Math $676: D y 1$
The main ofjet in this case: $\left(S^{2}\right)^{n} / / \mathrm{SO}(3)$.
Wht is this thin?
It is the symptatio reduction of the toric sympletic maifild $\frac{S^{2} \times S^{2} \times \ldots \times S^{2}}{n}$ by the diagnal Hamiltorian actinf SO(3), reduad at the fiber war $\overrightarrow{0}$ in the manent plyytope f fhe refin. If is (dmant) a foric sypplectic menitobl, neenyig it hs cation-agle coodimates \& a monet app $\mu:\left(S^{2}\right)^{n} \%_{0} s o(3) \rightarrow P \leq \mathbb{R}^{n-3}$ whe the pash fierand more n the avver platpee P is a costat myltiplef lekerne nese.
The min goolf the case s to underted wht the had is gogn nin the pevinus proggth.
Why sheld yau are?
(akan. raveon plygans)
(1) Thas spice tuny at to be the noduli space of n-step dord raden witts in \mathbb{R}^{3}, chich proudle
the ksic theretid model for ring plymers li.e butru2l DNA.
Appicd inttemutions wat to be thle to ntgante awr the space ard to sande poants uniforang fan it (which is bease saneturs the ung way to intognte is to do Mante Gorlo intenation)

little rijurous mittemitid jotriticn or real herens.
Muhe of elt is risoons in the feld has been prasd usify sypplotic jeandy.
 them, there is a carrespurdere (at last topologialy) to the Germettic Inviant heor (GIT)
 the GIT quotut $\left(\mathbb{P}^{1}\right)^{n} /{ }_{w} / P G L(2, \mathcal{E})$, whath is a proctale ohice f conpectitiotion of the modati spene f n-ponted averes f gens 0, a.k. a. $M_{0, n}$.
The correiti blw (ageetro-geonedre) motuli spaes \& rasdan wits seens to be complety unepplored, which obviongy preests an oppertuity for te mothated strubt.

Random walles
A dassiad randan witk in \mathbb{R}^{d} is an ardrod collatim fonit syuuts whose diretion are chosen indeperventy \& mi ipeng a the wit sphere $S^{d-1} \subseteq \mathbb{R}^{d}$

Then the contigurith syue or moduli spue forstep (equiltind) rordm witts in \mathbb{R}^{d} is $j j^{A t} \underbrace{S^{n-1} \times \ldots \times S^{d-1}}_{n}$.
This is a coput, Riemannis, n(d-1)-dimasial muifled. It is ry syple to intgate wr this spare (use sphial coadinuts!) \& to sapile points uniforof fem it (how?).
In fut, in prooble re unulf dosit cre abt the arientitin fo the parsen with eiths, so the
 in \mathbb{R}^{d} up to trastion \& sotion.

Howar:
(1) It's hoded to cue y w/ nie coods. n the spare \&
(2) This is at outly a momiteld lub?)

So usuall jot ded $\omega /\left(S^{n-1}\right)^{n}$.

Closel wilks/polygens
Suppre we row requite ar n-step rodan wilks to fom loops, meang thy retum to their stity yout after exantf n steps. This i obving sare subst of $\left(S^{d-1}\right)^{n}$ or $\left(S^{\alpha-1}\right) / S_{0}(d)$, at huw an ve at or hads nit?

Wht is the clone corlition alselvicslly?
$\vec{e}_{1}+\ldots+\vec{e}_{n}=\overrightarrow{0}$. Notice the tha is rally dequitins, ne for each cgant f the recter.
To mhe it forey, lefier $\mu: S^{d-1} \rightarrow \mathbb{R}^{d}$ ly $\mu\left(\vec{e}_{1}, \ldots, \vec{e}_{n}\right)=\vec{e}_{1}+\ldots+\vec{e}_{n}$. Then the lopp arshen woths are $\mu^{-1}(\overrightarrow{0})$. If $\vec{\sigma}$ is a coult vithe $f \mu$, then this shld y a smooth submrited $f\left(s^{1 \cdot 1}\right)^{n}$ of
dhursion $n(d-1)-d=n d-n-d$.
We migut also be intrested in $\mu^{-1}(\vec{o}) /$ sold which shald be a masited (or something) of dmensian

$$
n d-n-d-d m(S O(1))=n d-n-d-\frac{d(d-1)}{2}=n(d-1)-\frac{d(d+1)}{2}
$$

space	dmasian
$\left(S^{2}\right)^{n}$	$2 n$
$\left(S^{2}\right)^{1} / S 0(3)$	$2 n-3$
$\mu^{\prime}(\overline{0})$	$2 n-3$
$\mu^{-1}(\overline{0}) / S 0(3)$	$2 n-6$

Theig fov grated the conration to (complua) ascelcric yeanedy, your attatim shed nutury fros on the spens with even red dangins, sme thase at leot have a chmee fory cupled alyebroiz veriates.

Mueh nure sititle is teft the $\mu^{-1}(\bar{\partial}) /(\mathrm{sol} 3)$ is Adso a projectre virich.

Befre we at there, thyy, we need to titk = Sit ant manitolls..

