Surviving in the wilderness.

James B. Wilson Colorado State University Wildness predicts the inevitable failure to catalog your objects.

Why did you want a catalog in the first place?

Researcher: My proof works except for groups of order 1536 and 2050. Those I'll do by hand.

| ...Magma available through Simons Foundation ...|

>NumberOfSmallGroups(1536);
408641062

> NumberOfSmallGroups(2050);

Runtime error: The groups of order 2050 are not small

...good news, my new theorem just became a conjecture!

Moral: Researcher decisions are influenced by knowing the number of cases. Even rough estimates are helpful.

Researcher: I don't have time to referee this paper; I'm sure it is the same semifield I found last year anyway.

>IsIsomorphic(A1, A2); false

4

...OK, I'll just be picky about grammar instead.

Moral: Having practical tools to compare examples keeps you honest. - E. A. O'Brien

Researcher: There must be more examples of p-groups with G_2 as acentral automorphisms. What are they like?

Science fiction? No! But it will be difficult to implement.

Survival after catalogs depends at least on these:

Counting: theorems, and eventually algorithms, to estimate quantities of objects that would have been in the catalog.Comparing: tools to test appropriate equality.Creating: methods to sample pseudo-randomly.

(Is this research or engineering? Maybe both, but who other than researchers could actually solve these?)

COUNTING IN ALGEBRA

A log-scale plot of the number f(N) of the groups of order N.

(Probably) most finite groups order 2^k , 2^k3 , 3^k

Conjecture. Erdős Up to isomorphism most groups of size $\leq N$ have order 2^k .

Theorem. Higman 60; Sims 65 The number $f(p^n)$ of groups of order p^n is

 $p^{2n^3/27 + \Omega(n^2) \cap O(n^{3-\epsilon})}$

for a some $\epsilon > 0$.

Theorem. Pyber 93 The number f(N) of groups order at N satisfies

 $f(N) \le N^{2\mu(N)^2/27 + D\mu(N)^{2-\epsilon}}.$

Fact. The number of graphs on N vertices is $2^{\Theta(N^2)}$.

Fact. The number of semigroups of order N vertices is $2^{\Theta(N^2 \log N)}$.

Groups do not grow like combinatorics. The rare prime power sized sets are by far the most complex. **Theorem.** Kruse-Price-70 The number of finite rings of order p^n is

 $p^{4n^3/27 + \Omega(n^2) \cap O(n^{3-\epsilon})}$

Theorem. Neretin-87 The dimension of the variety of algebras is

$$\frac{2}{27}n^3 + D_1n^{3-\epsilon_1}$$

for commutative or Lie,

$$\frac{4}{27}n^3 + D_2n^{3-\epsilon_2}$$

for associative.

Theorem. Poonen-08 The number of commutative rings of order p^n is $p^{2n^3/27+\Omega(n^2)\cap O(n^{3-\epsilon})}$

Why so similar to groups? Hint. Groups have a second product

$$[x, y] = x^{-1}x^y = x^{-1}y^{-1}xy$$

and it nearly distributes:

 $[xy, z] = [x, z]^y [y, z].$

Step two: Break nilpotent into abelian sections

Where is the complexity in "triangular matrices"?

A. Nonassociative products need 3-dimensional array of parameters. Entropy of $\Theta(n^3)$.

B. Matrix type groups

$$\begin{bmatrix} s & u & w \\ 0 & s & v \\ 0 & 0 & s \end{bmatrix} \begin{bmatrix} s' & u' & w' \\ 0 & s' & v' \\ 0 & 0 & s' \end{bmatrix} = \begin{bmatrix} ss' & us' + su' & ws' + u*v' + sw' \\ 0 & ss' & vs' + sv' \\ 0 & 0 & ss' \end{bmatrix}$$
need only $*: U \times V \rightarrowtail W$.

 $d(U)d(V)d(W) \le n^3/27$

C. Cut to diagonal embedding | **D.** Add symmetry

$$\left\{ \begin{bmatrix} s & u & w \\ 0 & s & \pm u\theta \\ 0 & 0 & s \end{bmatrix} : \begin{array}{c} u \in U, \\ w \in W \end{array} \right\}$$

D. Add symmetry $\left\{ \begin{bmatrix} s & u & w \\ 0 & s & \pm u\theta \\ 0 & 0 & s \end{bmatrix} : u \in U, w \in W \right\}$ need $\pm \theta$ -Hermitian $* : U \times U \rightarrow W.$ d(U) d(U) $\frac{1}{2}d(U)^{2}(n - d(U)) \leq 2n^{3}/27.$

CREATING IN ALGEBRA

Obvious default random sample.

To create a "random" group, ring, or algebra, we can just fill in the data structures we described in our counting.

Issues.

- (1) Not all substitutions are consistent with group laws.
- (2) Tends to give p-groups with probability 1. While "true", users want something different at times.

Other models...

Def.(Gromov '87-'03) $G = \langle | \text{Pick a random subgroup} \rangle$ $|x_1,\ldots,x_n|r_1,\ldots,r_s\rangle |r_i| \geq \ell$ uniformly random (later models replace this 0-density with $\delta \in [0, 1]$ density).

Theorem (Gromov) These groups are 1, $\mathbb{Z}/2$, or infinite hyperbolic (Cayley graph is tree like).

Theorem (Champetier '00) No measureable

 $f: \{\langle X|R\rangle\}/\cong \to \mathbb{R}.$

(Doesn't play nice with isomorphism classes.)

of a finite group?

Theorem (Dixon; Kantor-Lubotzky; Liebeck-Shalev) For A_n , S_n , and all groups of Lie type, two random elements generate with high probability.

(Mann) Try parabolic?

Theorem (W.) $U_d(q)$ upper uni-triangular matrices. If $e > 2\sqrt{d}$ then sampling in U_d , then almost always

$$q^{d-e}|\langle u_1,\ldots,u_e\rangle| = |U_d|$$

in fact $U'_d = \langle u_1, \ldots, u_e \rangle'$.

(Probably) similar claims for all groups of Lie type and S_n .

No known "big groups" let you sample interesting random subgroups by generators. **Proof.** Sims rank of a bimaps $*: A \times A \rightarrow B$ smallest dimension subspace $X \leq A$ where A * A = B. In U_d commutation has Sims rank $\lceil \sqrt{d} \rceil$. Prove generic $2\sqrt{d}$ subspace X of A satisfies X * X = B. \square

This problem prevents useful random sampling of rings and algebras also.

A working but confusing heuristic.

Randomly sample **sparse** matrices x_1, \ldots, x_e and the $\log_p |\langle x_1, \ldots, x_e \rangle|$ becomes normally distributed.

So out of less randomness you get more randomness.

Does this make sense in theory?

Seems to be because this way $[x_i, x_j]$ are trivial often; so, generic large subspaces of sparse matrices avoid Sims subspaces. **Prove this or explain some other way.**

HARD COUNTING AND CREATING IN ALGEBRA

within a class \mathcal{L} but also satisfy a property Q (equiv. $\neg Q$).

Assume $\mathcal{L} \subset \Sigma^* = \bigcup_i \Sigma^i$ a set of strings over an alphabet Σ . Set $\mathcal{L}_Q = \{ w \in \mathcal{L} : Q(w) \}.$

Def. For a language \mathcal{L} , a padding (p,q) are poly-time computable $p: \Sigma^* \times \Sigma^* \to \Sigma^*$, $q: \Sigma^* \to \Sigma^*$ such that

 $p(w,u) \in \mathcal{L} \Leftrightarrow w \in \mathcal{L}.$

$$q(p(w,u)) = u.$$

Goal: Random sample from | Pump randomness into language using one instance!

> **Prop.** For a paddable \mathcal{L} , $\exists a, c > 0,$ $\delta(n) = \frac{\mathcal{L} \cap \Sigma^n}{2^n} \in \Omega\left(a^{n^{1/c}}\right).$ c = 1 if $|f(x, y)| \in O(|x| + |y|)$.

Coro. [Miyazaki-W.] \mathcal{L}_Q has exponential density if it has linear padding. Also, gives a dense polynomial-time random sampling method.

Who has a padding?

All known NP-complete problems have linear paddings.

Conj. (Berman-Hartmanis) All NP-complete problems are isomorphic (bijective reductions).

Thm (Berman-Hartmanis) Paddable language that are poly-equivalent are isomorphic.

Thm (Miyazaki-W.) Linear paddable language that are linear-equivalent are linearly isomorphic. Fix. If efficiently encoded $SAT \leq CLIQUE$ can be made linear. (True of all NP-complete reductions tried.)

So we indeed expect NPcomplete problems to have linear paddings. 22

Thm[M-W]. $DV - SAT \leq_{lin} \mathcal{L}$, | **Coro**(Hard Counting). Proband $\mathcal{L} \in NP$ having verifier V

• V 2-tape with RAM

• Oblivious computation.

Then \mathcal{L} is *linear isomor*phic to DV-SAT, and linearly *paddable*. Hence **DV-SAT** is linearly complete amongst these NP problems.

Ex. DV-SAT, AFF_PT_k , $SDIT_k$, $MINRANK_k$, $SINGULAR_k$

lems complete for this class are dense.

Coro(Hard Sampling) Problems complete for this class have a polynomial time random sample algorithm needing one seed.

Def $*: U \times V \rightarrow W$ is nonsingular if u * v = 0 implies u = 0 or v = 0. The *(left)* singularity radical is $R = \langle v :$ $\exists u \neq 0, u * v = 0 \rangle$.

Thm[M-W]. Singular products a dense amongst general products.

1st proved by making linear reduction to NP-complete, then "demystified" to concrete proof. **Prob.** Fix $M_i \in M_d(k)$. Decide if

 $det(x_1M_1 + \dots + x_dM_d) = 0$ has a (projective) point.

If this problem is in our class then, there are exponentially many finite projective planes (an open conjecture studied by Albert, Knuth, Kantor, and many others).

COMPARING IN ALGEBRA

n =input size, e.g. graphs on v vertices have $n \in O(v^2)$

This is a long story, check out: www.math.colostate.edu/~jwilson/papers/group-iso-2015.pdf