NAME:

M 369 Linear Algebra EXAM 2, 11/18/06 Fall 2006 - Instructor: Dr. Iuliana Oprea

Clearly answer each of the questions below. Show your work. **Box your answers.** Grading will be also based on orderly and transparent presentation.

Problem 1. (15 pts)

Let $\mathbf{x}, \mathbf{y} \in \mathbf{\hat{R}^3}, \mathbf{x} = (2,4,3)^T, \mathbf{y} = (1,1,1)^T$. Find the vector projection \mathbf{p} of \mathbf{x} onto \mathbf{y} and verify that \mathbf{p} and $(\mathbf{x} - \mathbf{p})$ are orthogonal.

Problem 2. (10 pts)

The following is an inner product on \mathbf{R}^2

$$\langle x, y \rangle = x^T J y$$
, where $J = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$.

Find the angle between $\mathbf{e_1} = (1,0)^T$ and $\mathbf{e_2} = (0,1)^T$ with respect to this inner product.

Problem 3. (25 pts)

a) Find the least squares solution $\mathbf{\hat{x}}$ of

$$\left[\begin{array}{rrr}1&1\\1&-1\\1&1\end{array}\right]x=\left[\begin{array}{rrr}1\\2\\3\end{array}\right].$$

b) Calculate the residual $\mathbf{r}(\mathbf{\hat{x}})$.

c) (**X-credit 5 pts.**) Verify that $\mathbf{r}(\mathbf{\hat{x}}) \in N(A^T)$.

Problem 4. (20 pts.)

Find an orthonormal basis for

$$Span\{(1,0,1)^T, (2,1,1)^T\}.$$

Problem 5. (20 pts.)

Find the similarity transformation X that diagonalizes

$$A = \left[\begin{array}{cc} 2 & 2 \\ 2 & 2 \end{array} \right].$$

Check your result by direct calculation.

Problem 6. (10 pts)

Consider the vector space $\mathcal{C}[-1,1]$ with the inner product $\langle f,g \rangle = 1/2 \int_{-1}^{1} f(x)g(x)dx$.

a) Do the functions 1 and x form an orthonormal set of vectors with respect to the inner product?

b) Find the vector projection of 1 onto x.

Problem 7. (X-credit, 5 pts.)

Let A be a $m \times n$ matrix with real entries. Show that if $x \in R(A)$ and $y \in N(A^T)$ then x and y are orthogonal to each other.

Problem 8. (X-credit, 5 pts.)

For which values of α is the following matrix diagonalizable?

$$A = \left[\begin{array}{cc} 1 & \alpha \\ \alpha & 1 \end{array} \right].$$