Math Ci76: Dy 26
So fine, we waliotard $\left.\left(\mathbb{P}^{\prime}\right)^{n} / / P S L L 2, C\right)$ pretf well: it's jot the gemedre puint fo niee semisttle pants by the rotu $f \operatorname{PSC}(2,4)$.
Bet in ult sene doy this conoged to the colleting cloed polyges, as cland?
In this setting, its nutul to thate of S^{2} as the basdy of the unit ball, which we iduntif with the Poncare bel molel of hypatoliz $3 \cdot$ spare H^{3}, \& $\operatorname{PSL}(2,8)$ is the isomety grap of H^{3}.
Now, we use a cytrution fon Donaby-Erle:
Df: A probility mare $v n S^{2}$ is stible if $v(p)<1 / 2$ for ay $p \in S^{2}$, \& it is sami-stolk if $v(p) \leq 1 / 2 \forall p \in S^{2}$. A mure B nize samistble if it ha exath 2 aturs f mos $1 / 2$.

$$
\nu=\frac{1}{2} \sum r_{i} \delta_{i i},
$$

which is stisle/semi-sthle/nice sani-stlle \Leftrightarrow the werghtel pouts are recady to the eatir defmith.
No, if $i: S^{2} \hookrightarrow \mathbb{R}^{3}$ is the indorm, ten the centr f ms $B(\nu) f$ a were ν a S^{2} is dofond g

$$
B(v)=\int_{S^{2}} i(p) d v(p)
$$

For morss of the fom $v=\frac{1}{2} \sum r_{i} \delta_{\text {ei }}$ we hae

$$
B(v)=\int_{S^{2}} i(p) d v(p)=\int_{S^{2}} p \cdot \frac{1}{2} \sum r_{i} \delta_{e_{i}}(p) d t r=\sum \frac{r_{i}}{2} e_{i} .
$$

For exple, when $\left(r_{1}, r_{1}\right)=\left(\frac{2}{n}, \ldots, \frac{2}{n}\right)$, the , $_{3}$ jot $\sum \frac{1}{n} e_{i}=\frac{1}{1} \sum e_{i}$.
In genul, if ν is an tomic meare, then $B(\nu)$ is the usul weigutd coate fmos fhe atoms.
Prop: For each stille mase v on $\left.S^{2} \exists \gamma \in P S \angle 12, \mathbb{C}\right)$ s.t. $B\left(\gamma_{*} \nu\right)=0$. The dement γ is unive φ to past capositon by $g \in S O(3)<P S(2, \mathbb{T})$.

Trushitin, this mean each $P S \angle(2,4)$ orbit in $M_{s t}$ cantins a unipue closd palygan p to roatin.
Since we alreng saw tht eadh equiblene closs in Qasp hy a miane PSU2, ©) abit f nice sani sthle pohts, \& sine each soch abit cations a unijure (yyto rotomi) Ind polygen, we see tht pants in

$$
\left.\left(\mathbb{P}^{\prime}\right)^{n} / / P S<12, \mathbb{C}\right) \cong M_{\text {nst }} / P S<(2, \mathbb{C})
$$

can be wingey regreeted hy a clord n-gm up to rotthm... .n oth words, tht

$$
\left(\left(S^{2}\right)^{n}, \omega\right) /\left(\int_{0} S o(3)=\mu^{-1}(\Delta) / \delta 0(3) \cong M_{\text {nsst }}(P S L 12, \mathbb{A}) \cong\left(\mathbb{P}^{\prime}\right)^{n} / / P S \angle 12, \mathbb{C}\right) .
$$

