
Math 676 Day 38: Open Problems

This is a list of open problems that I think are interesting and would love to discuss further (or
to hear about your solutions of). Some of these problems should be fairly easy, others may very
well be incredibly difficult. In all cases, even just some numerical explorations would probably lead
to interesting things.

What does the algebraic geometry get you? We have given an interpretation of the space
Pol(n;~1) of equilateral polygons in R3 as the GIT quotient (CP1)n//PGL(2,C). Of course,
this is an interesting projective variety, birationally equivalent to M0,n and appearing as a
limit of Hassett spaces, but the question is: does this have any usefulness in the study of
random polygons and polymers? So far I don’t know of any applications to random polygons
that bypass the symplectic side of the story. For example, would knowledge of the intersection
theory (i.e., the Chow ring) on this variety tell you anything useful about polygons?

Also, my understanding is the M0,n has a natural Kähler class called the Weil–Peterson
class. Obviously, this Kähler class in conjunction with the complex structure induces a
unique Riemannian metric. Is this metric on M0,n related to the metric on Pol(n;~1)? If so,
how? Of course, a Riemannian metric induces a volume form and hence a measure, so it is
sensible to talk about sampling random points onM0,n with respect to this measure. Is this
possible computationally? And would it be remotely interesting?

What can we say about quadrilaterals? Perhaps as a first step to addressing the previous
problem, can we use our (algebraic-geometric) understanding of Pol(4;~1) to better understand
quadrilaterals? We know that Pol(4;~1) is a CP1 (with three singular points), so coordinates
are kind of obvious. Earlier in the semester I used an analogous interpretation of planar
quadrilaterals as an RP1 to see that, with x ∈ R giving a coordinate on RP1, the convex
polygons corresponded to x < 0 and the two different types of non-convex quadrilaterals to the
intervals (0, 1) and (1,∞). Is there an analogous story for space quadrilaterals and some nice
decomposition of C\{0, 1} into regions that correspond to different classes of quadrilaterals
in R3?

A planar theory? Hopefully this course has conveyed the fact that there are two nice ways of
understanding the geometry of the space Pol(n;~1) of equilateral polygons in R3: as a symplec-
tic manifold (sometimes with isolated singularities) with an (almost) toric structure which
arises as the symplectic reduction of (S2)n by the diagonal SO(3) action, and as a projective
variety as described above in What does the algebraic geometry get you? For the purposes of
sampling, numerical integration, etc., the symplectic version of the story seems to be more
useful, since symplectic manifolds come equipped with canonical volume forms.

The algebraic version of this story still works for equilateral polygons in R2: this space can
be interpreted as the GIT quotient of (RP1)n by the diagonal PGL(2,R) action, which is
birationally equivalent to the real moduli space M0,n(R) that has been studied by Satyan
Devadoss and others (see, e.g., [1]). However, it is unclear to me how to get my hands on
the natural measure on this space (i.e., thought of as a quotient of the submanifold of (S1)n

of those elements whose vector sum is ~0; since (S1)n has a natural Riemannian metric, this
submanifold inherits a Riemannian metric which induces a metric on the quotient) by way
of (real) algebraic geometry. So the question is: can one understand the measure (even if
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not the Riemannian metric) using the algebraic geometry? And, if not, is there a parallel
geometric story which plays the role in this world of the symplectic reduction approach to
polygons in space?

What do stable polygons tell us about M0,n? In the last couple of weeks, I tried to give an
overview of Yi Hu’s theory of stable polygons [2], which give a space Pol(n;~r) which is bi-
holomorphic to M0,n. His main motivation in writing the paper seems to have been to give
tools for understanding the Kähler cone (cone of possible symplectic forms) of M0,n, and he
gives a conjecture along these lines. So far as I can tell, nobody has really done anything
with these ideas since the paper came out in 1999. This might just indicate that it’s not a
useful interpretation, but I wonder: is there anything interesting one can say about M0,n by
using the stable polygons interpretation?

What about Mg,n? Equilateral polygons in R3 have a reasonably natural connection to M0,n,
which means thatM0,n is an object of interest in stochastic geometry and statistical physics.
What about Mg,n for g ≥ 1? Is there some physical interpretation of points on, say M1,n?
In a paper I have tried to read many times but never really understood, Thurston [5] gives
some (implicit) connection between cone metrics on the sphere with fixed cone angle (or, if
you like, the space of convex polyhedra with fixed vertex angles) and M0,n. Is there some
interpretation of M1,n as the space of triangulation of the torus with fixed vertex angles?
Because that would be very cool. (Here are some notes of Rich Schwartz that I just found
which might give a more comprehensible version of Thurston’s paper: [4])

Higher dimensions? Rather than generalizing M0,n to Mg,n, what about generalizing to the
moduli space of points on CP2, or CPn? I take it for granted that there’s some theory of how
to compactify this space and some extensive algebraic geometry literature on it. My question
is: is there some interpretation which is relevant to stochastic geometry or statistical physics?
Of course, the same question applies to other moduli spaces that people care about.

What’s the geometry of spaces of random graphs? The discussion in this class has been
about random polygons, which we could interpret as the space of piecewise-linear maps of the
circle into R3 with a fixed number of pieces. However, many biologically significant polymers
form more complicated graphs or networks. So we can think about piecewise-linear maps of
a fixed arbitrary graph into R3 where we specify, say, how many pieces lie on each edge of
the graph. The simplest example I can think of is a θ graph, which is just a two vertices with
three edges connecting each of the two vertices. So: is there any special geometric structure
on the space of all possible polygonal graphs with a fixed topological type and number of
pieces along each edge? It’s easy to cook up examples which are odd-dimensional, so these
aren’t necessarily symplectic or complex algebraic.

How to deal with thickness? While random polygons provide a reasonable statistical model for
actual ring polymers, they’re not particularly physically realistic: the polygons we’ve been
considering allow two different edges to get arbitrarily close, or even to intersect, whereas of
course real polymers have thickness. How can we incorporate a reasonable thickness constraint
into either the symplectic or algebraic story? There is some sense in which this should
be natural: remember that the action-angle coordinates on polygon space had the action
coordinates given by lengths of chords in a given triangulation, meaning distances between
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certain vertices. So one can prevent certain vertices from closer to each other than ε simply by
adding the constraint that these coordinates are not allowed to be smaller than ε. However,
for n-gons there are only n−3 of these action coordinates, whereas there are

(
n
2

)
−n = n(n−3)

2
vertex-vertex distances that one would like to constrain (since distances between adjacent
vertices are already fixed).

Hence, one would like some way of enforcing these constraints on all different triangulations
(and hence, all choices of action-angle coordinates) at once. The triangulations of an n-gon are
parametrized by a cluster algebra [3], so maybe this is the right formalism for incorporating
these constraints?

Dynamics? Everything I’ve said so far is basically static: sampling random polygons, integrating
over random polygons, etc. But in the physics, of course what one really cares about is
the dynamics of the system, and how, for example, polymers change their conformations in
response to energetic and entropic effects, etc. In principle one should be able to model the
random motion of a polymer in solution by Brownian motion (or some other process) on
Pol(n;~1). How can we do this, preferably in our nice action angle coordinates? For example,
is there a reasonable expression for the Laplacian in these coordinates? Relatedly, one would
like to be able to compute distances and find geodesics between points in this space. Since
Pol(n;~1) is Kähler and hence has a Riemannian metric, this is in principle possible, but is it
analytically or computationally tractable?
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