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Wildness predicts the inevitable failure to catalog your objects.

Why did you want a catalog in the first place?
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Researcher: My proof works except for groups of order 1536 and
2050. Those I’ll do by hand.

| ...Magma available through Simons Foundation ...|

>NumberOfSmallGroups(1536);
408641062
> NumberOfSmallGroups(2050);
Runtime error: The groups of order 2050 are not small

...good news, my new theorem just became a conjecture!

Moral: Researcher decisions are influenced by knowing the
number of cases. Even rough estimates are helpful.
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Researcher: I don’t have time to referee this paper; I’m sure it is
the same semifield I found last year anyway.

>IsIsomorphic(A1, A2);
false

...OK, I’ll just be picky about grammar instead.

Moral: Having practical tools to compare examples keeps you
honest. – E. A. O’Brien
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Researcher: There must be more examples of p-groups with G2

as acentral automorphisms. What are they like?

>p := 7;
>G := my GlasbyPalfySchneider group(p);
>H := RandomSibling( G, change:=[ "Size" ],
preserve:=["Nilpotence", "pClass", "Out"] );

Science fiction? No! But it will be difficult to implement.
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Survival after catalogs depends at least on these:

Counting: theorems, and eventually algorithms, to estimate
quantities of objects that would have been in the catalog.

Comparing: tools to test appropriate equality.
Creating: methods to sample pseudo-randomly.

(Is this research or engineering? Maybe both, but who other
than researchers could actually solve these?)
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COUNTING IN ALGEBRA
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Besche-Eick-O’Brien 2000.
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(Probably) most finite groups order 2k, 2k3, 3k....

Conjecture. Erdős
Up to isomorphism most
groups of size ≤ N have order
2k.

Theorem. Higman 60; Sims 65
The number f (pn) of groups of
order pn is

p2n3/27+Ω(n2)∩O(n3−ε)

for a some ε > 0.

Theorem. Pyber 93 The
number f (N) of groups order
at N satisfies

f (N) ≤ N 2µ(N)2/27+Dµ(N)2−ε
.

Fact. The number of graphs
on N vertices is

2Θ(N2).

Fact. The number of semi-
groups of order N vertices is

2Θ(N2 logN).

Groups do not grow like com-
binatorics. The rare prime
power sized sets are by far the
most complex.



10

What grows like groups?

Theorem. Kruse-Price-70
The number of finite rings of or-
der pn is

p4n3/27+Ω(n2)∩O(n3−ε)

.
Theorem. Neretin-87
The dimension of the variety of
algebras is

2

27
n3 + D1n

3−ε1

for commutative or Lie,

4

27
n3 + D2n

3−ε2

for associative.

Theorem. Poonen-08
The number of commutative
rings of order pn is

p2n3/27+Ω(n2)∩O(n3−ε)

Why so similar to groups?
Hint.
Groups have a second product

[x, y] = x−1xy = x−1y−1xy

and it nearly distributes:

[xy, z] = [x, z]y[y, z].
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Step one: separate nilpotent from reductive

↪→ −→

Step two: Break nilpotent into abelian sections
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Where is the complexity in “triangular matrices”?

A. Nonassociative products
need 3-dimensional array of pa-
rameters. Entropy of Θ(n3).

n
n

n

B. Matrix type groups[
s u w
0 s v
0 0 s

] [
s′ u′ w′
0 s′ v′
0 0 s′

]
=[

ss′ us′+su′ ws′+u∗v′+sw′
0 ss′ vs′+sv′
0 0 ss′

]
need only ∗ : U × V � W .

d(U)

d(V )

d(W )

d(U)d(V )d(W ) ≤ n3/27
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C. Cut to diagonal embedding


s u w

0 s ±uθ
0 0 s

 :
u ∈ U,
w ∈ W


now use ∗ : U × U � W .

d(U)

d(W )

d(U)2(n− d(U)) ≤ 4n3/27.

D. Add symmetry{[
s u w
0 s ±uθ
0 0 s

]
: u ∈ U,w ∈ W

}
need ±θ-Hermitian

∗ : U × U � W.

d(U)

d(W )

1
2d(U)2(n− d(U)) ≤ 2n3/27.
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CREATING IN ALGEBRA
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Obvious default random sample.

To create a “random” group, ring, or algebra, we can just fill in
the data structures we described in our counting.
Issues.

(1) Not all substitutions are consistent with group laws.
(2) Tends to give p-groups with probability 1. While “true”,

users want something different at times.

Other models...
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Def.(Gromov ‘87-‘03) G =<
x1, . . . , xn|r1, . . . , rs〉 |ri| ≥ `
uniformly random (later mod-
els replace this 0-density with
δ ∈ [0, 1] density).

Theorem (Gromov) These
groups are 1, Z/2, or infi-
nite hyperbolic (Cayley graph
is tree like).

Theorem (Champetier ‘00)
No measureable

f : {〈X|R〉}/∼= → R.
(Doesn’t play nice with isomor-
phism classes.)

Pick a random subgroup
of a finite group?

Theorem (Dixon; Kantor-
Lubotzky; Liebeck-Shalev) For
An, Sn, and all groups of
Lie type, two random elements
generate with high probability.



17

(Mann) Try parabolic?

Theorem (W.) Ud(q) upper
uni-triangular matrices.
If e > 2

√
d then sampling in

Ud, then almost always

qd−e|〈u1, . . . , ue〉| = |Ud|

in fact U ′d = 〈u1, . . . , ue〉′.

(Probably) similar claims for
all groups of Lie type and Sn.

No known “big groups” let
you sample interesting random
subgroups by generators.

Proof. Sims rank of a bimaps
∗ : A×A� B smallest dimen-
sion subspace X ≤ A where
A ∗ A = B.

In Ud commutation has Sims
rank d

√
de.

Prove generic 2
√
d subspace

X of A satisfies X ∗ X = B.
�

This problem prevents useful
random sampling of rings and
algebras also.
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A working but confusing heuristic.

Randomly sample sparse matrices x1, . . . , xe and the

logp |〈x1, . . . , xe〉|
becomes normally distributed.

So out of less randomness you get more randomness.

Does this make sense in theory?

Seems to be because this way [xi, xj] are trivial often; so, generic
large subspaces of sparse matrices avoid Sims subspaces.
Prove this or explain some other way.
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HARD COUNTING AND CREATING IN
ALGEBRA
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Goal: Random sample from
within a class L but also sat-
isfy a property Q (equiv. ¬Q).

Assume L ⊂ Σ∗ =
⋃
i Σi a set

of strings over an alphabet Σ.

Set LQ = {w ∈ L : Q(w)}.

Def. For a language L, a
padding (p, q) are poly-time
computable p : Σ∗ × Σ∗ → Σ∗,
q : Σ∗ → Σ∗ such that

p(w, u) ∈ L ⇔ w ∈ L,

q(p(w, u)) = u.

Pump randomness into lan-
guage using one instance!

Prop. For a paddable L,
∃a, c > 0,

δ(n) =
L ∩ Σn

2n
∈ Ω

(
an

1/c
)
.

c = 1 if |f (x, y)| ∈ O(|x|+|y|).

Coro.[Miyazaki-W.] LQ has
exponential density if it has
linear padding. Also, gives a
dense polynomial-time random
sampling method.



21

Who has a padding?

All known NP-complete prob-
lems have linear paddings.

Conj. (Berman-Hartmanis)
All NP-complete problems are
isomorphic (bijective reduc-
tions).
Thm (Berman-Hartmanis)
Paddable language that are
poly-equivalent are isomorphic.

Thm (Miyazaki-W.) Linear
paddable language that are
linear-equivalent are linearly
isomorphic.

Problem? SAT ≤ CLIQUE
non-linear.

Fix. If efficiently encoded
SAT ≤ CLIQUE can be made
linear. (True of all NP-
complete reductions tried.)

So we indeed expect NP-
complete problems to have lin-
ear paddings.
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Thm[M-W]. DV− SAT ≤lin L,
and L ∈ NP having verifier V

• V 2-tape with RAM

• Oblivious computation.

Then L is linear isomor-
phic to DV-SAT, and linearly
paddable. Hence DV-SAT is lin-
early complete amongst these
NP problems.

Ex. DV-SAT, AFF PTk, SDITk,
MINRANKk, SINGULARk

Coro(Hard Counting). Prob-
lems complete for this class are
dense.

Coro(Hard Sampling) Prob-
lems complete for this class
have a polynomial time random
sample algorithm needing one
seed.
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Def ∗ : U × V � W is non-
singular if u ∗ v = 0 implies
u = 0 or v = 0. The (left)
singularity radical is R = 〈v :
∃u 6= 0, u ∗ v = 0〉.

Thm[M-W]. Singular prod-
ucts a dense amongst general
products.

1st proved by making lin-
ear reduction to NP-complete,
then “demystified” to concrete
proof.

Prob. Fix Mi ∈ Md(k). De-
cide if

det(x1M1 + · · · + xdMd) = 0

has a (projective) point.

If this problem is in our class
then, there are exponentially
many finite projective planes
(an open conjecture studied by
Albert, Knuth, Kantor, and
many others).
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COMPARING IN ALGEBRA
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Isomorphism problems in algebra today.

PresGrpIso

BBGrpIso#ABEL

PcGrpIso MatGrpIso PermGrpIso RingIso LieIso

ModIso

SemigrpIso GraphIso

QuasigroupIsoCayleyGroupIso O(cln2 n)

O(cn
1/4 ln2 n)

O(cn
2/3

)

∞

n = input size, e.g. graphs on v vertices have n ∈ O(v2)



26

This is a long story, check out:
www.math.colostate.edu/∼jwilson/papers/group-iso-2015.pdf


