Tools To Tame Tensors

This work was partially supported by NSF grant DMS-1620454.

niversity

joint with Uriyah First, Joshua Malgione http://www.math.colostate.edu/~jwilson

MEET THE REST OF THE TEAM

Uriyah First U. British Columbia Categories and Schemes

Joshua Maglione Colorado State University Calculations and Software

TENSORS ARE VERY GENERAL OBJECTS

$$dx_1 \wedge \cdots \wedge dx_s$$

$$R^{j_1\ldots j_t}_{i_1\ldots i_s}$$

$$R(u,v)w = \nabla_u \nabla_v w - \nabla_v \nabla_u w - \nabla_{[u,v]} u$$

Gauss–Ricci interpretation

- $dx_i \wedge \cdots \wedge dx_s$ bases for algebra generated by directional derivatives.
- Christoffel symbols Γ_{ij}^k and Ricci tensors $R_{i_1\cdots i_s}^{j_1\cdots j_t}$ are coefficients of linear combinations.
- Invariants, e.g. curvature, is the evaluation tensors such as the Ricci tensor R. Levi-Civita connection ∇ smoothly moves one tangent algebra to the next.

TENSORS ARE VERY GENERAL OBJECTS

Hamilton & Copenhagen interpretation

- Kinematics driven by multiple input vectors, e.g. the stress tensor on an object, i.e. $\begin{bmatrix} \sigma_x & \tau_{xy} \\ \tau_{xy} & \sigma_y \end{bmatrix}.$
- Quantum *k*-state particle modeled by \mathbb{C}^k it's states $\{\langle i | : i \in \{1, \dots, k\}\}\$ a basis.
- Entanglment of states $\langle \psi | \in \mathbb{C}^a$ with $\langle \tau | \in \mathbb{C}^b$ is non-pure tensor in $\mathbb{C}^a \otimes \mathbb{C}^b$, simplest example the Bell pair $\frac{1}{\sqrt{2}}\langle 00| + \langle 11|$

 $\frac{1}{\sqrt{2}}\langle 00| + \langle 11|$

Hamilton invented the word "tensor" to mean the real part of a quaternion. Translation of 3-dimensional mechanics to guaternions lead to adopting the term universally.

Whitney interpretation

- tensor = multilinear
- hom(A, B) (matrices) a space of tensors, i.e. its elements are tensors.
- $A \otimes B$ space of cotensors, i.e. its quotients are tensors.

• iterated these become interesting, e.g hom $(A \otimes B, C) \cong$ hom $(A, \text{hom}(B, C)), T^*F, \wedge^n V,$ & $K_*(F).$ $\{abc\} = (U_{a+c} - U_a - U_c)(b)$ [x, y] = xy - yx

$$A \otimes B$$

$$K_*(F) = T^*F/(a \otimes (1-a))$$

(Big) Data interpretation

- Many data are collected through time (video) or space (MRI), or coded by value vectors (PageRank).
- Modeling data as "volumes" allows comparison along time, space, and coding entries.
 - This makes data into natural tensors.
- But in practice we sacrifice volumes for sparse representations.

Tensors Uncover Algorithms

Decomposition Algorithms

For decades decomposing groups as $G = H \times K$ took testing **every** subgroup, so $\exp(O(\log^2 |G|))$ -steps.

Then non-associative algebra stepped in.

Тнм. (W. 2008)

There is an algorithm to construct a direct product decomposition of a finite groups G in time $O(\log^7 |G|)$. In fact true for much wilder central products as well. For decades decomposing groups as $G = H \times K$ took testing **every** subgroup, so $\exp(O(\log^2 |G|))$ -steps.

Then non-associative algebra stepped in.

Тнм. (W. 2008)

There is an algorithm to construct a direct product decomposition of a finite groups G in time $O(\log^7 |G|)$. In fact true for much wilder central products as well.

PRE-JORDAN ALGEBRA TECHNIQUES

- Central products had no Krull-Schmidt:, e.g. $D_8 \circ D_8 \cong Q_8 \circ Q_8$; also Tang: $\exists T, R$ centrally indecomposable with $R \circ R \circ R \cong T \circ R$.
- Almost all theorems required groups with cyclic center.

Post-Jordan Algebra viewpoint

- Instead of Krull-Schmidt, Jordan algebra classify all **orbits** of central product decompositions.
- Tang's becomes natrual: symmetric forms in char 2 are also alternating. I.e. group analogue to well-known topology rules: ℝP²#ℝP²#ℝP² ≅ T²#ℝP².

PRE-JORDAN ALGEBRA TECHNIQUES

- Central products had no Krull-Schmidt:, e.g. $D_8 \circ D_8 \cong Q_8 \circ Q_8$; also Tang: $\exists T, R$ centrally indecomposable with $R \circ R \circ R \cong T \circ R$.
- Almost all theorems required groups with cyclic center.

Post-Jordan Algebra viewpoint

- Instead of Krull-Schmidt, Jordan algebra classify all orbits of central product decompositions.
- Tang's becomes natrual: symmetric forms in char 2 are also alternating. I.e. group analogue to well-known topology rules: ℝP²#ℝP²#ℝP² ≅ T²#ℝP².

Filter Refinements

Filter

A filter $\phi: M \to 2^G$ from a commutative preordered monoid M into subgroups of G satisfies

 $[\phi_s, \phi_t] \le \phi_{s+t} \qquad \qquad s \prec t \Rightarrow \phi_s \ge \phi_t.$

Write $G = \varprojlim \phi_s$.

FILTERS GIVE GRADED ALGEBRAS

[x, y] in G factors through a grade Lie algebra product on:

$$L(\phi) = \bigoplus_{s \neq 0} \phi_s / \partial \phi_s \qquad \qquad \partial \phi_s = \langle \phi_{s+t} : t \neq 0 \rangle.$$

*Ascending version, e.g. upper central series, gives graded module.

Thm W.

Fix a filter $\phi: M \to 2^G$ and $X \leq G$ such that $\exists s, \partial \phi_s X \leq \phi_s$. Then $\exists \hat{\phi}: M \times \mathbb{N} \to 2^G$ refining ϕ to include X. That is:

$$G = \varprojlim \phi_s = \varprojlim_{s \in M} \varprojlim_{t \in \mathbb{N}} \widehat{\phi}_{(s,t)}.$$

Notice refinement is recursive.

$L(\gamma) = \frac{K^5 \oplus K^4 \oplus K^3 \oplus K^2 \oplus K}{K^3 \oplus K^2 \oplus K}$

 $L(\gamma) = \frac{K^5 \oplus K^4 \oplus K^3 \oplus K^2 \oplus K}{K^2 \oplus K}$

 $L(\gamma) = K^5 \oplus K^4 \oplus K^3 \oplus K^2 \oplus K$

 $L(\gamma) = \frac{K^5 \oplus K^4 \oplus K^3 \oplus K^2 \oplus K}{K^3 \oplus K^2 \oplus K}$

J. Maglione (2017)

Тнм. (W.)

On a log-scale a positive proportion of all nilpotent groups admits a proper characteristic refinement of the lower exponent p central series.

MAGLIONE-W.

A survey of 500,000,000 random class 2 groups found 97% refined, 92% to maximal class!

Already applied to improve isomorphism testing exponentially at random.

A Category for Tensor Spaces

 $V_{a+1} \odot \cdots \odot V_0 = \operatorname{hom}(V_{a+1}, \operatorname{hom}(\ldots, \operatorname{hom}(V_1, V_0) \cdots)).$

Def.

A **tensor space** is a K-module T and a monomorphism

$$|\cdot\rangle:T\hookrightarrow V_1\odot\cdots\odot V_0.$$

Elements of T are tensors, $\{V_1, \ldots, V_0\}$ is the frame, 1 + 1 valence.

Fix
$$\langle v | = \langle v_1 | \cdots \langle v_1 | \in V_1 \times \cdots \times V_1$$

 $\langle v | t \rangle = \langle v_1 | \cdots \langle v_1 | t \rangle \in V_0.$

So $|t\rangle : V_1 \times \cdots \times V_1 \rightarrow V_0$ is K-multilinear; yet, t is anything.

$$A \xrightarrow{\phi} B$$

Can't remove triviality

Can't remove triviality

Can't remove triviality

Non-abelian category!

Can't remove triviality

Now re-abelianized!

$$\begin{array}{c|c} A_{*} \xrightarrow{\phi_{1} \dots 1} B_{*} \xrightarrow{\tau_{01} \dots 1} C_{*} \\ \hline A_{1} \xrightarrow{\phi_{1}} B_{1} \overleftarrow{\tau_{1}} C_{1} \\ \times & \times & \times \\ \vdots & \vdots & \vdots \\ \times & \times & \times \\ A_{1} \xrightarrow{\phi_{1}} B_{1} \xrightarrow{\tau_{1}} C_{1} \\ \downarrow & \downarrow & \downarrow \\ A_{0} \xrightarrow{\phi_{0}} B_{0} \xrightarrow{\tau_{0}} C_{0} \end{array}$$

$$\begin{array}{c} A_{*} \xrightarrow{\phi_{1} \dots 1} B_{*} \xrightarrow{\tau_{01} \dots 1} C_{*} \\ \hline A_{1} \xrightarrow{\phi_{1}} B_{1} \xleftarrow{\tau_{1}} C_{1} \\ \times & \times & \times \\ \vdots & \vdots & \vdots \\ \times & \times & \times \\ A_{1} \xrightarrow{\phi_{1}} B_{1} \xrightarrow{\tau_{1}} C_{1} \\ \downarrow & \downarrow & \downarrow \\ A_{0} \xrightarrow{\phi_{0}} B_{0} \xrightarrow{\tau_{0}} C_{0} \end{array}$$

Compose as relations.

$$\phi_1 = \{(a, a\phi_1) : a \in A_1\}$$

$$\tau_1 = \{(c\tau_1, c) : c \in C_1\}$$

Define

$$\phi_1 \tau_1 = \{ (a, c) : \exists b, \\ (a, b) \in \phi_1, (b, c) \in \tau_1 \}$$

Works the same no matter direction of arrows.

FRAME BRAIDING

In Ricci calculus: "raising" and "lowering" indices.

In algebra: Knuth-Liebler transposes.

In our model: permutations σ of the frame give 2morphisms

Category= Objects + hom-**sets** (with some rules) 2-Category= Objects + hom-**categories** (with more rules)

1-TENSOR SPACE 2-CATEOGRY

OBJECTS Tensor spaces $|\cdot\rangle : T \hookrightarrow V_1 \odot \cdots \odot V_0$ of valence 1 + 1. 1-MORPHISMS Linear relations (F_1, \ldots, F_0) where 2-MORPHISMS Frame Braiding

We now have: subtensors, ideals, quotients, kernels, image, Noether's isomorphism theorems, products, coproducts, simples, projectives, representations, modules,

Tensor's can have modules

$$A \xrightarrow{\rho} \operatorname{End}(M)$$

$$\begin{array}{c} A \xrightarrow{\rho} \operatorname{End}(M) \\ & \uparrow \\ A \xrightarrow{\rho} \operatorname{End}(M) \\ & \times & \times \\ A \xrightarrow{\rho} \operatorname{End}(M) \\ & \downarrow \cdot & \downarrow \circ \\ A \xrightarrow{\rho} \operatorname{End}(M) \\ & \downarrow \cdot & \downarrow \circ \\ A \xrightarrow{\rho} \operatorname{End}(M) \\ & (a_2 \cdot a_1)\rho = a_2 \rho \circ a_1 \rho \end{array} \xrightarrow{\rho_2} \operatorname{hom}(M_2, M_1) \\ & \times & \times \\ A_1 \xrightarrow{\rho_1} \operatorname{hom}(M_1, M_0) \\ & \downarrow * & \downarrow \circ \\ A_0 \xrightarrow{\rho_0} \operatorname{hom}(M_2, M_0) \\ & (a_2 * a_1)\rho_0 = a_2 \rho_2 \circ a_1 \rho_1 \end{array}$$

Representation

$$A_* \xrightarrow{\rho_*} \hom(M_*)$$

$$\downarrow$$

$$A_2 \xrightarrow{\rho_2} \hom(M_2, M_1)$$

$$\times \qquad \times$$

$$A_1 \xrightarrow{\rho_1} \hom(M_1, M_0)$$

$$\downarrow^* \qquad \qquad \downarrow^\circ$$

$$A_0 \xrightarrow{\rho_0} \hom(M_2, M_0)$$

$$(a_2 * a_1)\rho_0 = a_2\rho_2 \circ a_1\rho_1$$

Right Representation

$$\begin{array}{c} A_{*} \stackrel{\rho_{*}}{\longrightarrow} \otimes (M_{*}) \\ & \swarrow \\ M_{2} \times A_{2} \stackrel{\succ}{\longrightarrow} M_{1} \\ M_{1} \times A_{1} \stackrel{\prec}{\longrightarrow} M_{0} \\ M_{2} \times A_{0} \stackrel{\vee}{\longrightarrow} M_{0} \end{array} \longleftrightarrow \begin{array}{c} A_{2} \stackrel{\rho_{2}}{\longrightarrow} M_{2} \otimes M_{1} \\ \times & \times \\ A_{1} \stackrel{\rho_{1}}{\longrightarrow} M_{1} \otimes M_{0} \\ \downarrow_{*} & \downarrow^{\circ} \\ A_{0} \stackrel{\rho_{0}}{\longrightarrow} M_{2} \otimes M_{0} \end{array}$$
$$(m_{2} \times a_{2}) \prec a_{1} = m_{2} \lor (a_{2} \ast a_{1}) \qquad (a_{2} \ast a_{1})\rho_{0} = a_{2}\rho_{2} \circ a_{1}\rho_{1}$$

DEFINITION

A triptych is visible if $M_i \neq 0$ and $M_1 = M_2 A_2$, $M_0 = M_2 (A_2 * A_1)$.

Theorem (W.)

The triptych is visible simple if, and only if, every nonzero is a unit:

$$(\forall m_2)$$
 $m_2 \neq 0 \Rightarrow (m_2 A_2) A_1 = M_2 (A_2 * A_1).$

FURTHER PROPERTIES

- Nakayama's lemma.
- Shur's lemma.
- Induction and restriction.
- Morita condensation.

OPEN PROBLEMS

Develop characters, blocks, and reciprocity theorems.

We use these to seed filter refinements!

Satisfaction

 $\begin{aligned} |t\rangle : V_1 \times \cdots \times V_1 & \mapsto V_0 \text{ multilinear.} \\ p &= \sum_e \lambda_e x_1^{e_1} \cdots x_1^{e_1} x_0^{e_0} \text{ polynomial.} \\ \omega &= (\omega_1, \dots, \omega_1, \omega_0) \in \prod_a \operatorname{End}(V_a) \text{ operator.} \end{aligned}$

DEF.

 $|t\rangle$ satisfies p at ω if for every $\langle v| = \langle v_1| \cdots \langle v_1|$

$$0 = \langle v | p(\omega) | t \rangle = \sum_{\lambda_e} \lambda_e \langle v_1 \omega_1^{e_1}, \dots, v_n \omega_1^{e_1} | t \rangle \omega_0^{e_0}.$$

Identity Polynoimal $(u\lambda)f = (uf)\lambda$ $x_1 - x_0$ Operator Linear

Pf. Put
$$\langle u|t \rangle := uf$$
, $p = x_1 - x_0$.
 $0 = (u\lambda)f - (uf)\lambda$
 $= \langle u\lambda|t \rangle - \langle u|t \rangle\lambda$
 $= \langle u|p(\lambda,\lambda)|t \rangle$.

Identity	Polynoimal	Operator
$(u\lambda)f = (uf)\lambda$	$x_1 - x_0$	Linear
$\langle uX v\rangle = \langle u vX^*\rangle$?	Adjoint

Identity	Polynoimal
$(u\lambda)f = (uf)\lambda$	$x_1 - x_0$

$$\langle uX|v\rangle = \langle u|vX^*\rangle \qquad \qquad x_1 - x_2 \\ \langle uX|v\rangle = \langle u|X^*v\rangle \qquad \qquad x_1 - \bar{x}_2$$

Operator Linear

Pf. Put $\langle u, v | t \rangle := \langle u, v \rangle$, $p = x_1 - x_2$. $0 = \langle u, v | p(X, X^*) | t \rangle = \langle uX, v \rangle - \langle u, vX^* \rangle \square$ **Convenience** use \bar{x}_a to denote left action.

Identity	Polynoimal	Operator
$(u\lambda)f = (uf)\lambda$	$x_1 - x_0$	Linear

$$\begin{array}{ll} \langle uX|v\rangle = \langle u|vX^*\rangle & x_1 - x_2 \\ \langle uX|v\rangle = \langle u|X^*v\rangle & x_1 - \bar{x}_2 \end{array}$$
 Adjoint

$$\langle \lambda u | v \rangle = \lambda \langle u | v \rangle = \langle u | \lambda v \rangle \quad \{ \bar{x}_1 - \bar{x}_0, \bar{x}_2 - \bar{x}_0 \}$$
Bilinear
$$\mathbf{?} \qquad x_1 + x_2 - x_0 \qquad \mathbf{?}$$

Identity	Polynoimal	Operator
$(u\lambda)f=(uf)\lambda$	$x_1 - x_0$	Linear

$$\begin{array}{ll} \langle uX|v\rangle = \langle u|vX^*\rangle & x_1 - x_2 \\ \langle uX|v\rangle = \langle u|X^*v\rangle & x_1 - \bar{x}_2 \end{array}$$
 Adjoint

$$\langle \lambda u | v \rangle = \lambda \langle u | v \rangle = \langle u | \lambda v \rangle \quad \{ \bar{x}_1 - \bar{x}_0, \bar{x}_2 - \bar{x}_0 \}$$
Bilinear
$$(u \cdot v) \delta = u \delta \cdot v + v \cdot v \delta \qquad x_1 + x_2 - x_0$$
Derivation

Identity	Polynoimal	Operator
$(u\lambda)f=(uf)\lambda$	$x_1 - x_0$	Linear

$$\begin{array}{ll} \langle uX|v\rangle = \langle u|vX^*\rangle & x_1 - x_2 \\ \langle uX|v\rangle = \langle u|X^*v\rangle & x_1 - \bar{x}_2 \end{array}$$
 Adjoint

$$\langle \lambda u | v \rangle = \lambda \langle u | v \rangle = \langle u | \lambda v \rangle \quad \{ \bar{x}_1 - \bar{x}_0, \bar{x}_2 - \bar{x}_0 \}$$
Bilinear

$$(u \cdot v) \delta = u \delta \cdot v + v \cdot v \delta \qquad x_1 + x_2 - x_0$$
Derivation

$$\langle u X | v X \rangle = \langle u | v \rangle \qquad \{ x_1 x_2 - 1, x_0 - 1 \}$$
Isometry

$$\omega(u * v) = \omega'(u) * \omega''(v) \qquad \overline{x}_1 \overline{x}_2 - \overline{x}_0$$

 $S \subset T, P \subset K[X], \Delta \subset \prod_a \operatorname{End}(V_a).$

$$\begin{split} N(P(\Delta)) &= \{t : P(\Delta) \mid t \rangle = 0\} \\ I(\Delta; S) &= \{p : p(\Delta) \mid S \rangle = 0\} \\ Z(P * S) &= \{\omega : p(\omega) \mid S \rangle = 0\}. \end{split}$$

CORRESPONDENCE THEOREM. FIRST-MAGLIONE-W.

 $N(P(\Delta))$ is a subspace, $I(\Delta;S)$ is an ideal, Z(P*S) is an affine-zero set. They satisfy:

 $S \subset N(P(\Delta)) \quad \Leftrightarrow \quad P \subset I(\Delta;S) \quad \Leftrightarrow \quad \Delta \subset Z(P*S).$

Immediate consequences of tensor theory

Derivations Der(S) and **densors** $\subseteq S \triangleright$ are:

$$Der(S) = \bigcap_{s \in S} \left\{ \delta : \langle v | s \rangle \delta = \sum_{a} \langle v_{\widehat{a}}, v_{a} \delta | s \rangle \right\}.$$

$$\bigcirc S \triangleright = \{ t : Der(S) \subset Der(t) \}.$$

DENSORS ARE THE UNIVERSAL LINEAR TENSOR SPACE (FMW)

Let |K| > n. If $P = (p_1, \dots, p_m)$, $p_i = \sum_a \lambda_{ia} x_a$, & $\forall a \exists i, \lambda_{ai} \neq 0$, then $Z(P * S) \hookrightarrow \operatorname{Der}(S) \qquad \bigcirc S \triangleright \hookrightarrow N(P(Z(P * S))).$ Weakly-associative product on $\operatorname{End}(V)$ means $\exists (s,t) \in \mathbb{P}^1(K)$:

 $\omega \bullet \tau = s\omega\tau + t\tau\omega.$

All linear tensor spaces are over Lie algebras (FMW)

If $p = \lambda_0 x_0 + \dots + \lambda_n x_n$ then

- $\blacksquare Z(p * t) \hookrightarrow \prod_a \mathfrak{gl}(V_a) \text{ as a Lie subalgebra.}$
- **2** If Z(p * t) admits a weakly-associative product in every component then all but at most 2 components are Lie.
- **3** Z(p * t) admits an associative product if, and only if, $n \leq 1$.

Low rank densors are the things we call "simple"

Tensor	Dim. Tensor Space	Dim. Densor
<i>abc</i> -Matrix multiplication	$a^2b^2c^2$	1
Azumaya algebras	$\dim^3 A$	1
Irred. \mathfrak{sl}_2 -modules	$3d^2$	1
Irred. A_n -modules	$O(n^2 d^2)$	1
Irred. B_n -modules	$O(n^2 d^2)$	1
Irred. G_2 -modules	$14d^{2}$	1
Octonions	512	1
Albert Algebras	19683	5
And many more collapse as	well.	

Singularities

All across finite and infinite geometry products without singularities are the building blocks. They are hard to find.

THM. (FMW)

Fix an infinite field. For every point $\langle U |$ in the product of Grassmannians $\prod_a G(V_a, k_a)$, let

$$\varpi(\langle U|) = \{\pi : \pi^2 = \pi, \text{im } \pi = \langle U|\}.$$

Then $I(\varpi(\langle U|); t)$ is a radical monomial ideal. Furthermore $I(\varpi(\langle U|); t) = (0)$ if, and only if, $\langle v|t \rangle \neq 0$.

Singularities have structure!

SINGULARITY MANIFOLDS FOR $\cdot: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$

- Mathematicians, Computer Scientist, and Data Sciences are struggling to understand tensors.
- New Perspective:
 - Tensors: a 2-category where nearly all non-associative techniques apply.
 - Tensor analysis, algebraic geometry, and operator theory are in correspondence.
- Current Applications
 - Tensors products are universal over Lie algebras.
 - Simple non-associative constructions are small rank densors.
 - Singularity manifolds now explore tensors as geometries.

- **I** Find a quadratic variation for characteristic 2.
- 2 Classify rank 1 densor spaces.
- **B** Develop characters, blocks, and reciprocity theorems.
- 4 Better understanding of nonsingular tensors.

The affect of singular operators on a the shape of a tensor.

