| Typical | Network | Problems |  |
|---------|---------|----------|--|
| 0000    |         |          |  |
| 0       |         |          |  |
| 0       |         |          |  |
| 00      |         |          |  |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

## **Network Algorithms**

#### Anton Betten

Department of Mathematics Colorado State University

April, 2006

| Typical | Network | Problems |
|---------|---------|----------|
| 0000    |         |          |
| 0       |         |          |
| 0       |         |          |
| 00      |         |          |
| ~ ~     |         |          |

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○



#### Typical Network Problems

Minimum Cost Spanning Tree All Pairs Shortest Distance / Paths Maximum Network Flow Travelling Sales Person (TSP) Graph Clustering

#### **Combinatorial Optimization**

What is an Optimization Problem? What is a Global Optimum? What is a Local Optimum? Lin-Kernighan 2-opt Local Search Application: The Domino Portrait Problem

| Typical | Network | Problems |
|---------|---------|----------|
| 0000    |         |          |
| 0       |         |          |
| 0       |         |          |
| 00      |         |          |

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

### Abstract

The talk presents some ideas on how combinatorial optimization can be used to design efficient algorithms for graphs and networks. Local Search is a relatively simple method which was proven to be effective in many areas, for instance graph clustering problems.

| Typical Network Problems | Combinatorial Optimization |
|--------------------------|----------------------------|
| 0000                     | 0                          |
| 0                        | 0                          |
| 0                        | 0                          |
| 00                       | 0000                       |
| 00                       | 000                        |
|                          | 00                         |

Typical Network Problems:

- 1. Minimum Cost Spanning Tree
- 2. All Pairs Shortest Distance / Paths
- 3. Maximum Network Flow (between two nodes, called source and target)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- 4. Travelling Sales Person (TSP)
- 5. Clustering

#### Minimum Cost Spanning Tree:

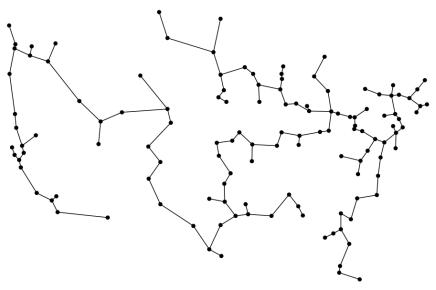
# Find the cheapest spanning tree ("connect the dots without creating cycles")



| Typical Network Problems | Combinatorial Optimization |
|--------------------------|----------------------------|
| 0000                     | 0                          |
| 0                        | 0                          |
| 0                        | 0                          |
| 00                       | 0000                       |
| 00                       | 000                        |
|                          | 22                         |







| Typical Network Problems | Combinatorial Optimization |
|--------------------------|----------------------------|
| 000                      | 0                          |
| 0                        | 0                          |
| 0                        | 0                          |
| 00                       | 0000                       |
| 00                       | 000                        |
|                          | 00                         |

Algorithms by Kruskal and by Prim, very effective:

"Add the cheapest edge which is still possible until everything is connected."

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Movie 1

| Typical Network Problems | Combinatorial Optimization |
|--------------------------|----------------------------|
| 0000                     | 0                          |
|                          | 0                          |
| 0                        | 0                          |
| 00                       | 0000                       |
| 00                       | 000                        |
|                          | 00                         |
| •<br>0<br>00             |                            |

#### All Pairs Shortest Distance / Paths

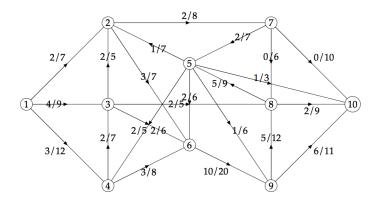
Dijkstra's algorithm



#### Maximum Network Flow

Algorithm of Ford and Fulkerson:

"augment the current flows until no augmenting path can be found anymore"



| Typical | Network | Problems | ; |
|---------|---------|----------|---|
| 0000    |         |          |   |
| 0       |         |          |   |
| 0       |         |          |   |
| •0      |         |          |   |
| 00      |         |          |   |

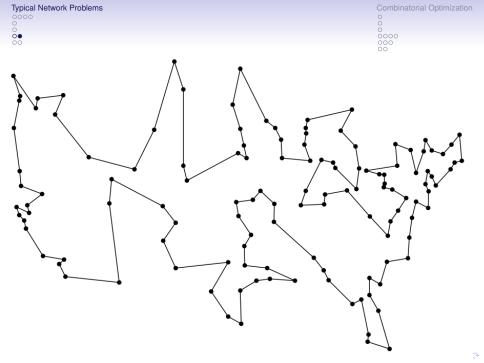
| Combinatorial | Optimization |
|---------------|--------------|
| 0             |              |
| 0             |              |
| 0             |              |
| 0000          |              |
| 000           |              |
| 00            |              |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

#### **Travelling Salesman**

Visit all cities on a cyclic tour.

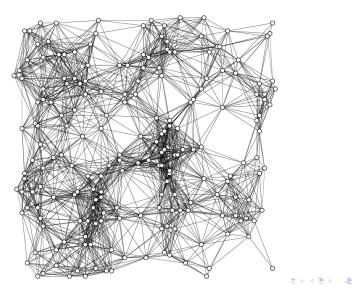
Algorithm: Lin / Kernighan: "2-opt"



Typical Network Problems

Combinatorial Optimization

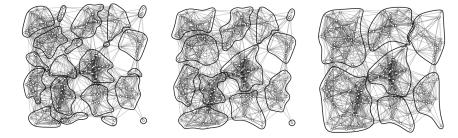
#### Graph Clustering:



Typical Network Problems

Combinatorial Optimization

#### find "clusters", for instance:



Example taken from Andrew King: *Graph Clustering with Restricted Neighbourhood Search,* Ph.D. thesis, University of Toronto, Department of Computer Science.

| Typical | Network | Problems |
|---------|---------|----------|
| 0000    |         |          |
| 0       |         |          |
| 0       |         |          |
| 00      |         |          |
|         |         |          |



▲□▶▲□▶▲□▶▲□▶ □ のQで

## What is an Optimization Problem?

An instance of an optimization problem is a pair (F, c) where

1. *F* is a set, whose elements are called "feasible solutions" 2.  $c: F \to \mathbb{R}$  a cost function

| Typical | Network | Problems |
|---------|---------|----------|
| 0000    |         |          |
| 0       |         |          |
| 0       |         |          |
| 00      |         |          |



・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

# What is a Global Optimum?

An element  $x \in F$  with  $c(x) \leq c(y)$  for all  $y \in F$  is called a global optimum.

It is often too hard determine a global optimum.

The set *F* may be prohibitively large.

| Typical | Network | Problems |
|---------|---------|----------|
| 0000    |         |          |
| 0       |         |          |
| 0       |         |          |
| 00      |         |          |
|         |         |          |



◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

## What is a Local Optimum?

An element  $x \in F$  with  $c(x) \le c(y)$  for all  $y \in F$  which are "close" to x is called local optimum.

For this to make sense, one needs to define a concept of "neighborhood"

This is problem dependent.

Sometimes it is hard to find even a single point in *F*.

| Typical Network Problem | IS |
|-------------------------|----|
| 0000                    |    |
| 0                       |    |
| 0                       |    |
| 00                      |    |



・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

## Lin-Kernighan 2-opt

Let F be the set of all tours, i.e. sequences

 $[i_1, i_2, \ldots, i_n]$  which are permutations of the cities  $1, \ldots, n$ 

the tour is  $i_1 - i_2 - i_3 - \cdots - i_n - i_1$  (cyclically).

The size of F is prohibitively large

| Typical | Network | Problems |
|---------|---------|----------|
| 0000    |         |          |
| 0       |         |          |
| 0       |         |          |
| 00      |         |          |



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

### Lin-Kernighan 2-opt

#### Let

$$c([i_1, i_2, \ldots, i_n]) = \sum_{j=1}^{n-1} \operatorname{dist}(i_j, i_{j+1}) + \operatorname{dist}(i_n, i_1),$$

i.e., the cost of a tour is the sum of the distances travelled.

| Typical Network Proble | ms |
|------------------------|----|
| 0000                   |    |
| 0                      |    |
| 0                      |    |
| 00                     |    |



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

## Lin-Kernighan 2-opt

#### Start with a random tour $x \in F$ ,

$$x = [i_1, i_2, \dots, i_n]$$
  
i.e.,  
$$i_1 \mapsto i_2 \mapsto \dots \mapsto i_n \mapsto i_1$$

Typical Network Problems

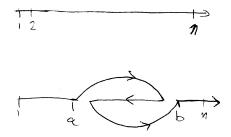
Combinatorial Optimization

## Lin-Kernighan 2-opt

Choose two random numbers a, b with  $1 \le a \le b \le n$  and a, b at cyclic distance  $\ge 2$ .

Reconnect as follows:

 $i_1 \mapsto \cdots \mapsto i_a \mapsto i_{b-1} \mapsto i_{b-2} \mapsto \cdots \mapsto i_{a+1} \mapsto i_b \mapsto \cdots \mapsto i_n \mapsto i_1.$ 

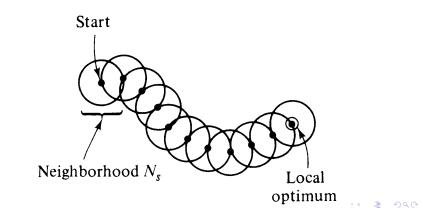


```
Typical Network Problems
```



## Local Search

Idea: given  $x \in F$ we try to find an improvement in a "neighborhood" N(x)



| Typical | Network | Problems |
|---------|---------|----------|
| 0000    |         |          |
| 0       |         |          |
| 0       |         |          |
| 00      |         |          |
|         |         |          |

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

## Local Search: Variable Depth

Idea:

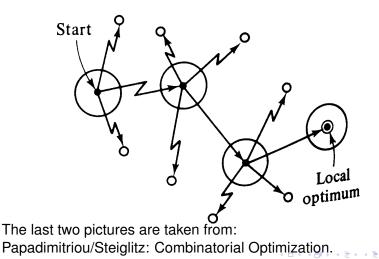
do a (random) number of neighbor's neighbors.

Only the last of this chain of neighbors is compared to the current point.

The hope is that this allows us to go through a valley (or climb over a mountain)

| Typical | Network | Problems |
|---------|---------|----------|
| 0000    |         |          |
| 0       |         |          |
| 0       |         |          |
| 00      |         |          |

#### Local Search: Variable Depth



◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

# Application: The Domino Portrait Problem

# We want to approximate a foto portrait using Dominos (double nine, say).

We wish to use a fixed number of complete sets.

Typical Network Problems

E3 11 X **X X** 0. HIIII H H H H . . . 3: 3 32 14 H H X X X :: 31 13 ٠ II I H X 11 14 1:-1 141 ... H 🖽 • X 14 X Ξ ٠ H .... 11 .... .... . :: ~ X •. . <u>ب</u> ::: E ::: ٠. ٠ ••• ٠ .... ٠ III III ^. 14 ••. E3 1-4 E3 ••. × 13 13 × ٠ X ! ! ! ! !! !! : : .... Ħ .... .... .... .... ш H :: :: 3 III 33 ٠ ٠ ••• ÷., •. Ъ., :: 🖽 🖽 ٠ ٠ ·•• · . 🖽 1.1 H 3 11 x ш . EI EI III ..... ٠ ٠ III <del>..</del>... 123 1-4 111 ٠ ٠. ٠ ... 171 13 13 II ... III .... H IIII .... 1::: ٠ .... ٠ HHHXXHX ...... ₩ ₩ :: .... ٠ ٠ 3 8 11 8 ..... ... 881 X H D х н ٠ ٠ ..... .... \*\*\* H XXXXXXXXX 3. ::: .· :: H 🛙 1 ::: ٠ ··· .... × II 🖽 🖽 = 33 XXXHX 13 1.1 H E .... Ⅲ ₩ 13 11 13 11 14 X X !!!!!!!! λ. X II :: ш ..... 11 11 ... 1::1 ٠ ٠ ٠ :: ::: ::: ::: ٠

Bader Al-Shamarey: Two Topics in Combinatorial Optimization. Ph.D. thesis, CSU, 2007.