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TENSORS ARE VERY GENERAL OBJECTS

dxy A+ Ndzs Gauss—Ricci interpretation

m dx; A--- Adxs bases for algebra
generated by directional
derivatives.

J1---Jt
Ril...is

Blw, v)w = VuVow = VoVuld = Vi - cppigpoffel symbols T'Y; and Ricci

tensors Rgllffff: are coefficients of

linear combinations.

m Invariants, e.g. curvature, is the
evaluation tensors such as the
Ricci tensor R. Levi-Civita
connection V smoothly moves
one tangent algebra to the next.



TENSORS ARE VERY GENERAL OBJECTS

Hamilton & Copenhagen
interpretation

-L(00| + (11

m Kinematics driven by multiple 7

input vectors, e.g. the stress
tensor on an object, i.e.

Or Ty
Toy Oy

= Quantum k-state particle
modeled by C* it’s states
{@@|:ie{1,...,k}} a basis.

m Entanglment of states (¢| € C*
with (7| € C? is non-pure tensor
in C* @ CP, simplest example the
: 1 amilton invented the word “tensor” to mean
Bell pair —=(00] + (11| Hamilt fed b !

the real part of a quaternion. Translation of
3-dimensional mechanics to quaternions lead to

adopting the term universally.



TENSORS ARE VERY GENERAL OBJECTS

Whitney interpretation
m tensor = multilinear

m hom(A, B) (matrices) a space of
tensors, i.e. its elements are
tensors.

m A ® B space of cotensors, i.e.

its quotients are tensors.

b = Ua c Ua - UC b
m iterated these become interesting, {abe} = (Uas )(0)

e.g hom(A® B,C)
hom(A, hom(B,C)), T*F, A"V, [2,y] = vy —yx
& K, (F).

A®B

K.(F)=T*F/(a® (1 - a))



TENSORS ARE VERY GENERAL OBJECTS

(Big) Data interpretation

m Many data are collected through
time (video) or space (MRI), or
coded by value vectors

(PageRank).
m Modeling data as “volumes”
_ i allows comparison along time,
L1 ® 01 space, and coding entries.
1 -1 1 0 _eTTTToTTIA
i e 561 2"8.‘.7 m This makes data into natural
‘ T c ‘ v ‘ | 0 0256213208473 . | tensors.
L5 107 | M2 gt :I But in practice we sacrifice
101 12 —1.1 1 4 082(?'13'949929 2 | volumes for sparse
8§ 50| -9 i 2 077 32-73-(?907? 7 | representations.
1908231736
| 1887.36...,
! 101430 P






Tensors Uncover Algorithms






Decomposition Algorithms




For decades decomposing groups as G = H x K took testing every
subgroup, so exp(O(log? |G|))-steps.

Then non-associative algebra stepped in.



For decades decomposing groups as G = H x K took testing every
subgroup, so exp(O(log? |G|))-steps.

Then non-associative algebra stepped in.

TuM. (W. 2008)

There is an algorithm to construct a direct product decomposition of a
finite groups G in time O(log” |G|).
In fact true for much wilder central products as well.



E.G. WITH CENTRAL PRODUCTS

PRE-JORDAN ALGEBRA TECHNIQUES

m Central products had no Krull-Schmidt:, e.g. Dg o Dg = Qg o Qs;
also Tang: 47T, R centrally indecomposable with Ro Ro R = T o R.

m Almost all theorems required groups with cyclic center.



E.G. WITH CENTRAL PRODUCTS

PRE-JORDAN ALGEBRA TECHNIQUES

m Central products had no Krull-Schmidt:, e.g. Dg o Dg = Qg o Qs;
also Tang: 47T, R centrally indecomposable with Ro Ro R = T o R.

m Almost all theorems required groups with cyclic center.

PosT-JORDAN ALGEBRA VIEWPOINT

m Instead of Krull-Schmidt, Jordan algebra classify all orbits of
central product decompositions.

m Tang’s becomes natrual: symmetric forms in char 2 are also

alternating. I.e. group analogue to well-known topology
rules: RP?#RP2#RP? = T?4#RP2.



Filter Refinements



FILTER

A filter ¢ : M — 29 from a commutative preordered monoid M into
subgroups of G satisfies

[Bs, Pt] < Psit s <t= ¢s > ¢y

Write G = Y&n@.

FILTERS GIVE GRADED ALGEBRAS

[z,y] in G factors through a grade Lie algebra product on:

L(¢) = @¢8/8¢s 0ps = <¢s+t it #£ 0>
s#£0

*Ascending version, e.g. upper central series, gives graded module.



Fix a filter ¢ M — 2% and X < G such that 3s, d¢s X < ¢s. Then
El(b M x N — 2 refining ¢ to include X. That is:

G = Jim ¢, = Jim lim G,

seM teN

Notice refinement is recursive.
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APPLICATION

TuMm. (W.)

On a log-scale a positive proportion of all nilpotent groups admits a
proper characteristic refinement of the lower exponent p central series.

MAGLIONE-W.
A survey of 500,000,000 random class 2 groups found 97% refined, 92%
to maximal class!

Already applied to improve isomorphism testing exponentially at
random.



A Category for Tensor Spaces




Var10 - OVp = hom(Vy41, hom(. .. , hom(Vy, Vp) - - ).
DEF.

A tensor space is a K-module 7" and a monomorphism

) : T = Vo OW.
Elements of T" are tensors, {V;,...,V} is the frame, 1 +1 valence.
Fix (v| = (|- (] € Vi x -+ x W
(v[t) = (v - (wn[t) € Vo

So [ty : Vi x +-+ x V4 — V} is K-multilinear; yet, ¢ is anything.



TENSOR CATEGORIES

Pretend tensors are nonassociative algebras...




TENSOR CATEGORIES

Pretend tensors are nonassociative algebras...

A%, B
A-—",B
(a2 - a1)p = azpoai¢




TENSOR CATEGORIES

Pretend tensors are nonassociative algebras...

A—2.B

7
ALB AlLBl
X X X X
A, B .| Ay 5 B
A-%.B AO&)BO

(az-a1)¢ = agpoard (ag-a1)¢ = azpoarg



TENSOR CATEGORIES

Pretend tensors are nonassociative algebras...

A L B
I o1
Ay B B,
A i} B X X
X X
A—"5B ylox X
[l 4
A%, B =1 e
2
(a2 . al)(b = CL2¢ o) a1¢ AO > ? BO

<a1}7 s 7a1>¢0 = [avd)’lh cee ’al(bl]



TENSOR CATEGORIES

Pretend tensors are nonassociative algebras...

A, —> B,

A L B T
I 1

Ay By
A-24B x x
X X : :
A—"5B ylox X
[T e
A%, B =1 e

@
(az-a1)¢ = azpoard Ay —— By

<a1}7 s 7a1>¢0 = [avd)’lh cee ’al(bl]



COMPOSITION

A B, 0 | A 2T Ok
1 T 171

A1 ’ Bl ’ Cl A1 Cl

X X X X X

X X X _— X X

A1 ] N B1 T N Cq A1 ﬁ) 01

I (o) I 0 I $0T0

Ag > B > Co Ag —— Cy




NEED EVEN MORE MORPHISMS

Can’t remove triviality

A1 E— Al/A%‘
X X
AQ —_— AQ/A%

I [

AO %Al*AQ




NEED EVEN MORE MORPHISMS

Can’t remove triviality Obvious abelian category
A1 E— Al/Aé' Al L Bl
X X X X
AQ E— Az/ A{' Ag BQ
Ap &— A1 x Ap Ap —> B

(a1 * az)po = ai1¢1 0 as



NEED EVEN MORE MORPHISMS

Can’t remove triviality Non-abelian category!
A1 E— Al/Aé' Al & Bl
X X X X
AQ E— Az/Af' Ag L) BQ
Ag < A1 x A Ay =—— By

(a1 * a2) = a1¢y © azpa



NEED EVEN MORE MORPHISMS

Can’t remove triviality Now re-abelianized!
A1 E— Al/A%‘ Al % By
X X X
Ay —— Ay /Af‘ A — = By
AO % A1 * AQ AO — B

(b1g2 * az) = b1 o poas



MORE MORPHISMS = COMPOSITION ISSUES

1.1 TO1--1,
A, > By > O

¢1 \ Vi
A1 ’ Bl Y Cl
X X X
X X X

141 h N B1 T , C1

Ao il > BO o > Co




MORE MORPHISMS = COMPOSITION ISSUES

5 Compose as relations.
A* 1~~~1> B* T01...1> C*
(bl = {(a, a¢1) rac Al}
@
A LN B, ‘7 O 7 ={(c1,¢) : c € C1}
X X X
: Define
X X X
A, N B, n O, ¢1711 = {(av C) : 3b,
I I I (a,b) ed)l,(b,c) 67-]_}
Ap al s By —— () Works the same no matter

direction of arrows.



FRAME BRAIDING

A, -%> A —— B? -%- B,
$1
Al _____ e Al E— Bl _____ ’ B1
X X X X
X X X X
AN A3 BN 7B
\ / (z)O \ /
3! 0 ¥/

/\ /
AT LA
e \ ,/ \
AO/ ”A? —— B1o’ xBy

In Ricci calculus: “raising”
and “lowering” indices.

In algebra: Knuth-Liebler
transposes.

In our model: permuta-
tions o of the frame give 2-
morphisms




THE 2-CATEGORY OF TENSOR SPACES

Category= Objects + hom-sets (with some rules)
2-Category= Objects + hom-categories (with more rules)

1-TENSOR SPACE 2-CATEOGRY

OBJeCTS Tensor spaces |-) : T'— Vi© - OVp of valence 1 +1.
1-MorpHIsMS Linear relations (F, ..., Fy) where
2-MorprHISMS Frame Braiding

We now have: subtensors, ideals, quotients, kernels, image, Noether’s
isomorphism theorems, products, coproducts, simples, projectives,
representations, modules, ....



Tensor’s can have modules




E.G.: REPRESENTATIONS AND MODULES OF TENSORS

A —"— End(M)




E.G.: REPRESENTATIONS AND MODULES OF TENSORS

A —"— End(M)

1

A —L— End(M)
X X
A —2 End(M)

[ [

A —L— End(M)

(a2 -a1)p =azpoaip



A —"— End(M)

1

A —L— End(M)
X X
A —2 End(M)

[ [

A —L— End(M)
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(a2 -a1)p =azpoaip




E.G.: REPRESENTATIONS AND MODULES OF TENSORS

A —"— End(M)

A —L— End(M) Ay 2 hom(Ms, M)
X X X X

A —2 End(M) Ay =25 hom(My, My)
A —L— End(M) Ay —2 hom(My, My)

(az-a1)p = azpoarp (a2 * a1)po = azpz o aipy



E.G.: REPRESENTATIONS AND MODULES OF TENSORS

A —"— End(M) A, —— hom(M,)
A —L— End(M) Ay 2 hom(Ms, M)
X X X X

A —2 End(M) Ay =25 hom(My, My)
A —L— End(M) Ay —2 hom(My, My)

(az-a1)p = azpoarp (a2 * a1)po = azpz o aipy



E.G.: REPRESENTATIONS AND MODULES OF TENSORS

Representation

A, hom(M,)

A2 L) hOm(Mg,Ml)
X X
A hOIIl(MlyMO)

A[) L) hOIIl(]\427 Mo)

(a2 * a1)po = azp2 o a1p1



E.G.: REPRESENTATIONS AND MODULES OF TENSORS

Right Representation

A, T oM)
As L) Mo M,

X X
Aq L} MMy

[ [

A[) L) M2®M0

(a2 * a1)po = azp2 o a1p1



: REPRESENTATIONS AND MODULES OF TENSORS

Right Representation

A, s (M)

1

M2 X A2 >;> M1 A2 L} M2®M1
X X
Aq L} MMy

[ [

My x Ay —— M, Ay = MM,

M1><A1>;>M0 —

(mg > ag) <a; =ma Y (ag *xay) (ag * a1)po = azp2 © a1py



E.G.: REPRESENTATIONS AND MODULES OF TENSORS

Right Triptych Right Representation
M, x Ay, —— M, A, s (M)
M2 X A2 >;> M1 A2 L} M2®M1

X X

Aq L} MMy

My x Ay —— M, Ay = MM,

M1><A1>;>M0 —

(m2 > ag) <a; =ma Y (a2 * ay) (a2 * a1)po = azpz o ai1p1



SIMPLE TRIPTYCHS/IRREDUCIBLE REPRESENTATIONS

DEFINITION

A triptych is wisible if M; # 0 and My = MaAs, My = Ms(As x Ay).

THEOREM (W.)

The triptych is visible simple if, and only if, every nonzero is a unit:

(Vmg) mo 75 0= (mgAz)Al = MQ(AQ * Al)



PROPERTIES OF THE REPRESENTATIONS

FURTHER PROPERTIES

m Nakayama’s lemma.

m Shur’s lemma.

Induction and restriction.

m Morita condensation.

OPEN PROBLEMS

Develop characters, blocks, and reciprocity theorems.

We use these to seed filter refinements!



Satisfaction



SATISFACTION

[t) : Vi x -+ x Vi — Vj multilinear.
p=>.Aex] -2y i’ polynomial.
w=(wi,... ,w1,w0) € [[, End(V,) operator.

DEF.

|t) satisfies p at w if for every (v| = (v1]|--- (vy|

0= (v|p(w Z)\ viwrt, ., Wl [Ewg’.



EXAMPLES OF SATISFACTION

Identity Polynoimal Operator
(uA) f = (uf)A 1 — Xg Linear

Pf. Put (ult) := uf, p=x1 — xo.
0= (uA)f — (uf)A

= (uA[t) — (ult)A

= (ulp(A, A)[t). O



EXAMPLES OF SATISFACTION

Identity Polynoimal Operator
(uA) f = (uf)A 1 — Xg Linear

(uX|v) = (ulvX™) ? Adjoint



EXAMPLES OF SATISFACTION

Identity Polynoimal Operator
(uA) f = (uf)A 1 — To Linear
(uX|v) = (ulvX™) T1 — X Adjoint
(uX ) = (u|X*v) 1 — T

Pf. Put (u,v|t) := (u,v), p =z — 2.
0 = (u,v|p(X, X*)|t) = <uX v) — (u,vX*) O
Convenience use 7, to denote left action.



EXAMPLES OF SATISFACTION

Identity Polynoimal Operator
(uA)f = (uf)A T1— o Linear
(uX|v) = (ulvX™) T1 — X Adjoint
(uX ) = (u|X*v) Tl — T
(Aulv) = AMulv) = (u[dv)  {Z1 — Zo,Z2 — Zo} Bilinear

? r1+x2 — X ?



EXAMPLES OF SATISFACTION

Identity Polynoimal Operator
(uA)f = (uf)A T1— o Linear
(uX|v) = (ulvX™) T1 — X Adjoint
(uX ) = (u|X*v) Tl — T
(Aulv) = AMulv) = (u[dv)  {Z1 — Zo,Z2 — Zo} Bilinear

(u-v)d =ud-v+v-vd x1 + x2 — X0 Derivation



EXAMPLES OF SATISFACTION

Identity Polynoimal Operator
(uA) f = (uf)A 1 — Xg Linear
(uX|v) = (ulvX™) T1 — X Adjoint
(uX ) = (u|X*v) Tl — T
(Aulv) = Mulv) = (u[dv)  {Z1 — Zo, T2 — To} Bilinear
(u-v)d =ud-v+v-vd x1 + x2 — X0 Derivation
(uXwX) = (ulv) {z1290 — 1,20 — 1} Isometry

w(u*v) =w(u) *w”(v) T1T2 — T Homotopism



ScT,PcK[X], Ac]],End(V,).

N(P(A)) = {t: P(A)[t) = 0}
I(A;8) = {p:p(A)|5) = 0}
Z(PxS)={w:pw)l|S)=0}.

CORRESPONDENCE THEOREM. FIRST-MAGLIONE-W.

N(P(A)) is a subspace, I(A;S) is an ideal, Z(P * S) is an affine-zero
set. They satisfy:

SCN(PA) & PcCINS) & ACZ(PxS).



TENSOR-IDEAL-OPERATOR CORRESPONDENCE

Ideals
I(A;S)
Tensors i Operators
N(P(A)) < P > Z(P*S)
S A

|
ot



Immediate consequences of tensor

theory




Densors



Derivations Der(S) and densors @ S D are:

Der(S) = ﬂ {5 : (v]s)d = Z(Ua, va5|s>} .

seSs a

QS D={t:Der(S) C Der(t)}.

DENSORS ARE THE UNIVERSAL LINEAR TENSOR SPACE (FMW)

Let |[K| >n. If P = (p1,...,Pm): Pi = 2, NiaZa, & Vai, Ag; # 0, then

Z(P % §) < Der(S) 15D < N(P(Z(P x 5))).



Weakly-associative product on End(V) means 3(s,t) € P}(K):

weT =S8wT+trw.

ALL LINEAR TENSOR SPACES ARE OVER LIE ALGEBRAS (FMW)

If p= Xoxo + - + Apz, then
Z(px*t) =[], 09l(Va) as a Lie subalgebra.
If Z(p xt) admits a weakly-associative product in every component
then all but at most 2 components are Lie.

Z(p = t) admits an associative product if, and only if, n < 1.



LOW RANK DENSORS ARE THE THINGS WE CALL

“SIMPLE”

Tensor Dim. Tensor Space Dim. Densor
abc-Matrix multiplication a’b*c? 1
Azumaya algebras dim® A 1
Irred. sly-modules 3d? 1
Irred. A,-modules O(n%d?) 1
Irred. Bj,-modules O(n?d?) 1
Irred. Go-modules 14d? 1
Octonions 512 1
Albert Algebras 19683 )

And many more collapse as well.



Singularities



All across finite and infinite geometry products without singularities
are the building blocks. They are hard to find.

TuMm. (FMW)

Fix an infinite field. For every point (U] in the product of
Grassmannians [ [, G(Va, ka), let

w((U]) = {n: 72 = 7,im = = (U|}.

Then I(w((U|);t) is a radical monomial ideal. Furthermore
I(w((U]);t) = (0) if, and only if, (v|t) # 0.

Singularities have structure!



SINGULARITY MANIFOLDS FOR - : RZ x R2— R
1 0 0 1
0 1 -1 0

[(x(loﬂzz) (96(1055)2)} [(93(10932) (fv(lox)ﬂ} [(




Operators
& Densor

Singularity

Tensors

Algorithms



SUMMARY

m Mathematicians, Computer Scientist, and Data Sciences are
struggling to understand tensors.
m New Perspective:
m Tensors: a 2-category where nearly all non-associative techniques

apply.
m Tensor analysis, algebraic geometry, and operator theory are in
correspondence.

m Current Applications

m Tensors products are universal over Lie algebras.
m Simple non-associative constructions are small rank densors.
m Singularity manifolds now explore tensors as geometries.



OPEN PROBLEMS

Find a quadratic variation for characteristic 2.

=

Classify rank 1 densor spaces.

=

Develop characters, blocks, and reciprocity theorems.

Better understanding of nonsingular tensors.



The affect of singular operators on a the shape of a tensor.

_l’_

07
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