M 369 Linear Algebra EXAM 2, 11/18/06
 Fall 2006 - Instructor: Dr. Iuliana Oprea

Clearly answer each of the questions below. Show your work. Box your answers. Grading will be also based on orderly and transparent presentation.

Problem 1. (15 pts)
Let $\mathbf{x}, \mathbf{y} \in \mathbf{R}^{\mathbf{3}}, \mathbf{x}=(2,4,3)^{T}, \mathbf{y}=(1,1,1)^{T}$. Find the vector projection \mathbf{p} of \mathbf{x} onto \mathbf{y} and verify that \mathbf{p} and (\mathbf{x} - \mathbf{p}) are orthogonal.

Problem 2. (10 pts)

The following is an inner product on $\mathbf{R}^{\mathbf{2}}$

$$
<x, y>=x^{T} J y, \text { where } J=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right] .
$$

Find the angle between $\mathbf{e}_{\mathbf{1}}=(1,0)^{T}$ and $\mathbf{e}_{\mathbf{2}}=(0,1)^{T}$ with respect to this inner product.

Problem 3. (25 pts)

a) Find the least squares solution $\hat{\mathbf{x}}$ of

$$
\left[\begin{array}{rr}
1 & 1 \\
1 & -1 \\
1 & 1
\end{array}\right] x=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

b) Calculate the residual $\mathbf{r}(\hat{\mathbf{x}})$.
c) (X-credit 5 pts.) Verify that $\mathbf{r}(\hat{\mathbf{x}}) \in N\left(A^{T}\right)$.

Problem 4. (20 pts.)
Find an orthonormal basis for

$$
\operatorname{Span}\left\{(1,0,1)^{T},(2,1,1)^{T}\right\}
$$

Problem 5. (20 pts.)

Find the similarity transformation X that diagonalizes

$$
A=\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]
$$

Check your result by direct calculation.

Problem 6. (10 pts)

Consider the vector space $\mathcal{C}[-1,1]$ with the inner product $<f, g>=1 / 2 \int_{-1}^{1} f(x) g(x) d x$.
a) Do the functions 1 and x form an orthonormal set of vectors with respect to the inner product?
b) Find the vector projection of 1 onto x.

Problem 7. (X-credit, 5 pts.)

Let A be a $m \times n$ matrix with real entries. Show that if $x \in R(A)$ and $y \in N\left(A^{T}\right)$ then x and y are orthogonal to each other.

Problem 8. (X-credit, 5 pts.)

For which values of α is the following matrix diagonalizable?

$$
A=\left[\begin{array}{cc}
1 & \alpha \\
\alpha & 1
\end{array}\right]
$$

