Surviving in the wilderness.

James B. Wilson
Colorado State University

Wildness predicts the inevitable failure to catalog your objects.

Why did you want a catalog in the first place?

Researcher: My proof works except for groups of order 1536 and 2050. Those I'll do by hand.
| ...Magma available through Simons Foundation ...|
>NumberOfSmallGroups(1536);
408641062
> NumberOfSmallGroups (2050);
Runtime error: The groups of order 2050 are not small
...good news, my new theorem just became a conjecture!

Moral: Researcher decisions are influenced by knowing the number of cases. Even rough estimates are helpful.

Researcher: I don't have time to referee this paper; I'm sure it is the same semifield I found last year anyway.
>IsIsomorphic(A1, A2);
false
...OK, I'll just be picky about grammar instead.

Moral: Having practical tools to compare examples keeps you honest. - E. A. O'Brien

Researcher: There must be more examples of p-groups with G_{2} as acentral automorphisms. What are they like?
>p := 7;
>G := my_GlasbyPalfySchneider_group(p);
$>H$:= RandomSibling(G, change:=["Size"], preserve:=["Nilpotence", "pClass", "Out"]);

Science fiction? No! But it will be difficult to implement.

Survival after catalogs depends at least on these:
Counting: theorems, and eventually algorithms, to estimate quantities of objects that would have been in the catalog. Comparing: tools to test appropriate equality. Creating: methods to sample pseudo-randomly.
(Is this research or engineering? Maybe both, but who other than researchers could actually solve these?)

COUNTING IN ALGEBRA

Besche-Eick-O'Brien 2000.

$1 \mathrm{e}+10$ -

$$
N=2^{9} \cdot 3
$$

A log-scale plot of the number $f(N)$ of the groups of order N.
(Probably) most finite groups order $2^{k}, 2^{k} 3,3^{k} \ldots$

Conjecture. Erdős
Up to isomorphism most groups of size $\leq N$ have order 2^{k}.

Theorem. Higman 60; Sims 65 The number $f\left(p^{n}\right)$ of groups of order p^{n} is

$$
p^{2 n^{3} / 27+\Omega\left(n^{2}\right) \cap O\left(n^{3-\epsilon}\right)}
$$

for a some $\epsilon>0$.
Theorem. Pyber 93 The number $f(N)$ of groups order at N satisfies

$$
f(N) \leq N^{2 \mu(N)^{2} / 27+D \mu(N)^{2-\epsilon}} .
$$

Fact. The number of graphs on N vertices is

$$
2^{\Theta\left(N^{2}\right)}
$$

Fact. The number of semigroups of order N vertices is

$$
2^{\Theta\left(N^{2} \log N\right)}
$$

Groups do not grow like combinatorics. The rare prime power sized sets are by far the most complex.

What grows like groups?

Theorem. Kruse-Price-70
The number of finite rings of order p^{n} is

$$
p^{4 n^{3} / 27+\Omega\left(n^{2}\right) \cap O\left(n^{3-\epsilon}\right)}
$$

Theorem. Neretin-87
The dimension of the variety of algebras is

$$
\frac{2}{27} n^{3}+D_{1} n^{3-\epsilon_{1}}
$$

for commutative or Lie,

$$
\frac{4}{27} n^{3}+D_{2} n^{3-\epsilon_{2}}
$$

for associative.

Theorem. Poonen-08
The number of commutative rings of order p^{n} is

$$
p^{2 n^{3} / 27+\Omega\left(n^{2}\right) \cap O\left(n^{3-\epsilon}\right)}
$$

Why so similar to groups? Hint.
Groups have a second product

$$
[x, y]=x^{-1} x^{y}=x^{-1} y^{-1} x y
$$

and it nearly distributes:

$$
[x y, z]=[x, z]^{y}[y, z] .
$$

Step one: separate nilpotent from reductive

Step two: Break nilpotent into abelian sections

Where is the complexity in "triangular matrices"?

A. Nonassociative products need 3-dimensional array of parameters. Entropy of $\Theta\left(n^{3}\right)$.
B. Matrix type groups

$$
\left[\begin{array}{lll}
s & u & w \\
0 & s & v \\
0 & 0 & s
\end{array}\right]\left[\begin{array}{ccc}
s^{\prime} & u^{\prime} & w^{\prime} \\
0 & s^{\prime} & v^{\prime} \\
0 & 0 & s^{\prime}
\end{array}\right]=
$$

$$
\left[\begin{array}{ccc}
s s^{\prime} & u s^{\prime}+s u^{\prime} & w s^{\prime}+u * v^{\prime}+s w^{\prime} \\
0 & s s^{\prime} & v s^{\prime}+s v^{\prime} \\
0 & 0 & s s^{\prime}
\end{array}\right]
$$

$$
\text { need only } *: U \times V \rightharpoondown \vec{W} \text {. }
$$

$$
d(U) d(V) d(W) \leq n^{3} / 27
$$

C. Cut to diagonal embedding
D. Add symmetry
$\left\{\left[\begin{array}{ccc}s & u & w \\ 0 & s & \pm u \theta \\ 0 & 0 & s\end{array}\right]: u \in U, w \in W\right\}$
need $\pm \theta$-Hermitian

$$
*: U \times U \rightharpoondown W
$$

$$
d(U)
$$

now use $*: U \times U \hookrightarrow W$.
$d(U)$
$d(W)$
$d(U)^{2}(n-d(U)) \leq 4 n^{3} / 27$.

CREATING IN ALGEBRA

Obvious default random sample.

To create a "random" group, ring, or algebra, we can just fill in the data structures we described in our counting.
Issues.
(1) Not all substitutions are consistent with group laws.
(2) Tends to give p-groups with probability 1. While "true", users want something different at times.

Other models...

Def.(Gromov '87-‘03) $G=<$ $x_{1}, \ldots, x_{n}\left|r_{1}, \ldots, r_{s}\right\rangle\left|r_{i}\right| \geq \ell$ uniformly random (later models replace this 0 -density with $\delta \in[0,1]$ density $)$.

Theorem (Gromov) These groups are $1, \mathbb{Z} / 2$, or infinite hyperbolic (Cayley graph is tree like).

Theorem (Champetier ‘00) No measureable

$$
f:\{\langle X \mid R\rangle\} / \cong \rightarrow \mathbb{R} .
$$

(Doesn't play nice with isomorphism classes.)

Pick a random subgroup of a finite group?

Theorem (Dixon; KantorLubotzky; Liebeck-Shalev) For A_{n}, S_{n}, and all groups of Lie type, two random elements generate with high probability.

(Mann) Try parabolic?

Theorem (W.) $U_{d}(q)$ upper uni-triangular matrices.
If $e>2 \sqrt{d}$ then sampling in U_{d}, then almost always

$$
q^{d-e}\left|\left\langle u_{1}, \ldots, u_{e}\right\rangle\right|=\left|U_{d}\right|
$$

in fact $U_{d}^{\prime}=\left\langle u_{1}, \ldots, u_{e}\right\rangle^{\prime}$.
(Probably) similar claims for all groups of Lie type and S_{n}.

No known "big groups" let you sample interesting random subgroups by generators.

Proof. Sims rank of a bimaps * : $A \times A \hookrightarrow B$ smallest dimension subspace $X \leq A$ where $A * A=B$.
In U_{d} commutation has Sims rank $\lceil\sqrt{d}\rceil$.
Prove generic $2 \sqrt{d}$ subspace X of A satisfies $X * X=B$.
\square

This problem prevents useful random sampling of rings and algebras also.

A working but confusing heuristic.

Randomly sample sparse matrices x_{1}, \ldots, x_{e} and the

$$
\log _{p}\left|\left\langle x_{1}, \ldots, x_{e}\right\rangle\right|
$$

becomes normally distributed.

So out of less randomness you get more randomness.

Does this make sense in theory?
Seems to be because this way $\left[x_{i}, x_{j}\right]$ are trivial often; so, generic large subspaces of sparse matrices avoid Sims subspaces.
Prove this or explain some other way.

HARD COUNTING AND CREATING IN ALGEBRA

Goal: Random sample from within a class \mathcal{L} but also satisfy a property Q (equiv. $\neg Q$).

Assume $\mathcal{L} \subset \Sigma^{*}=\bigcup_{i} \Sigma^{i}$ a set of strings over an alphabet Σ.
Set $\mathcal{L}_{Q}=\{w \in \mathcal{L}: Q(w)\}$.
Def. For a language \mathcal{L}, a padding (p, q) are poly-time computable $p: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$, $q: \Sigma^{*} \rightarrow \Sigma^{*}$ such that

$$
p(w, u) \in \mathcal{L} \Leftrightarrow w \in \mathcal{L},
$$

$$
q(p(w, u))=u
$$

Pump randomness into language using one instance!

Prop. For a paddable \mathcal{L}, $\exists a, c>0$,

$$
\delta(n)=\frac{\mathcal{L} \cap \Sigma^{n}}{2^{n}} \in \Omega\left(a^{n^{1 / c}}\right) .
$$

$$
c=1 \text { if }|f(x, y)| \in O(|x|+|y|) .
$$

Coro.[Miyazaki-W.] \mathcal{L}_{Q} has exponential density if it has linear padding. Also, gives a dense polynomial-time random sampling method.

Who has a padding?

All known NP-complete problems have linear paddings.

Conj. (Berman-Hartmanis) All NP-complete problems are isomorphic (bijective reductions).
Thm (Berman-Hartmanis)
Paddable language that are poly-equivalent are isomorphic.

Thm (Miyazaki-W.) Linear paddable language that are linear-equivalent are linearly isomorphic.

Problem? SAT \leq CLIQUE

non-linear.

Fix. If efficiently encoded SAT \leq CLIQUE can be made linear. (True of all NPcomplete reductions tried.)

So we indeed expect NPcomplete problems to have linear paddings.

Thm [M-W]. DV - SAT $\leq_{\text {lin }} \mathcal{L}$, and $\mathcal{L} \in N P$ having verifier V

- V 2-tape with RAM
- Oblivious computation.

Then \mathcal{L} is linear isomorphic to DV-SAT, and linearly paddable. Hence DV-SAT is linearly complete amongst these NP problems.

Ex. DV-SAT, $\mathrm{AFF}_{\mathrm{PT}}^{k}$, SDIT_{k}, MINRANK $_{k}$, SINGULAR $_{k}$

Coro(Hard Counting). Problems complete for this class are dense.

Coro(Hard Sampling) Problems complete for this class have a polynomial time random sample algorithm needing one seed.

Def $*: U \times V \longrightarrow W$ is nonsingular if $u * v=0$ implies $u=0$ or $v=0$. The (left) singularity radical is $R=\langle v$: $\exists u \neq 0, u * v=0\rangle$.

Thm[M-W]. Singular products a dense amongst general products.
1st proved by making linear reduction to NP-complete, then "demystified" to concrete proof.

Prob. Fix $M_{i} \in M_{d}(k)$. Decide if
$\operatorname{det}\left(x_{1} M_{1}+\cdots+x_{d} M_{d}\right)=0$ has a (projective) point.

If this problem is in our class then, there are exponentially many finite projective planes (an open conjecture studied by Albert, Knuth, Kantor, and many others).

COMPARING IN ALGEBRA

Isomorphism problems in algebra today.

$n=$ input size, e.g. graphs on v vertices have $n \in O\left(v^{2}\right)$

This is a long story, check out:
www.math.colostate.edu/~jwilson/papers/group-iso-2015.pdf

