Math 676:Dg 8
We ve ahat to dive into sympletiz geonity, at first I wat to give sen sare fo wh ve will care bat syplatic geenty at all.
The hasin she is tet we wat to syele pants unitionf from our plygu spie

$$
P_{0}(n)=(\underbrace{s^{2} \times \ldots \times s^{2}}_{n}) /(50(3)
$$

The nice things tht sypuleti gonng will ste a ve:
(1) Acess to the arret masre a $7 r_{3}$ spure
\& (2) Good coordinuty to saple fin thet masie
Sampling Issues
In ador to sample (roserf) fon. settspere X, we need a prablility mase on X.
In prodabilote layge, we will here a saple spae (X, B, P), whe $B B$ a σ oatgon \& P B masse on $(x, 3)$ s.t. $P(x)=1$.

$$
\mu: X \rightarrow[0,+\infty] \text { s.t. }(1) \mu(\phi)=0
$$

(2) Fav $E_{1}, E_{2}, \ldots \in A$ prowne $d_{7} j$ jat, $\mu\left(E_{1} \cup E_{2} \cup \ldots\right)=\mu\left(E_{1}\right)+\mu\left(E_{2}\right)+\ldots$

 sunt $f x$. For rost σ-agho, all the st yid oue to mese are the .
 posthe conthle unings \& carplemuts

 Foc ay sert o mere memzat enountr in this chas, ay moolle st E con be witto as

and (2) $E=K U N^{\prime}$ whe K is c contille unim of chrdsists (an F_{5} st) \& N^{\prime} has mese 0 .

No, hork to pobsbilit..
An cunt is jost a malle sit E \& the probility f the evert is jot the mase $P(E)$ of the sit.
 Now, to sauple from a satle space $(X, 13, P)$ (whin the malle space (X, B) is ingried/hina, this is offu s.id as "to sorle frum a distribtom $\operatorname{Pa} X$ ") mas to rleat a point $x \in X$ s.t. $P(x \in E)=P(E) \quad \forall E \in B$.
So now, let's thute aat ult thas mas an mnifolds. First foll, let' ussme ow midl M is cuput so pht we ba't he to wary tat intgrols conwry.
$N w$, thinde atat if $M \leq \mathbb{R}^{n}$ is a count (w even just bouded) domm. Then we mow profetf well wat the mere an M shd be: clenf, if $E=\left[a, b, 3, \ldots \times\left[a, b_{n}\right] \subseteq \mathbb{R}^{n}\right.$, the the mase $f E$ suld be $\left(b_{1}-a_{1}\right) \cdots\left(b_{n}-a_{n}\right)$. But the we jost the he malle sts to be the geantad y sin b axes \&

 sweeps the mees inder the rin): lekegne intgel If $M \leq \mathbb{R}^{n}$ \& $E S M$ B Bord, $\lambda(E)=\int_{E} d \lambda\left(x_{1}, x_{n}\right)=\int_{E} d x_{1}, \cdots n d x_{n}$
he pont B the the staderd volume fom $d x, 1 \ldots \cap d x_{n}$ tells yantw to mane valurs In the
 it mays this equlity wath.
Def: A volue fore γ a an $n \cdot 1 m^{\prime} l$ mod M is an n firm $\gamma \in \Omega^{n}(m)$ sit γ now varily, manig ot ech $p \in M, \exists v_{1},, v_{n} \in T_{p} m$ s.t. $\gamma\left(v_{1},, v_{n}\right) \neq 0$.

Bt the ere lots f volue firs an \mathbb{R}^{n} \& thy all indrue manes in $M \subseteq \mathbb{R}^{n}$.
So, in gul, gy volume fon γ an a biled $m \leq \mathbb{R}^{n}$ will inhe a podabilig mere P_{r} a m ging

$$
P_{\gamma}(E)=\frac{\int_{E} \gamma}{\int_{M} \gamma} \text { for all Bul sob } E \leq M \text {. }
$$

Bet now the exect sane dophitun giny a probbity mene n ay cyent orienthle infd M.
Why oriabtle? Well, volue fo of enst an oriathe intls: the vole fin γ is a sateng

which mises the zro sectn colety. Sine $\Lambda^{n}\left(T_{p} m^{n}\right) \cong \mathbb{R}$, this mes a cosontut choie f count of
 mod is.
Ex: Casider S^{2} a the unitsphe $m \mathbb{R}^{3}$, \& define $\omega_{s k} \in \Omega^{2}\left(S^{2}\right) y$

$$
\omega_{p}(\vec{u}, \vec{u})=(\vec{u} \times \vec{v}) \cdot \vec{p}, \text { for } p \in s^{2}, \vec{u}, \vec{v} \in T_{p} s^{2} \text {, rediod es vorete in } \mathbb{R}^{3} \text { perroticer to } p \text {. }
$$

 (θ, z) give alist glal coods an S.? Then $\omega_{s x}=d \theta n d z$. (Exercise)

Ex: If $M_{1}, . . M_{n}$ ae mitts $\omega /$ volue fins $\omega_{1}, \ldots, \omega_{n}$, then $\omega_{1} n \ldots n \omega_{n}$ is a vilue for an $M_{1} x \ldots \times M_{n}$, \& the indmed muere grees w/ the pedant measne.

