Math 676: Dy 23
(reanctue, corthe lineer)
lost the, we suad the if X_{13} a prostre vaita $\& G$ is an alghbail gry adty a X thh Bromaphises of the anbint prosetre spare:

$$
\begin{gathered}
G \curvearrowright X \\
\vdots \\
S L(n+1, C) \\
) \\
\mathbb{P}^{n}
\end{gathered}
$$

Then the GIT protut X / G is given $\operatorname{Proj} \oplus H^{0}(X, O(r))^{G}$.

 as $\theta(1)$ for the uniety.
 ad $H^{0}\left(X_{,} \theta(1)\right)^{6}$ are the 6 -morat sectus.

Nw, the point is that $\oplus H^{0}(x, \theta(r))^{b}$ is sumed to phth ral of the in fffets on $X / 6 \ldots$ so wh is tht?
Add do, whe kid $O_{x}(-1)$ care fram, ajuy?
Wiel, $x \subset \mathbb{P}^{n}$, so ponts in x me lims in \mathbb{C}^{n+1} \& some got the fatologal ine hadle $\theta_{x}(-1)$ If thay the fiber ar each pant $x \in X$ to be the conresperling line in \mathbb{C}^{n+1}. In othe words, $\partial_{x}(-1)=\left.O_{p^{n}}(-1)\right|_{X}$.
Pistrity:

 $f \tilde{x}$

So linar fats an \mathbb{C}^{n+1} regtrieted to \tilde{x} \& then pulled hack to $\theta_{x}(-1)$ gure forts whalh ve Iner an the fhers, meanig the ree gunulit to seefins of the bual balle
Whe genalf, degree kharogns plynoirly on \mathbb{C}^{n+1} guve seets f the $k^{\text {th }}$ thor pour $O_{x}(k)$.
of cose, al togettr $\underset{k}{\oplus} \mathbb{P}^{0}\left(X, O_{x}(k)\right)$ ghes the groded ly degree) ring of haogns fotiss an the cone \tilde{X}
which is the rigut notin f the in of fats a the prosibne vesity x.
In trm, the G-munt seatrs suldgue the "ring of fots" a the pront XIG, \& applyig Pojj then reas the veriety w/ line bidle.
 the Ine bualle (ie., hus a linerizition).
 Reell the $X / / 6=\operatorname{Proj}{ }_{r}^{\oplus} H^{0}\left(X, \theta_{X}(r)\right)^{6}$. The relerat, puyting are:
(1) Wht ponts of X on $\underset{\gamma}{\oplus} H^{0}\left(X, \theta_{x}(r)\right)^{6}$ ernsee?
(2) Wht ponts yat it con see cont be distoynibard?

Mre precisey, X / G can be realized conerty as the inge of

$$
x \cdots \cdots>\mathbb{P}\left(\left(H^{0}(x, O(r))^{G}\right)^{*}\right)
$$

$x \longmapsto e v_{x}$ whe $e v_{x}(s):=s(x)$,
for $r \gg 0$. In conds., if $s_{0, \ldots}, s_{k}$ is + bsiss for $H^{0}(x, \theta(1))$, then $x \mapsto\left[s_{0}(x): s_{1}(x) \ldots: s_{k}(x)\right]$, ahich fore any mades sase if $s_{i}(x)$ are ret all zoo. In sther wods, this rpis didid an the loans f sanstothe pank:
Def: $x \in X$ is semistitle if $\exists s \in H^{(}\left(X, O_{X}(r)\right)^{G}$ with $r>0$ s.t. $s(x \neq 0$.
So if $X_{s s}$ is the sitf sanistsle pomb, the the dre rp is rey any dfind an $X_{s s t}$
Sine te mp is carfit on G-abit, it factos the $X_{\text {sed }} 6$... at my not be gal to $X_{\text {set }} 6$.
Def: A samistle pant $x \in X$ is stoke if $\underset{r}{\oplus} H^{0}(X, \theta(r))^{6}$ spentes absits ner $x \&$ the stailier $f \times$ is frite.
Cley, a the strble pants $X_{s t}$, the GIT protint is jot the ual pronot: $X_{s t} / 16=X_{s t} / G$.

