Math 676:Dy22
Last the, ue sao ket the grap SO(3) das int at fredyan the clord palygers $\mu^{-1}(\bar{\theta})=\left(S^{2}\right)^{n}$ nhun is ever: the lind plyyos are fixed pants fo a cog $f \mathrm{SO}(\mathrm{z}) \leq 5 \mathrm{O}(3)$.

Hawr, if we telde the preings 6 the parts from $\left(S^{2}\right)^{n}\left(\right.$ \& hree form $\left.m^{-1}(0)\right)$), then the
 trastin 4 rotion re a nie sympecer infd.
In fet, puttry the bd pouts bock M But too hod:

specitizy, fthe fim $\left\{(z, 0) \in \mathbb{C}^{n / 2} \times \mathbb{C}^{n / 2}\right.$: eithe $\left.z \neq 0 z w \neq 0, a r(z, 0)=(0,0)\right\} / \mathbb{C}$

$$
\text { We the } \mathbb{C}^{2} \text { atin an } \mathbb{C}^{n}=\mathbb{C}^{1 / 2} \times \mathbb{C}^{-1 / 2} \text { is ging } \delta
$$

$$
\lambda \cdot(z, \omega)=\left(\lambda z, \lambda^{-1} \omega\right) .
$$

 whah is gatod of $f_{i j}=z_{i} \omega_{j}, \omega /$ reltos $f_{i j} f_{j i}=f_{i i} f_{j j}$, \& so the pult is a haoges guratic cone.

$P G L(2, \Psi)$, which I now wot podssite in diffetil geonety laynge.

of core, $P G L(2, \mathbb{C})$ is the antomorphison gre of \mathbb{P}^{\prime}, \& so

$$
\left(\left(\mathbb{P}^{\prime}\right)^{n} \backslash \Delta\right) / P G L(2, \mathbb{C})
$$

is exitf the malli spre 6 n distont pouts $n \mathbb{P}^{1}$.
Nw, i Renzo's dass wive seen a woy fo copstifig this into $\overline{M o}_{0, n}$ which depuly foirg strang an the protzer gemeff of poontel cares.
Mare groug, thh, the poant is the $P G L(2, C)$ ants an $\left(\mathbb{P}^{\prime}\right)^{n}$, ht tht, sue $\left(\mathbb{P}^{\prime}\right)^{n}$ is copet \& $P G L(2,4)$ is nt, the efinin canot be papr: \exists nondred arbits.

Schente pictre: Thik of ar ootm $\omega / 3$ orbits:
All there corms cation the seand pont, so the tracogial pront is
whis is mon-Hasdentf.
In this cse, on fix zy delty the lower-dmil orbit.
Notire the this is the sare thin we do when we lobe at orsits in \mathbb{C}^{n+1} of the nathe \mathbb{C}^{*} artin: orbits loo the

Ex: Cayiber \mathbb{C}^{*} atty an $\left.\mathbb{C}^{2} \operatorname{lor} \mathbb{C \mathbb { R } ^ { 2 }}\right)$ by $\mathbb{C}^{*} \partial \lambda \longleftrightarrow\left[\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right] \in S L(2, \mathbb{C})(\operatorname{ar} P S(2, \mathbb{C})=P G(2, \mathbb{C})$) obits:

Gernir obbits re of the fim $\{x y=\alpha\}$ for $\alpha \neq 0$.
The cre $\alpha=0$ bects dum into 3 speard orbits: $\{(0, y): y \neq 0\}$

$$
\begin{aligned}
& \{(x, 0): x \neq 0\} \\
& \{(0,0)\}
\end{aligned}
$$

Nw, even if we cleite $(0,0)$, the quotect is the α-line, int w/ a nompseted dalle port at the orign sime the linit as $\alpha \rightarrow 0$ f a gevrieabit is $\{x=0\} \cup\{y=0\}$. of cone, ne ant the punt to be \mathbb{C}_{1}, at uht to $t_{0} \omega / \alpha=0$?
3 ansurs (followg tharres):
(1) Chow potrat: repreat $\alpha=0$ G $\left\{x_{y}=0\right\}$, the unim fall 3 bod oblits.
(2) GIT quotient: Ihentify all 3 had obbits since thar oblits hue netreetig clons
(3) Syppetie reductin: throw my the randerd abits

Foong, :f X is projective \& the G-actun extuls to an $S(n+1, \mathbb{C})$ adtun on $\mathbb{P}^{n} \supseteq x$, then defue $X / G:=\operatorname{Proj} \underset{r}{\oplus} H^{0}(X, O(r))^{G}$

In the Atire cone, if R is the ring ffutis an X, then gress the $X / / G=\operatorname{spec}\left(R^{6}\right)$.
Indeed, this torig watle in the exple: $R=\mathbb{C}[x, y]$ \& $R^{6}=\mathbb{C}[x, y]^{\mathbb{C}^{*}}=\mathbb{C}[x y]$ \& $\operatorname{Spec}(\mathbb{C}[x, y)=\mathbb{C}$.
 the castts, so $\operatorname{Spec}\left(R^{6}\right)=\{ \}$, \& we bit roly wat to thate $f \mathbb{C}^{n+1} / \mathbb{C}^{n}$ a bery a sinfle poat (of case, the fix hue is to ase the dree Eofinition)

