coordinating the orientations
of faces and hexahedra. We implement the THex algorithm at three different levels:

• THexEasy:

• THexMed:

• THexFull:

Suppose the four vertices of a given tetrahedron are labelled locally as 0, 1, 2, 3
with 0 being the top (zenith) and 123 as the base.

31

JKL Remark: To ensure THex algorithm works correctly, we need to ensure

a tetrahedron has the correct orientation by checking its volume being positive

and swapping two base vertices if needed.

The four triangular faces of a tetrahedra are

#0 : (0, 1, 2)
#1 : (0, 2, 3)
#2 : (0, 3, 1)
#3 : (3, 2, 1).

Note that the orientation of the base 123 (actually now oriented as 321) is somehow
different than the other three faces. This assures that the normal vector points
outwards as we traverse following the given order of nodes (vertices).

The edges (with connecting nodes) are labelled as

#0 : (0, 1), #1 : (0, 2), #2 : (0, 3), #3 : (3, 2), #4 : (2, 1), #5 : (1, 3).

Accordingly, the midpoints on these edges are labelled as 4, 5, 6, 7, 8, 9. The cen-
troids of the four faces are labelled as 10, 11, 12, 13. Finally, the centroid of the
tetrahedron is labelled as 14. So the partition scheme uses totally 15 nodes for four
hexahedra, whereas the original tetrahedron has four (4) nodes.

As shown in Figure ?, the labels of the four new hexahedra has nodes (on bottom
faces and top faces, oriented counterclockwise)

#0 : (0, 4, 12, 6, 5, 10, 14, 11)
#1 : (1, 8, 13, 9, 4, 10, 14, 12)
#2 : (2, 7, 13, 8, 5, 11, 14, 10)
#3 : (3, 6, 12, 9, 7, 11, 14, 13)

It is nice to see that each hexahedron involves

• one original node;

• three (adjacent) edge midpoints;

• three face centroids;

• one (the) element centroid.

Note that each of the original four (4) triangular faces of the tetrahedron is parti-
tioned into three (3) quadrilaterals. There are totally twelve (12) such quadrilaterals
and they are all flat. These 12 flat quadrilateral faces can be expressed as

#0: (0,4,10,5), #1: (1,8,10,4), #2: (2,5,10,8),

#3: (0,5,11,6), #4: (2,7,11,5), #5: (3,6,11,7),

#6: (0,6,12,4), #7: (3,9,12,6), #8: (1,4,12,9),

#9: (3,7,13,9), #10: (2,8,13,7), #11: (1,9,13,8).

32

In this partition process, six (6) new quadrilateral faces are created inside the
tetrahedron, as shown below

#12: (4,10,14,12), #13: (5,11,14,10), #14: (6,12,14,11),

#15: (7,13,14,11), #16: (8,13,14,10), #17: (9,13,14,12).

Each of them appears twice (is shared by two hexahedra). So there are totally
(4*3+6*2) 24 faces. Of course, this is correct 4 ∗ 6 = 24.

In summary, totally four (4) hexahedra are created and hence 4 ∗ 6 = 24 faces
are involved. Each of the six (6) interior quadrilateral faces is clearly used twice, and
each of the 12 flat quadrilateral faces (on the original triangular faces) is used only
once.

12.2 H(div)- and WG Finite Elements

Inspired by [2], we construct H(div)-type ABF[0] elements for bricks and hexahedra
as a remedy for the deficiency of RT[0] elements in approximating divergence. In par-
ticular, dimABF[0] = 9 for bricks or hexahedra. One could choose a set of normalized
basis functions as follows 1

0
0

 ,
 X

0
0

 ,
 X2

0
0

 ,
 0

1
0

 ,
 0
Y
0

 ,
 0
Y 2

0

 ,
 0

0
1

 ,
 0

0
Z

 ,
 0

0
Z2

 ,
where X = x− xc, Y = y − yc, Z = z − zc and (xc, yc, zc) is the element center.

The Gram matrix of the above basis is ...

JKL Remark: We might need rearrange the above basis functions in another order
to show its hierarchy with RT[0] normalized basis.

It is clear that the divergence of these basis functions offers variation in X, Y, Z
in addition to constants. and better approximation capacity than the RT[0] elements.

JKL Reamrk: The following is up to investigation. We don’t know yet what

would be a good combination.

We utilize ABF[0] elements to construct WG (P1, P1, ABF[0]) elements on hexa-
hedra, which include bricks as a special case.

12.3 A Usual Procedure for WG in C++

The AMS Procedure for WG (in C/C++)

• Assembly for element interior unknowns and face unknowns separately;

• Modifying the partitioned linear system;

• Solving the modified linear system based on Schur complement.

33

12.3.1 Assembly

Assembling element interior unknowns and face unknowns separately:

• 4 matrices:
A00:
A01:
A10:
A11:
Compatible sparsity patterns

• 3 vectors:
GlbRhsE:
GlbRhsC: The Neumann boundary conditions contribute to this part;
EssVec: Same size as GlbRhsC; Contributed from Dirichlet boundary conditions.
Note: Faces have 3 subcategories: Interior, Neumann, Dirichlet.

12.3.2 Modifying

Modifying the partitioned linear system as illustrated below. For ease of presentation,
let

• x1, x2 represent interior unknowns;

• x3, x4, x5 represent face unknowns;

• x4 = c represents a Dirichlet type (essential) boundary condition;

and the partitioned linear system takes the following form
a11 0 a13 a14 a15

0 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55



x1

x2

x3

x4

x5

 =


b1

b2

b3

b4

b5

 .
By enforcing the essential condition, we obtain

a11 a12 a13 0 a15

a21 a22 a23 0 a25

a31 a32 a33 0 a35

0 0 0 1 0
a51 a52 a53 0 a55



x1

x2

x3

x4

x5

 =


b1 − a14c
b2 − a24c
b3 − a34c

c
b5 − a54c

 .
Assuming the assembly is completed with 4 matrices and 3 vectors[

b1

b2

]
,

 b3

b4

b5

 ,
 0
c
0

 .
34

The modification proceeds in three steps.

Step 1. Modifying RHS upper part by matrix-vector multiplication and vector
subtraction [

b1

b2

]
−
[
a13 a14 a15

a23 a24 a25

] 0
c
0

 =⇒
[
b1 − a14c
b2 − a24c

]
.

Step 2. Modifying RHS lower part in two sub-steps: Perform matrix-vector
multiplication and vector subtraction; Then replace the middle component by c. b3

b4

b5

−
 a33 a34 a35

a43 a44 a45

a53 a54 a55

 0
c
0

 =⇒

 b3 − a34c
b4 − a44c
b5 − a54c

→
 b3 − a34c

c
b5 − a54c

 .
Step 3. Modifying the 3 matrices as follows

[
a13 a14 a15

a23 a24 a25

]
→
[
a13 0 a15

a23 0 a25

]
,

 a31 a32

a41 a42

a51 a52

→
 a31 a32

0 0
a51 a52

 ,
 a33 a34 a35

a43 a44 a45

a53 a54 a55

→
 a33 0 a35

0 1 0
a53 0 a55

 .
12.3.3 Solving

Solving the modified linear system based on Schur complement. There are two
paths for handling Schur complement.

• Forming the Schur complement explicitly:

S = A11 − A10A
−1
00 A01.

This is usually expensive and hence less used.

• Just implement the action of Schur complement on a vector, as frequently seen
in an iterative solver:

Sv = A11 ∗ v− A10 ∗ (A00inv ∗ (A01 ∗ v));

This is all matrix-vector multiplication.

Numerical Experiments on Type II meshes: Trapezoidal but asymptotically
on the xy-plane; Uniform in the z-direction. Test on the unit cube Ω = [0, 1]3,
permeability K = I3, known pressure solution p(x, y, z) = cos(πx) cos(πy) cos(πz).

35

m=3; nz=8;

#elements= 512 #faces= 1728

DOFs= 2240

itr=145

NumerPresEm max = 0.934151

ProjPresEm max = 0.934487

Max. err. pressure = 0.00513034

Max. flux discrepancy= 1.54737e-015

L2ErrPres= 0.0732277 L2ErrVel= 0.343678 L2ErrFlux= 0.0707968

Time taken = 4.61 seconds

m=4; nz=16;

#elements= 4096 #faces= 13056

DOFs= 17152

itr=322

NumerPresEm max = 0.983861

ProjPresEm max = 0.983839

Max. err. pressure = 0.00162264

Max. flux discrepancy= 1.84835e-015

L2ErrPres= 0.0369048 L2ErrVel= 0.171415 L2ErrFlux= 0.0353306

Time taken = 38.62 seconds

m=5; nz=32;

#elements= 32768 #faces= 101376

DOFs= 134144

itr=654

NumerPresEm max = 0.996018

ProjPresEm max = 0.99601

Max. err. pressure = 0.000453773

Max. flux discrepancy= 1.2837e-015

L2ErrPres= 0.0184889 L2ErrVel= 0.0856066 L2ErrFlux= 0.0176481

Time taken = 346.623 seconds

m=6; nz=64;

#elements= 262144 #faces= 798720

DOFs= 1060864

itr=1311

NumerPresEm max = 0.999011

ProjPresEm max = 0.99901

Max. err. pressure = 0.00013029

Max. flux discrepancy= 1.07441e-015

L2ErrPres= 0.00924903 L2ErrVel= 0.0427858 L2ErrFlux= 0.00882106

Time taken = 3481.54 seconds

36

12.4 Lowest-order WGFEMs for Linear Elasticity

on Hexahedral Meshes

WG(Q3
0, Q

3
0;RT 3

[0], Q0) can be developed for 3-dim linear elasticity problems on hex-
ahedral meshes.

We first examine the matrix-version Raviart-Thomas space RT 3
[0] on a hexahedron

E. As usual, we denote X = x − xc, Y = y − yc, Z = z − zc, assuming (xc, yc, zc) is
the element center. We use

w1 =

 1
0
0

 ,w2 =

 0
1
0

 ,w3 =

 0
0
1

 ,w4 =

 X
0
0

 ,w5 =

 0
Y
0

 ,w6 =

 0
0
Z


as a basis for vector-version RT[0](E), which has dimension 6. Then RT 3

[0] consists of
matrix functions, in which each row vector is in RT[0]. So there are 18 basis functions
for such a basis of RT 3

[0], whose Gram matrix is an 18×18 SPD matrix. Shown below
are just 4 of these 18 basis functions. 1 0 0

0 0 0
0 0 0

 , · · · ,
 X 0 0

0 0 0
0 0 0

 , · · ·
 0 0 0
X 0 0
0 0 0

 , · · · ,
 0 0 0

0 0 0
0 0 Z

 .
Within the WG framework, we use constant vectors (Q3

0) in element interiors
and constant vectors (Q3

0) on faces to approximate displacement. Locally for each
hexahedron, we have 21 such basis functions. Their discrete weak gradients, as 3× 3
matrix, are specified in RT 3

[0].

JL20170519: TO BE FINISHED/CHECKED BY Graham

Example 1. This is a simple example on the unit cube Ω = (0, 1)3. By default,
the Lame constants are λ = µ = 1. But λ value can be changed to test locking-free
property. We have a known analytical expression for the displacement

u =
1

3π

 sin(πx) cos(πy) cos(πz)

cos(πx) sin(πy) cos(πz)

cos(πx) cos(πy) sin(πz)

 .
Accordingly, we have the dilation (divergence of displacement) expressed as

∇ · u = cos(πx) cos(πy) cos(πz).

The right-hand side is

f = π(λ+ 2µ)

 sin(πx) cos(πy) cos(πz)
cos(πx) sin(πy) cos(πz)
cos(πx) cos(πy) sin(πz)

 .
37

The stress is

σ =

 σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 .
where 

3σxx = (3λ+ 2µ) cos(πx) cos(πy) cos(πz),

3σxy = −2µ sin(πx) sin(πy) cos(πz),

3σxz = −2µ sin(πx) cos(πy) sin(πz),

3σyx = −2µ sin(πx) sin(πy) cos(πz),

3σyy = (3λ+ 2µ) cos(πx) cos(πy) cos(πz),

3σyz = −2µ cos(πx) sin(πy) sin(πz),

3σzx = −2µ sin(πx) cos(πy) sin(πz),

3σzy = −2µ cos(πx) sin(πy) sin(πz),

3σzz = (3λ+ 2µ) cos(πx) cos(πy) cos(πz).

Example 2. This is example is derived from [3] Section 6.2. Here we consider
just an elasticity problem: Ω = (0, 1)3, λ = 1, µ = 1. An analytical solution for
displacement is specified as

u = − 1

6π

 cos(2πx) sin(2πy) sin(2πz)

sin(2πx) cos(2πy) sin(2πz)

sin(2πx) sin(2πy) cos(2πz)

 .
Accordingly, we have

∇ · u = sin(2πx) sin(2πy) sin(2πz),

and

f = −(2µ+ λ)

 cos(2πx) sin(2πy) sin(2πz)

sin(2πx) cos(2πy) sin(2πz)

sin(2πx) sin(2πy) cos(2πz)

 .
The expression for stress σ is a bit more complicated and hence omitted.

Applying WG(Q3
0, Q

3
0;RT 3

[0], Q0) to this problem on a sequence of brick meshes, we
observe first order convergence in the L2-norms of the errors in displacement, stress,
and dilation. In Table 12.4, for h = 1

64
, we have more than 4 millions unknowns, and

the code runs for about 1 hour on a MacBookPro.

JL Remarks: Further investigation on

(i) Proof of first order convergence in displacement, stress, and dilation. Talk to

Dr.Zheng PNNL.

38

Table 12.1: Example: Numerical results of WG(Q3
0, Q

3
0;RT 3

[0], Q0) on brick meshes

1/h L2ErrDspl L2ErrStrs L2ErrDiv #Iterations Runtime
4 2.268E-2 6.813E-1 2.457E-1 27 0.3s
8 1.239E-2 3.515E-1 1.350E-1 113 2.3s

16 6.333E-3 1.761E-1 6.894E-2 264 23s
32 3.183E-3 8.811E-2 3.465E-2 528 268s
64 1.594E-3 4.405E-2 1.734E-2 987 3460s

Conv.rate 1st order 1st order 1st order

Table 12.2: Example: Numerical results of WG(Q3
0, Q

3
0;RT 3

[0], Q0) on asymptotically

parallelopiped hexahedral meshes (δ = 1 for perturbation from brick meshes)
1/h L2ErrDspl L2ErrStrs L2ErrDiv #Iterations Runtime

4 2.275E-2 6.862E-1 2.466E-1 113 0.4s
8 1.261E-2 3.714E-1 1.377E-1 310 3.0s

16 6.517E-3 1.900E-1 7.103E-2 714 38s
32 3.287E-3 9.567E-2 3.579E-2 1413 534s
64

Conv.rate

(ii) Do we get weak continuity at face midpoint as for quadrilateral meshes? Any
proof?

(iii) Effects of nonflat faces. Nonflat faces are really annoying. It affects computa-
tional cost and approximation accuracy.

(iv) We are using only Q3
0 on faces. Three other basis functions for Prm are not

used. What are we missing?

(v) More testing examples: See [11] for examples from mechanical engineering. Any
examples from tissue engineering? See [3] Section 6.4 Example for the elasticity
part. See also [18].

39

12.5 WG(P 3
1 , Prm;P

3×3
0 , P0) for Linear Elasticity on

Hexahedral Meshes

A family of WGFEMs for linear elasticity was developed in [21] that can be applied
polygonal and polyhedral meshes, but stabilization is needed.

In this section, we discuss WG(P 3
1 , Prm;P 3×3

0 , P0) for elasticity in hexahedral
meshes.

For P 3×3
0 , it has dimension 9 and an obvious basis as follows 1 0 0

0 0 0
0 0 0

 ,
 0 1 0

0 0 0
0 0 0

 , · · · ,
 0 0 0

1 0 0
0 0 0

 , · · · ,
 0 0 0

0 0 0
0 0 1

 .
whose Gram matrix is simply an order 9 scalar matrix, the scalar is the hexahedral
volume.

Later on, for computing numerical strain, we need the Gram matrix of the averaged
basis functions. For convenience, we listed below.

|E|
2



2
1 1

1 1
1 1

2
1 1

1 1
1 1

2


.

Note that on each face, the space of rigid motions has dimension 6. For consistency
and convenience, we consider the following normalized basis 1

0
0

 ,
 0

1
0

 ,
 0

0
1

 ,
 0

z̃
−ỹ

 ,
 −z̃0

x̃

 ,
 ỹ
−x̃

0

 , (12.1)

where (xm, ym, zm) is the face midpoint and x̃ = x − xm, ỹ = y − ym, z̃ = z − zm.
The Gram matrix is a 6 × 6 SPD and its entries can be computed using (Gaussian)
quadratures. The Gram matrix will be used for implementing the projection used in
the stabilization term.

Note that for the element interior, P 3
1 has dimension 12. However, the discrete

weak gradient and discrete weak divergence of these 12 basis (vector-valued) functions
are simply 3× 3 zero matrix and scalar.

40

So this WGFEM relies on the basis functions defined on the faces. For discrete
weak gradients, the definition is still∫

E

∇w,dφ : W =

∫
E∂

φ∂ · (Wn)−
∫
E◦
φ◦ · (∇ ·W). (12.2)

On each face, for any of the 6 basis functions in Prm, the first term on the above
right-hand side produces nonzero terms, which are shown in the right-hand side of a
9× 9 SPD linear system. Specifically, the six RHS are as follows

∫
f
n1∫

f
n2∫

f
n3

0

0

0

0

0

0



,



0

0

0∫
f
n1∫

f
n2∫

f
n3

0

0

0



,



0

0

0

0

0

0∫
f
n1∫

f
n2∫

f
n3



,



0

0

0∫
f
n1z̃∫

f
n2z̃∫

f
n3z̃

−
∫
f
n1ỹ

−
∫
f
n2ỹ

−
∫
f
n3ỹ



,



−
∫
f
n1z̃

−
∫
f
n2z̃

−
∫
f
n3z̃

0

0

0∫
f
n1x̃∫

f
n2x̃∫

f
n3x̃



,



∫
f
n1ỹ∫

f
n2ỹ∫

f
n3ỹ

−
∫
f
n1x̃

−
∫
f
n2x̃

−
∫
f
n3x̃

0

0

0



,

where n = (n1, n2, n3) is the (varying) outward unit normal vector on a particular
face.

Similarly, for a particular face, the discrete weak divergence of the 6 basis functions
in Prm are respectively∫

f
n1

|E|
,

∫
f
n2

|E|
,

∫
f
n3

|E|
,

∫
f
n2z̃ − n3ỹ

|E|
,

∫
f
n3x̃− n1z̃

|E|
,

∫
f
n1ỹ − n2x̃

|E|
. (12.3)

12.6 Lowest-order WGFEM for Elasticity on Tetra-

hedral Meshes

WG (P 3
0 , P

3
0 ;RT 3

0 , P0) for linear elasticity on a tetrahedral mesh.

Let Te be a tetrahedron. It is known that dim(RT 3
0) = 12. Let (xc, yc, zc) be the

element center and X = x−xc, Y = y−yc, Z = z−zc be the normalized coordinates.

41

For convenience, we denote

W1 =

 1 0 0
0 0 0
0 0 0

 ,W2 =

 0 1 0
0 0 0
0 0 0

 ,W3 =

 0 0 1
0 0 0
0 0 0

 ,W4 =

 X Y Z
0 0 0
0 0 0

 ,

W5 =

 0 0 0
1 0 0
0 0 0

 ,W6 =

 0 0 0
0 1 0
0 0 0

 ,W7 =

 0 0 0
0 0 1
0 0 0

 ,W8 =

 0 0 0
X Y Z
0 0 0

 ,

W9 =

 0 0 0
0 0 0
1 0 0

 ,W10 =

 0 0 0
0 0 0
0 1 0

 ,W11 =

 0 0 0
0 0 0
0 0 1

 ,W12 =

 0 0 0
0 0 0
X Y Z

 ,

(12.4)
Then we have W j = 1

2
(Wj +W T

j) expressed as

W 1 =

 1 0 0
0 0 0
0 0 0

 ,W 2 =

 0 1
2 0

1
2 0 0
0 0 0

 ,W 3 =

 0 0 1
2

0 0 0
1
2 0 0

 ,W 4 =

 X Y
2

Z
2

Y
2 0 0
Z
2 0 0

 ,

W 5 =

 0 1
2 0

1
2 0 0
0 0 0

 ,W 6 =

 0 0 0
0 1 0
0 0 0

 ,W 7 =

 0 0 0
0 0 1

2
0 1

2 0

 ,W 8 =

 0 X
2 0

X
2 Y Z

2

0 Z
2 0

 ,

W 9 =

 0 0 1
2

0 0 0
1
2 0 0

 ,W 10 =

 0 0 0
0 0 1

2
0 1

2 0

 ,W 11 =

 0 0 0
0 0 0
0 0 1

 ,W 12 =

 0 0 X
2

0 0 Y
2

X
2

Y
2 Z

 ,

(12.5)

For a WG (P 3
0 , P

3
0) element, there are 15 basis functions: 3 for interior, and 3 for

each of the four faces. Through integration by parts, their discrete weak gradients
are specified in RT 3

0 , and their discrete weak divergence are specified in P0. To be
more specific, if φi(1 ≤ i ≤ 15) is such a WG basis function, then

∇w,dφi =
12∑
j=1

cijWj, ∇w,d · φi = di.

Accordingly

εw,d(φi) = 2µ
1∑
j=1

2cijW j,

where W j = 1
2
(Wj +W T

j). Finally we have stress

σ(φi) = 2µ
12∑
j=1

cijW j + λdiI3.

Actually, we will rewrite the identity matrix as

I3 = W1 +W6 +W11.

42

Based on these efforts, we have

σxx = (2µci,1 + λdi) + 2µci,4X,

σyy = (2µci,6 + λdi) + 2µci,8Y,

σzz = (2µci,11 + λdi) + 2µci,12Z,

σxy = ...

σxz = ...

σyz = ...

(12.6)

It is clear that the normal stress σxx is a linear function of X, σyy is a linear function
of Y , σzz is a linear function of Z, whereas the shear stress σxy is a linear function of
X, Y and similarly for σxz, σyz.

Next we present numerical experiments.

Example 1: Domain Ω = (0, 1)3 (unit cube), Elasticity parameter λ = µ = 1.
Consider uniform tetrahedral meshes: n partitions each in the x, y, z-directions. Each
brick block is further divided into 6 tetrahedra.

The single-matrix approach is used. A 5-point Gaussian quadrature is applied
on tetrahedra, whereas a 3-point Gaussian quadrature is applied on triangles. A
conjugate gradient solver for sparse block SPD linear systems is employed with both
tolerance and threshold set as 10−24.

Shown in Table ? are the numerical results: L2-norms of the errors in displace-
mentment, stress, and dilation. First order convergence rates can be clearly observed.

Table 12.3: Example 1: WG (P 3
0 , P

3
0 ;RT 3

0 , P0) for elasticity on tetrahedral meshes
n DOFs #itrs L2ErrDspl L2ErrStrs L2ErrDiv Runtime
4 3744 328 1.885E-2 4.927E-1 1.163E-1
8 28800 619 9.214E-3 2.796E-1 5.389E-2

16 225792 1190 4.540E-3 1.453E-2 2.544E-2 136s
32 1787904 2306 2.259E-3 7.345E-2 1.245E-2 2583s

1st order 1st order 1st order

43

Bibliography

[1] J. Alberty, C. Carstensen, S. A. Funken, and R. Klose. Matlab implementation
of the finite element method in elasticity. Computing, 69:239–263, 2002.

[2] D.N. Arnold, D. Boffi, and R.S. Falk. Quadrilateral h(div) finite elements. SIAM
J. Numer. Anal., 42:2429–2451, 2005.

[3] Lorenz Berger, Rafel Bordas, David Kay, and Simon Tavener. Stabilized lowest-
order finite element approximation for linear three-field poroelasticity. SIAM J.
Sci. Comput., 37:A2222–A2245, 2015.

[4] L. Bush and V. Ginting. On the application of the continuous galerkin finite
element method for conservation problems. SIAM J. Sci. Comput., 35:A2953–
A2975, 2013.

[5] Stephen C. Cowin and Stephen B. Doty. Tissue Mechanics. Springer, 2007.

[6] V. Ginting, Guang Lin, and Jiangguo Liu. On application of the weak galerkin
finite element method to a two-phase model for subsurface flow. J. Sci. Comput.,
66:225–239, 2016.

[7] G. Lin, J. Liu, L. Mu, and X. Ye. Weak galerkin finite element methdos for darcy
flow: Anistropy and heterogeneity. J. Comput. Phys., 276:422–437, 2014.

[8] Guang Lin, Jiangguo Liu, and Farrah Sadre-Marandi. A comparative study on
the weak galerkin, discontinuous galerkin, and mixed finite element methods. J.
Comput. Appl. Math., 273:346–362, 2015.

[9] Jiangguo Liu, Farrah Sadre-Marandi, and Zhuoran Wang. Darcylite: A matlab
toolbox for darcy flow computation. Procedia Computer Science, 80:In press,
2016.

[10] M.F.Wheeler, Guangri Xue, and I.Yotov. A multipoint flux mixed finite element
method on distorted quadrilaterals and hexahedra. Numer. Math., 121:165–204,
2012.

[11] Dubravka Mijuca. On hexahedral finite element hc8/27 in elasticity. Comput.
Mech., 33:466–480, 2004.

44

[12] E. Moeendarbary, L. Valon, M. Fritzsche, A. R. Harris, D. A. Moulding, A. J.
Thrasher, E. Stride, L. Mahadevan, and G. T. Charras. The cytoplasm of living
cells behaves as a poroelastic material. Nature Materials, 12:253–261, 2013.

[13] Phillip J. Phillips. Finite element methods in linear poroelasticity: Theoretical
and computational results. PhD thesis, University of Texas at Austin, 2005.

[14] R.Ingram, M.F.Wheeler, and I.Yotov. A multipoint flux mixed finite element
method on hexahedra. SIAM J. Numer. Anal., 48:1281–1312, 2010.

[15] R.L.Naff, T.F.Russell, and J.D.Wilson. Shape functions for velocity interpolation
in general hexahedral cells. Comput. Geosci., 6:285–314, 2002.

[16] R.S.Falk, P.Gatto, and P.Monk. Hexahedral h(div) and h(curl) finite elements.
M2AN, 2011.

[17] S.Hossain, S.Hossainy, Y.Bazilevs, V.Calo, and T.Hughes. Mathematical mod-
eling of coupled drug and drug-encapsulated nanoparticle transport in patient-
specific coronary artery walls. Comput. Mech., 49:213–242, 2012.

[18] K. Støverud, M. Darcis, R. Helmig, and S. Hassanizadeh. Modeling concentra-
tion distribution and deformation during convection-enhanced drug delivery into
brain tissue. Transp. Porous Med., 92:119–143, 2012.

[19] Shuyu Sun and Jiangguo Liu. A locally conservative finite element method based
on piecewise constant enrichment of the continuous galerkin method. SIAM J.
Sci. Comput., 31:2528–2548, 2009.

[20] B. L. Vaughan, P. A. Galie, J. P. Stegemann, and J. B. Grotberg. A poroelastic
model describing nutrient transport and cell stresses within a cyclically strained
collagen hydrogel. Biophys. J., 105:2188–2198, 2013.

[21] Chunmei Wang, Junping Wang, Ruishu Wang, and Ran Zhang. A locking-
free weak galerkin finite element method for elasticity problems in the primal
formulation. J. Comput. Appl. Math., 307:346–366, 2016.

[22] Junping Wang and Xiu Ye. A weak galerkin finite element method for second
order elliptic problems. J. Comput. Appl. Math., 241:103–115, 2013.

[23] Shangyou Zhang. On the nested refinement of quadrilateral and hexahedral finite
elements and the affine approximation. Numer. Math., 98:559–579, 2004.

[24] Shangyou Zhang. Numerical integration with taylor truncations for the quadri-
lateral and hexahedral finite elements. J. Comput. Appl. Math., 205:325–342,
2007.

45

