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Invited Talks

Partial difference sets in Abelian groups

Stefaan De Winter

Michigan Technological University

(Joint work with Ellen Kamischke and Zeying Wang)

Partial difference sets (PDS) in finite groups were defined by S.L. Ma in the early 80s. These interesting
subsets of finite groups allow for the construction of strongly regular Cayley graphs. In this talk I will first
review basic definitions and constructions, as well as the major results on PDS, with a focus on PDS in
Abelian groups. In the second half of the talk I will present new results (in particular a technique to prove
non-existence results). I will end with some directions for future research in the area of PDS in Abelian
groups.

On Cameron-Liebler line classes

Alexander Gavrilyuk

N.N. Krasovsky Institute of Mathematics and Mechanics

A Cameron-Liebler line class of the finite projective space PG(3, q) is a set of lines that shares a constant
number x of lines with every spread of PG(3, q). The number x is called the parameter of the Cameron-
Liebler line class. These classes appeared in connection with an attempt by Cameron and Liebler (1982) to
classify collineation groups of PG(n, q), n > 3, that have equally many orbits on lines and on points.

In this talk, I will survey some recent results on Cameron-Liebler line classes such as a new necessary
existence condition; new examples, non-existence or uniqueness of line classes for some x and q.

On non–bipartite distance-regular graphs with very small smallest
eigenvalue

Jack Koolen

University of Science and Technology of China

(Joint work with Zhi Qiao (USTC))

We study distance-regular graphs with valency k ≥ 3 and smallest −k/2 ≥ θ > −k. Examples are
the dual polar graphs with a1 = 1 , the Odd graphs, and the folded 2D + 1-cubes. We show that for fixed
diameter there are only finitely many of them and we classify them for diameter at most 3. As a consequence
we can determine the distance-regular graphs with chromatic number 3 and diameter three.

Automorphism groups of algebraic curves

Gábor Korchmáros

Dipartimento di Matematica ed Informatica, Università della Basilicata, Campus Universitario di Macchia
Romana

85100 Potenza, Italy
gabor.korchmaros@unibas.it

(Joint work with Massimo Giulietti)
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Let X be a (projective, geometrically irreducible, non-singular) algebraic curve defined over an alge-
braically closed field K of characteristic p ≥ 0. We mainly focus on positive characteristic, and in particular
on the case where K is the algebraic closure of a finite field. Let K(X ) be the field of rational functions
(the function field of transcendency degree one over K) of X . The K–automorphism group Aut(X ) of X
is defined to be the automorphism group Aut(K(X )) consisting of those automorphisms of K(X ) which fix
each element of K. Aut(X ) has a faithful action on the set of points of X .

By a classical result, Aut(X ) is finite if the genus g of X is at least two.
It has been known for a long time that every finite group occurs in this way, since for any ground field

K and any finite group G, there exists X such that Aut(X ) ∼= G,
This result raised a general problem for groups and curves: Determine the finite groups that can be

realized as the K-automorphism group of some curve with a given invariant. The most important such
invariant is the genus g of the curve, and there is a long history of results on the interaction between the
automorphism group of a curve and its genus.

In positive characteristic, another important invariant is the p-rank of the curve (also called the Hasse-
Witt invariant), which is the integer γ so that the Jacobian of X has pγ points of order p. It is known that
0 ≤ γ ≤ g.

In this survey we focus on the following issues:
(i) Upper bounds on the size of G depending on g.
(ii) Examples of curves defined over a finite field with very large automorphism groups.
(iii) The possibilities for G when the p-rank is 0.
(iv) Upper bounds on the size of the p-subgroups of G depending on the p-rank.
The study of the automorphism group of an algebraic curve is mostly carried out by using Galois Theory,

via the fundamental group of the curve. Here, we adopt a different approach in order to exploit the potential
of Finite Group Theory.
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On the constructions of optimal linear codes

Tatsuya Maruta

Osaka Prefecture University

(Joint work with Yuuki Kageyama)

An [n, k, d]q code is a linear code of length n, dimension k and minimum Hamming weight d over the
field of q elements Fq. A fundamental problem in coding theory is to find nq(k, d), the minimum length n
for which an [n, k, d]q code exists for given q, k and d. A natural lower bound on nq(k, d) is the Griesmer

bound: nq(k, d) ≥ gq(k, d) :=
∑k−1
i=0

⌈
d/qi

⌉
, where dxe denotes the smallest integer ≥ x. In this talk, we

construct linear codes over Fq whose lengths are close to the Griesmer bound, using the geometric methods
such as geometric puncturing and projective dual.

Parity-check codes and their representations

Gretchen Matthews

Clemson University

A linear code is often represented as the null space of a matrix; equivalently, it may be represented as
a bipartite graph, called a Tanner graph. The performance of the code when coupled with an iterative
decoding algorithm depends on its graphical representation. Low-density parity-check (LDPC) codes, which
are defined by sparse graphs, have received much attention over the past decade due to the fact that they
are capacity acheiving when paired with iterative message-passing decoding algorithms. One drawback of
these decoding algorithms is that they may produce noncodeword outputs, loosely called pseudocodewords.
In this talk, we discuss combinatorial and algebraic tools for studying pseudocodewords.

Combinatorics, Modular Functions, and Computer Algebra

Peter Paule

Research Institute for Symbolic Computation (RISC),

Johannes Kepler University Linz

The talk reports on recent computer algebra developments related to problems in enumerative combina-
torics, number theory, and special functions. A major case study concerns the algorithmic revitalization of
partition analysis, a method developed by MacMahon more than a hundred years ago in connection with
the problem to solve linear systems of Diophantine inequalities over non-negative integers. In a project with
George Andrews, an implementation of partition analysis has been used to construct a new class of combi-
natorial objects, partition diamonds, which are partially ordered sets having modular forms as generating
functions. This in turn led to variety of number theoretic observations which again can be proved with
computer algebra. To this end, Radu set up an algebraic framework to enable an algorithmic treatment of
modular functions. This part concerns joint work with George Andrews and Silviu Radu.

In a separate part of the talk, I will present a survey of other software packages developed by members of
the algorithmic combinatorics group at RISC. Such packages found applications also outside combinatorics,
for instance, in collaborations with particle physicists from DESY (Deutsches Elektronen-Synchrotron) or in
industrial projects with partners from numerical analysis.
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More About Venn Diagrams

Frank Ruskey

University of Victoria

An n-Venn diagram is a collection of n simple closed curves in the plane that divide it into 2n non-empty
regions, one unique region per possible intersection of the interiors/exteriors of the curves. If the curves lie
in general position; e.g., so that no 3 curves intersect at a point then it is unknown whether rotationally
symmetric diagrams exist for every prime n (the primality of n being an easily proved necessary condition).
However, if curves can intersect at 3 or more curves, rotationally symmetric diagrams exist for prime n, and
the proof relies on a modification of the classic symmetric chain decomposition of the Boolean lattice. In
this talk this proof will be discussed along with other open problems in the area of Venn diagrams (e.g., can
a new curve always be added to a Venn diagram to get a new Venn diagram?).

Applying block intersection polynomials to study graphs and designs

Leonard Soicher

Queen Mary University of London

About eight years ago, block intersection polynomials were introduced by Peter Cameron and myself [1]
to derive information about block intersections from the parameters of a t-(v, k, λ) design, and in particular,
to provide an upper bound on the number of times a block may be repeated in such a design.

I later realised [2] that block intersection polynomials really apply more generally to the study of graphs,
and for the applications to a t-design, the graph to use is simply the incidence graph of that design.

My aim in this talk is to give a simplified introduction to block intersection polynomials and to survey
some of their applications, both theoretical and computational, over the last eight years, in the hope that
you can apply these polynomials in your research.

References

[1] P.J. Cameron and L.H. Soicher, Block intersection polynomials, Bull. London Math. Soc. 39 (2007),
559–564.

[2] L.H. Soicher, More on block intersection polynomials and new applications to graphs and block designs,
J. Comb. Theory, Ser. A 117 (2010), 799–809.
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Contributed Talks

Switched symplectic graphs and their 2-ranks

Aida Abiad

Tilburg University, The Netherlands

(Joint work with W.H. Haemers)

We apply Godsil-McKay switching to the symplectic graphs over F2 with at least 63 vertices and prove
that the 2-rank of (the adjacency matrix of) the graph increases after switching. This shows that the switched
graph is a new strongly regular graph with parameters (22ν− 1, 22ν−1, 22ν−2, 22ν−2) and 2-rank 2ν + 2 when
ν ≥ 3. For the symplectic graph on 63 vertices we investigate repeated switching by computer and find many
new strongly regular graphs with the above parameters for ν = 3 with various 2-ranks. Using these results
and a recursive construction method for the symplectic graph from Hadamard matrices, we obtain several
graphs with the above parameters, but different 2-ranks for every ν ≥ 3.

Computing Hyperplanes of Near Polygons

Anurag Bishnoi

Ghent University

(Joint work with Bart De Bruyn)

A (geometric) hyperplane of a point-line geometry is a subset H of points with the property that for every
line l either l∩H is a singleton or l is completely contained in H. For certain classes of point-line geometries
hyperplanes appear naturally when one geometry is isometrically embedded inside the other. In this talk, I
will discuss some algorithmic and mathematical techniques that we have used for computing hyperplanes in
near polygons. Some of the motivation for these computations is as follows.

In [1] we prove the non-existence of semi-finite generalized hexagons of order (2, t) that contain a sub-
hexagon of order 2, and our first step in the proof was to compute all the hyperplanes of the (completely
classified) hexagons of order 2. In [2] we construct a new near octagon as an involution geometry of the
finite simple group G2(4). We first discovered this octagon in a computer as a geometry that contains the
Hall-Janko near octagon, and computing all the hyperplanes (up-to isomorphism) of the Hall-Janko near
octagon was crucial for our discovery.

Hyperplanes which do not contain any line are called 1-ovoids. It was an open problem to determine if
the dual split Cayley hexagon of order 4 contains any 1-ovoids. We have recently settled this problem by
giving a computer assisted proof of non-existence, which as a corollary implies the non-existence of semi-finite
generalized hexagons of order (4, t) containing H(4)D. We will discuss the techniques used in this proof and
their other possible applications.

References

[1] A. Bishnoi and B. De Bruyn. On semi-finite hexagons of order (2, t) containing a subhexagon. To appear
in Annals of Combinatorics, http://arxiv.org/abs/1503.05865.

[2] A. Bishnoi and B. De Bruyn. A new near octagon and the Suzuki tower. Preprint,
http://arxiv.org/abs/1501.04119.
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Gröbner bases methods in affine and projective variety codes

Ćıcero Carvalho

Universidade Federal de Uberlândia, Brasil

(Joint work with Victor G.L. Neumann)

Let X := {P1, . . . , Pm} be a subset of An, the affine space of dimension n over a finite field with q elements
Fq and let IX ⊂ Fq[X1, . . . , Xn] =: Fq[X] be the ideal of X. Then IX is a zero-dimensional ideal, hence
Fq[X]/IX is a finite dimensional Fq-vector space, and the evaluation morphism ϕ : Fq[X]/IX → Fmq given
by ϕ(f + IX) = (f(P1), . . . , f(Pm)) is an isomorphism. Let L ⊂ Fq[X]/IX be an Fq-vector subspace,
the image CL := ϕ(L) is called the affine variety code defined over X and associated to L (see [1]). When
L = {f+IX | f = 0 or deg(f) ≤ d} for some nonnnegative integer d the code CL is said to be of Reed-Muller
type.

One can do a similar construction for a subset Y := {Q1, . . . , Qm} ⊂ Pn(Fq). We denote by IY ⊂
Fq[Y0, . . . , Yn] =: Fq[Y] the homogeneous ideal of Y , and consider Fq[Y]/IY as a graded algebra Fq[Y]/IY =⊕∞

d=0 Fq[Y]d/IY (d). Writing the coordinates of the points of Y such that the first nonzero entry from the
left is one we define the evaluation morphism φ : Fq[Y]d/IY (d) → Fmq by φ(f + IY ) = (f(Q1), . . . , f(Qm)).
Unlike the affine case φ is not an isomorphism, but it is injective and if L ⊂ Fq[Y]d/IY (d) is a vector
space we call the image CL := φ(L) a projective variety code. We say that CL is of Reed-Muller type when
L = Fq[Y]d/IY (d).

In this talk we intend to show how one can use data from a Gröbner basis for IX or IY to find information
about the parameters of Reed-Muller type codes CL in both the affine and projective cases. In the affine
case we will focus on codes defined over the cartesian product of n nonzero subsets of Fq, for which we gave
a new proof for the minimum distance formula (originally found in [4]) and also found some of the higher
Hamming weights of CL (see [2]). In the projective case we will take Y to be the projective surface known as
rational normal scroll. For this case we have determined the dimension, a bound for the minimum distance
and the exact value of the minimum distance for some instances of these codes.

References

[1] J. Fitzgerald and R.F. Lax, Decoding affine variety codes using Göbner bases. Des. Codes and Cryptogr.
v. 13, 147-158 (1998).

[2] C. Carvalho, On the second Hamming weight of some Reed-Muller type codes. Finite Fields Appl. v.
24, 88-94 (2013).

[3] C. Carvalho and Victor G.L. Neumann, Projective Reed-Muller type codes on rational normal scrolls.
To appear in Finite Fields Appl.

[4] H. López, C. Renteŕıa-Márquez and R. Villarreal, Affine Cartesian codes. Des. Codes Cryptogr. v. 71,
5-19 (2014).

Classifying cocyclic Butson Hadamard matrices

Ronan Egan

National University of Ireland, Galway

(Joint work with Dane Flannery and Padraig Ó Catháin)

9



An n × n matrix H with entries in 〈ζk〉, the kth roots of unity, is Butson Hadamard if and only if
HH∗ = nIn, where H∗ denotes the Hermitian transpose of H. For a group G of order n, ψ : G×G→ 〈ζk〉
is a cocycle if and only if ψ(g, h)ψ(gh, k) = ψ(g, hk)ψ(h, k) for all g, h, k ∈ G. A matrix H is cocyclic with
indexing group G if H ≈ H ′ = [ψ(g, h)]g,h∈G where ≈ denotes equivalence, i.e., H and H ′ are equivalent if
H ′ = PHQ∗ for (P,Q) ∈ Mon(n, 〈ζk〉)2.

We classify all the cocyclic Butson Hadamard matrices BH(n, p) of order n over the pth roots of unity
for an odd prime p and np ≤ 100 up to equivalence [2]. That is, we compile a list of matrices such that any
cocyclic BH(n, p) for these n, p is equivalent to exactly one element in the list. Our approach encompasses
non-existence results and computational machinery for Butson and generalized Hadamard matrices that are
of independent interest.

Butson Hadamard matrices have applications in disparate areas such as quantum physics and error-
correcting codes. So lists of these objects have value beyond design theory. We were motivated to undertake
the classification in this paper as a first step towards augmenting the available data on complex Hadamard
matrices and we found several matrices not equivalent to any of those in the catalog [1].

References

[1] W. Bruzda, W. Tadej, and K. Życzkowski,
http://chaos.if.uj.edu.pl/∼karol/hadamard/

[2] R. Egan, D. L. Flannery, and P. Ó Catháin, Classifying cocyclic Butson Hadamard matrices, Algebraic
Design Theory and Hadamard Matrices, Springer Proceedings in Mathematics & Statistics 133, in press
(2015).

Graphs with second largest eigenvalue at most 1

Gary Greaves

Tohoku University

(Joint work with Xi-Ming Cheng and Jack Koolen)

I will describe recent progress on the problem of classifying graphs whose second largest eigenvalue is at
most 1. In particular, I will present a classification of such graphs having at most three distinct eigenvalues.

Symmetric coverings and the Bruck-Ryser-Chowla theorem

Daniel Horsley

Monash University, Australia

(Joint work with Nevena Francetić and Sarada Herke)

The Bruck-Ryser-Chowla theorem famously establishes the nonexistence of various symmetric block
designs, including projective planes. In this talk I will discuss attempts to generalise this result from the
setting of designs, where each pair of points must appear together in exactly some fixed number of blocks, to
the setting of coverings, where each pair of points need only appear together in at least some fixed number
of blocks.
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Graph-based codes for distributed storage systems

Christine Kelley

University of Nebraska-Lincoln

(Joint work with Allison Beemer and Carolyn Mayer)

Coding for distributed storage systems has become an area of active interest as increasingly large amounts
of data are being stored. Batch codes [1] address how to store n items in m servers so that any k of the n
items can be retrieved by reading at most t items from each server, with consideration given to minimizing
the total number of items, N , stored across all servers. Combinatorial batch codes are replication-based
and most constructions rely on discrete structures, such as designs, cage graphs, generalized quadrangles,
and finite geometries. Graph-based constructions have recently been presented for multiset batch codes that
store linear combinations of items in the database and allow for multiple users accessing data from the same
devices [2, 3]. Alternatively, codes are analyzed for DSS with respect to a variety of metrics such as locality,
which is the number of nodes that participate in the repair process of a failed node [4]. In this talk we will
summarize some of these approaches and present a new construction of graph-based codes.

References

[1] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Batch codes and their applications. In Proceedings
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Algebraically defined graphs and generalized quadrangles

Brian Kronenthal

Kutztown University of Pennsylvania

(Joint work with Felix Lazebnik and Jason Williford)

In this talk, we will study generalized quadrangles from the perspective of their point-line incidence
graphs. The incidence graphs of classical generalized quadrangles of odd prime power order q contain
induced bipartite subgraphs that may be defined algebraically; indeed, defining partite sets P = F3

q = L, we
say vertices (a1, a2, a3) ∈ P and [x1, x2, x3] ∈ L are adjacent if and only if a2+x2 = a1x1 and a3+x3 = a1x

2
1.

This subgraph has girth eight. Of particular interest is whether it is possible to alter these equations, by
replacing a1x1 and a1x

2
1 with other bivariate polynomials, to create a nonisomorphic girth eight graph.

Success could illuminate a strategy for constructing new generalized quadrangles. We will also discuss
similar questions about algebraically defined graphs over the complex numbers.
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Group Symmetries of Complementary Code Matrices

Brooke Logan

Rowan University

Professor Hieu D. Nguyen

A complementary code matrix (CCM) is a generalization of a Golay code pair. Both types of codes have
useful applications in radar and communication. This talk will demonstrate a way to characterize known
symmetries of poly-phase CCMs in terms of group generators and relations, extending the results of Coxson
for Barker sequences. As an application, the corresponding symmetry group is used to classify CCMs in
terms of their equivalence classes. Classification results for N × 4 quad-phase CCMs where N = 2, 3, 4, 5, 6
will be presented, as well as a new construction method involving ternary CCM dual pairs.

A Checker-board Tiling Problem

Curtis G Nelson

University of Wyoming

(Joint work with Bryan L. Shader)

Given nonnegative integral vectors R = (r1, r2, , rm) and S = (s1, s2, , sn), can a m× n checkerboard be
tiled with vertical dimers (vertical 2 × 1 blocks) and monomers (1 × 1 blocks) so that there are exactly ri
dimers with the top half of the dimer in row i and sj dimers in column j? This question can be thought of
as an extension of the problem solved by the Gale-Ryser Theorem. I will present an answer to this question
in terms of R and S and discuss some other properties of this combinatorial object.

On the Covering Number of Small Symmetric Groups and Some Sporadic
Simple Groups

Daniela Nikolova-Popova

Florida Atlantic University (FAU), Boca Raton, USA

(Joint work with Luise-Charlotte Kappe, Eric Swartz)

We say that a group G has a finite covering if G is a set theoretical union of finitely many proper
subgroups. The minimal number of subgroups needed for such a covering is called the covering number of
G denoted by σ(G).

Let Sn be the symmetric group on n letters. For odd n Maroti determined σ(Sn) with the exception
of n = 9, and gave estimates for n even showing that σ(Sn) ≤ 2n − 2. Using GAP calculations, as well as
incidence matrices and linear programming, we show that σ(S8) = 64, σ(S10) = 221, σ(S12) = 761. We
also show that Maroti’s result for odd n holds without exception proving that σ(S9) = 256. We establish
in addition that the Mathieu group M12 has covering number 208, and improve the estimate for the Janko
group J1 given by P.E. Holmes.
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Rank 3 permutation groups and partial linear spaces

David Raithel

The University of Western Australia

(Joint work with John Bamberg, Alice Devillers and Cheryl Praeger)

The studies of permutation groups and finite geometries have always been intricately linked – the strength
of this link embodied with the classification of flag-transitive linear spaces back in 1990. This classification
would not have been possible without the O’Nan-Scott Theorem, a characterisation theorem for finite prim-
itive permutation groups.

Classification and characterisation theorems in permutation groups have allowed for deeper exploration
and understanding of finite geometries. In this talk, I will discuss some of the classification and character-
isation theorems of permutation groups, how they have contributed to the classifications of classes of finite
geometries, current research being done in this area, and potential avenues of future research. Of particular
focus will be partial linear spaces, and what rank 3 permutation groups have done and can do for them.

Decomposition algorithms in Clifford algebras

G. Stacey Staples

Southern Illinois University Edwardsville

(Joint work with David Wylie)

Beginning with a finite-dimensional vector space V equipped with a nondegenerate quadratic form Q, we
consider the decompositions of elements of the conformal orthogonal group COQ(V ), defined as the direct
product of the orthogonal group OQ(V ) with dilations. Utilizing the correspondence between conformal
orthogonal group elements and “decomposable” elements of the associated Clifford algebra, C`Q(V ), a de-
composition algorithm is developed based on group actions in the conformal orthogonal group. Preliminary
results on complexity reductions that can be realized passing from additive to multiplicative representations
of invertible elements are also presented with examples. Algorithms are implemented in Mathematica using
the CliffMath package, which takes a combinatorial/set-theoretic approach to geometric computations.

Self-complementary strongly regular graphs revisited

Ferenc Szöllősi

Aalto University

(Joint work in progress with Patric Österg̊ard)

We revisit the classification problem of self-complementary strongly regular graphs [1] via computer aided
methods along the lines of Mathon [2]. Preliminary results regarding the existence of such graphs on fewer
than 57 vertices will be presented. We speculate that the combination of these methods with sufficient
computing power have the potential to settle the existence of conference graphs on 65 and/or 85 vertices.
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Classifying KM-arcs in PG(2, q), q ≤ 32

Peter Vandendriessche

Ghent University (Belgium)

Definition: [3] A KM-arc is a set of q + t points in PG(2, q) for which every line ` meets it in either 0, 2
or t points.

We assume 1 < t < q to avoid triviality. Definition is a natural generalization of hyperovals: for t = 2, we
obtain the hyperovals, and for t > 2, strong structural properties hold, which yield a very similar structure.

Theorem: [3] If KM-arcs with 1 < t < q exist, then q = 2h and t = 2r.

Theorem: [1] Any KMq,t-arc S with 1 < t < q has q
t + 1 concurrent lines containing t points of S, and

all other lines contain 0 or 2 points of S.

The converse of Theorem is a long standing open problem. All progress so far suggests that the converse
should hold, but no proof has yet been given.

Infinite families of examples have been given in [1, 3, 5], covering all cases with q ≤ 16. In [2, 4], further
examples with q = 32 have been randomly constructed, extending the converse to q ≤ 32.

A natural question is whether or not we have found all examples. In an unpublished note, I provided a
full classification of the KM-arcs for q ≤ 32.

q \ t 2 4 8 16 32

2 1 - - - -

4 1 1 - - -

8 1 1 1 - -

16 2 3 1 1 -

32 6 8 3 1 1

Table 1: Number of inequivalent KM-arcs for q ≤ 32

The orbit counts of the classification can be found in Table 1. In this talk, I will discuss the computational
techniques I used, as well as the remaining computational challenges to handle the next case, q = 64.
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