Name

TOTAL

\square

$\#$	Max	Yours
1	20	
2	20	
3	20	
4	20	
5	20	
6	20	
7	20	
8	20	
9	20	
10	20	

Math 369
Fall 2006
Final Exam

1. (a) Find the values of α for which the following system has no solution

$$
\left\{\begin{array}{l}
x_{1}-x_{2}+\alpha x_{3}=-2 \\
-x_{1}+2 x_{2}-\alpha x_{3}=3 \\
\alpha x_{1}+x_{2}+x_{3}=2
\end{array}\right.
$$

(b) For which values of t will the following system have a solution? For those values of t in which there is a solution, what is the general solution set?

$$
\left\{\begin{array}{l}
x_{1}+4 x_{2}=-2 \\
x_{1}+2 x_{2}=t \\
-x_{1}-2 x_{2}=t
\end{array}\right.
$$

2. (a) Let $S_{1}=\left\{v \in \Re^{2}: v=(x, 1)^{T}, x \in \Re\right\}$
a1) is S_{1} closed under addition?
a2) is S_{1} closed under scalar multiplication?
a3) Is S_{1} a subspace of \Re^{2} ?
(b) Let $S_{2}=\left\{v \in \Re^{3}: v=\left(x_{1}, x_{2}, x_{3}\right)^{T}, x_{1}=x_{2}\right\}$
$\mathrm{b} 1)$ is S_{2} closed under addition?
b2) is S_{2} closed under scalar multiplication?
b3) Is S_{2} a subspace of \Re^{3} ?
3. Let $V=P_{3}$ be the vector space of polynomials of degree 2 with real coefficients. Are the vectors

$$
p_{1}(x)=x^{2}-2 x+3, p_{2}(x)=2 x^{2}+x+8, p_{3}(x)=x^{2}+8 x+7
$$

linearly independent or dependent? If they are independent say why. If they are linearly dependent, exhibit a linear dependence relation among them.
4. (a) Let $T_{1}: \Re^{2} \longrightarrow \Re^{3}$, given by $T_{1}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, x_{1}^{2}\right)$ Is T a linear transformation? If yes, then prove it and if it isn't then state a condition that it fails to satisfy.
(b) Same question for $T_{2}: \Re^{3} \longrightarrow \Re^{2}$, given by $T_{2}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{3}, x_{2}+x_{1}\right)$.
5. Let

$$
\mathbf{b}_{\mathbf{1}}=(1,1,0)^{T}, \mathbf{b}_{\mathbf{2}}=(1,0,1)^{T}, \mathbf{b}_{\mathbf{3}}=(0,1,1)^{T}
$$

and let L be the linear transformation from \Re^{2} to \Re^{3} defined by

$$
L\left(x_{1}, x_{2}\right)=x_{1} \mathbf{b}_{\mathbf{1}}+x_{2} \mathbf{b}_{\mathbf{2}}+\left(x_{1}+x_{2}\right) \mathbf{b}_{\mathbf{3}} .
$$

a) show that $\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \mathbf{b}_{\mathbf{3}}\right\}$ form a basis for \Re^{3}
b) find the matrix A representing L with respect to the bases $\left\{\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}\right\}$ and $\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \mathbf{b}_{\mathbf{3}}\right\}$, where $\left\{\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{2}\right\}$ is the standard basis in \Re^{2}.
c) (Xcredit 10 points) Find the kernel and the range of L
6. Find an orthonormal basis for this subspace of \Re^{4}

$$
\left\{\left.\left(\begin{array}{l}
x \\
y \\
z \\
y
\end{array}\right) \in \Re^{4} \right\rvert\, x-y-z+w=0, x+z=0\right\}
$$

Verify your result.
7. Compute the singular value decomposition for $A=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
8. (a) Find all possible values of the scalar α that make the matrix $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & -1 & \alpha\end{array}\right]$ defective or show that no such values exist.
(b) Let A and B be $n \times n$ matrices; suppose they are both diagonalizable, with the same diagonalizing matrix X. Prove that $A B=B A$
9. Is the matrix $A=\left[\begin{array}{cc}1-i & 2 \\ 2 & 3\end{array}\right]$ Hermitian? Is it normal?
10. Let $\mathbf{z}=(1+i, 2 i, 3-i)^{T}$ and $\mathbf{w}=(2-4 i, 5,2 i)^{T}$. Compute $\|z\|,\|w\|,\langle z, w\rangle$ and $<w, z>$

