On the constructions of optimal linear codes

Tatsuya Maruta
(Joint work with Yuuki Kageyama)

Department of Mathematics and Information Sciences

Osaka Prefecture University
maruta@mi.s.osakafu-u.ac.jp

Overview

We construct some optimal linear codes over \mathbb{F}_{q} through projective geometry, using the geometric methods such as projective dual and geometric puncturing.

Contents

1. Basic notions
2. Geometric method
3. Geometric puncturing from simplex codes
4. Construction of q-divisible codes
5. Open problems

1. Basic notions

$\mathbb{F}_{q}^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}, \ldots, a_{n} \in \mathbb{F}_{q}\right\}$.
For $a=\left(a_{1}, \ldots, a_{n}\right), b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{F}_{q}^{n}$,
the (Hamming) distance between a and b is

$$
d(a, b)=\left|\left\{i \mid a_{i} \neq b_{i}\right\}\right| .
$$

The weight of a is $w t(a)=\left|\left\{i \mid a_{i} \neq 0\right\}\right|=d(a, \mathbf{0})$.
An $[n, k, d]_{q}$ code \mathcal{C} means a k-dimensional subspace of \mathbb{F}_{q}^{n} with minimum distance d,

$$
\begin{aligned}
d & =\min \{d(a, b) \mid a \neq b, a, b \in \mathcal{C}\} \\
& =\min \{w t(a) \mid w t(a) \neq 0, a \in \mathcal{C}\}
\end{aligned}
$$

The elements of \mathcal{C} are called codewords.

For an $[n, k, d]_{q}$ code \mathcal{C}, a generator matrix G is a $k \times n$ matrix over \mathbb{F}_{q} whose k rows form a basis of \mathcal{C}.

We assume G has no all-zero column.
The weight distribution (w.d.) of \mathcal{C} is the list of numbers $A_{i}=|\{c \in \mathcal{C} \mid w t(c)=i\}|$.

The weight distribution with

$$
\left(A_{0}, A_{d}, \ldots, A_{i}, \ldots\right)=(1, \alpha, \ldots, w, \ldots)
$$

is also expressed as

$$
0^{1} d^{\alpha} \cdots i^{w} \cdots
$$

Two $[n, k, d]_{q}$ codes \mathcal{C}_{1} and \mathcal{C}_{2} are equivalent if there exists a monomial matrix M with entries in \mathbb{F}_{q} such that \mathcal{C}_{2} coincides with $\mathcal{C}_{1} M=\left\{\boldsymbol{c} M \mid \boldsymbol{c} \in \mathcal{C}_{1}\right\}$.

A good $[n, k, d]_{q}$ code will have small length n for fast transmission of messages, large dimension k to enable transmission of a wide variety of messages,
large minimum distance d to correct many errors.

Optimal linear codes problem.
Optimize one of the parameters n, k, d for given the other two.

An $[n, k, d]_{q}$ code \mathcal{C} is
N-optimal if $\nexists[n-1, k, d]_{q}$
K-optimal if $\nexists[n, k+1, d]_{q}$
D-optimal if $\nexists[n, k, d+1]_{q}$.

N -optimal codes are K-optimal and D-optimal.
Problem 1. Find $n_{q}(k, d)$, the minimum value of n for which an $[n, k, d]_{q}$ code exists for given k, d, q.

An $[n, k, d]_{q}$ code is called optimal if $n=n_{q}(k, d)$.

The Griesmer bound

$$
n_{q}(k, d) \geq g_{q}(k, d):=\sum_{i=0}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil
$$

where $\lceil x\rceil$ is a smallest integer $\geq x$.

Griesmer (1960) proved for binary codes.
Solomon and Stiffler (1965) proved for all q.
A linear code attaining the Griesmer bound is called a Griesmer code. Griesmer codes are optimal.

Since $n_{q}(k, d)=g_{q}(k, d)$ for $k=1,2$, we assume $k \geq 3$.

Known results for small q

The exact values of $n_{q}(k, d)$ are known for all d for

$$
\begin{aligned}
& q=2, k \leq 8 \\
& q=3, k \leq 5 \\
& q=4, k \leq 4 \\
& q=5,7,8,9, k \leq 3
\end{aligned}
$$

$n_{5}(4, d)$ is not determined yet only for

$$
d=81,82,161,162 .
$$

Landjev-Rousseva announced $\nexists\left[g_{5}(4, d), 4, d\right]_{5}$ codes for $d=82,162$ at ALCOMA15 (March 2015). Hence

$$
\begin{gathered}
n_{5}(4, d)=g_{5}(4, d)+1 \text { for } d=82,162 \\
n_{5}(4, d)=g_{5}(4, d) \text { or } g_{5}(4, d)+1 \text { for } d=81,161
\end{gathered}
$$

Known results for small q

The exact values of $n_{q}(k, d)$ are known for all d for

$$
\begin{aligned}
& q=2, k \leq 8 \\
& q=3, k \leq 5 \\
& q=4, k \leq 4 \\
& q=5,7,8,9, k \leq 3
\end{aligned}
$$

$n_{5}(4, d)$ is not determined yet only for

$$
d=81,82,161,162 .
$$

Landjev-Rousseva announced $\nexists\left[g_{5}(4, d), 4, d\right]_{5}$ codes for $d=82,162$ at ALCOMA15 (March 2015). See http://www.mi.s.osakafu-u.ac.jp/~~maruta/griesmer.htm. for the $n_{q}(k, d)$ tables for some small q and k.

2. Geometric method

$\mathrm{PG}(r, q)$: projective space of dim. r over \mathbb{F}_{q}
j-flat: j-dim. projective subspace of $\operatorname{PG}(r, q)$
$\theta_{j}:=|\mathrm{PG}(j, q)|=q^{j}+q^{j-1}+\cdots+q+1$
Assume \mathcal{C} has no coordinate which is identically zero.
G : a generator matrix of \mathcal{C}
The columns of G can be considered as a multiset of n points in $\Sigma=\mathrm{PG}(k-1, q)$ denoted by $\mathcal{M}_{\mathcal{C}}$. Conversely, $\mathcal{M}_{\mathcal{C}}$ gives linear codes which are equivalent to \mathcal{C}.
$\mathcal{F}_{j}:=$ the set of all j-flats in Σ
$\Sigma \ni P$: i-point $\Leftrightarrow P$ has multiplicity i in $\mathcal{M}_{\mathcal{C}}$ $\gamma_{0}=\max \{i \mid \exists P: i$-point in $\Sigma\}$
$C_{i}=\{P \in \Sigma \mid P: i$-point $\}, 0 \leq i \leq \gamma_{0}$
$\Delta_{1}+\cdots+\Delta_{s}$: the multiset consisting of the s sets $\Delta_{1}, \cdots, \Delta_{s}$ in Σ.
$s \Delta=\Delta_{1}+\cdots+\Delta_{s}$ when $\Delta_{1}=\cdots=\Delta_{s}=\Delta$.
Then, $\mathcal{M}_{\mathcal{C}}=C_{1}+2 C_{2}+\cdots+\gamma_{0} C_{\gamma_{0}}$.
For any set S in $\Sigma, \mathcal{M}_{\mathcal{C}}(S)$ is the multiset

$$
\left\{P \in \mathcal{M}_{\mathcal{C}} \mid P \in S\right\}
$$

The multiplicity of S, denoted by $m_{\mathcal{C}}(S)$, is defined as

$$
m_{\mathcal{C}}(S)=\left|\mathcal{M}_{\mathcal{C}}(S)\right|=\sum_{i=1}^{\gamma_{0}} i \cdot\left|S \cap C_{i}\right|
$$

Then it holds that

$$
\begin{aligned}
n & =m_{\mathcal{C}}(\Sigma) \\
n-d & =\max \left\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\right\}
\end{aligned}
$$

Conversely, a multiset on Σ satisfying the above equalities gives an $[n, k, d]_{q}$ code in the natural manner.

Let $a_{i}:=\left|\left\{\pi \in \mathcal{F}_{k-2} \mid m_{\mathcal{C}}(\pi)=i\right\}\right|$.
The list of a_{i} 's is the spectrum of \mathcal{C}. Note that

$$
a_{i}=A_{n-i} /(q-1) \text { for } 0 \leq i \leq n-d
$$

Then it holds that

$$
\begin{aligned}
n & =m_{\mathcal{C}}(\Sigma) \\
n-d & =\max \left\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\right\}
\end{aligned}
$$

Conversely, a multiset on Σ satisfying the above equalities gives an $[n, k, d]_{q}$ code in the natural manner.

Example 1. Take $C_{s}=\Sigma$, i.e., $\mathcal{M}_{\mathcal{C}}=s \Sigma$ with $s \in \mathbb{N}$, $\Sigma=\mathrm{PG}(k-1, q)$.
Then \mathcal{C} is a Griesmer $\left[s \theta_{k-1}, k, s q^{k-1}\right]_{q}$ code.
Since $m_{\mathcal{C}}(\pi)=s \theta_{k-2}$ for any $\pi \in \mathcal{F}_{k-2}, a_{s \theta_{k-2}}=\theta_{k-1}$ and every non-zero codeword has weight $s q^{k-1}$.
\mathcal{C} is called an s-fold simplex code.

Example 2.

Let \mathcal{C} be a $[20,4,10]_{2}$ code with generator matrix $G=$
$\left[\begin{array}{llllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1\end{array}\right]$.

Then \mathcal{C} is Griesmer with w.d. $0^{1} 10^{11} 12^{3} 14^{1}$.
$C_{1}=\{0010,0011,0100,0101,0110,0111,1000,1001\}$
$C_{2}=\{1010,1011,1100,1101,1110,1111\}$
$\mathcal{M}_{\mathcal{C}}=C_{1}+2 C_{2}$
0001 is the only 0-point in $\operatorname{PG}(3,2)$.
Q 1. How can we construct G ?

Lemma 1. (Maruta-Oya, 2011)
$\mathcal{C}:[n, k, d]_{q}$ code
If $\mathcal{M}_{\mathcal{C}} \supset \Delta$: a t-flat and $d>q^{t}$
$\Rightarrow \quad \exists \mathcal{C}^{\prime}:\left[n-\theta_{t}, k, d^{\prime}\right]_{q}$ code with $d^{\prime} \geq d-q^{t}$.
The above \mathcal{C}^{\prime} can be constructed from the multiset $\mathcal{M}_{\mathcal{C}}$ by deleting Δ. We denote the resulting multiset by $\mathcal{M}_{\mathcal{C}^{\prime}}=\mathcal{M}_{\mathcal{C}}-\Delta$.

Lemma 1. (Maruta-Oya, 2011)
$\mathcal{C}:[n, k, d]_{q}$ code
If $\mathcal{M}_{\mathcal{C}} \supset \Delta$: a t-flat and $d>q^{t}$
$\Rightarrow \quad \exists \mathcal{C}^{\prime}:\left[n-\theta_{t}, k, d^{\prime}\right]_{q}$ code with $d^{\prime} \geq d-q^{t}$.
The puncturing to construct new codes from a given $[n, k, d]_{q}$ code by deleting the coordinates corresponding to some geometric object in $\mathrm{PG}(k-1, q)$ is called geometric puncturing, see
T. Maruta, Construction of optimal linear codes by geometric puncturing,

Serdica J. Computing, 7, 73-80, 2013.

Lemma 1. (Maruta-Oya, 2011)
$\mathcal{C}:[n, k, d]_{q}$ code
If $\mathcal{M}_{\mathcal{C}} \supset \Delta$: a t-flat and $d>q^{t}$
$\Rightarrow \quad \exists \mathcal{C}^{\prime}:\left[n-\theta_{t}, k, d^{\prime}\right]_{q}$ code with $d^{\prime} \geq d-q^{t}$.

It could happen that the punctured code \mathcal{C}^{\prime} has the same minimum distance with the original code \mathcal{C}, see
I. Bouyukliev, Y. Kageyama, T. Maruta, On the minimum length of linear codes over \mathbb{F}_{5}, Discrete Math. 338, 938-953, 2015.

Lemma 1. (Maruta-Oya, 2011)
\mathcal{C} : $[n, k, d]_{q}$ code
If $\mathcal{M}_{\mathcal{C}} \supset \Delta$: a t-flat and $d>q^{t}$
$\Rightarrow \quad \exists \mathcal{C}^{\prime}:\left[n-\theta_{t}, k, d^{\prime}\right]_{q}$ code with $d^{\prime} \geq d-q^{t}$.

Lemma 2. (Bouyukliev-Kageyama-M, 2015)
Let \mathcal{C} be an $[n, k, d]_{q}$ code with $a_{n-d}=1$ such that $a_{i}=0$ for $n-d-q^{t}<i<n-d$ for some $t \in \mathbb{N}$. Let H be the $(n-d)$-hyperplane. If $\mathcal{M}_{\mathcal{C}}(H)$ contains a t-flat Δ, then $\mathcal{M}_{\mathcal{C}}-\Delta$ gives an $\left[n-\theta_{t}, k, d\right]_{q}$ code.

Example 2. How to construct a $[20,4,10]_{2}$ code \mathcal{C} \mathcal{C}_{0} : 2-fold simplex $[30,4,16]_{2}$ code
\downarrow geometric puncturing
\mathcal{C}_{1} : $[23,4,12]_{2}$ code
\downarrow geometric puncturing
$\mathcal{C}:[20,4,10]_{2}$ code

$$
\mathcal{M}_{\mathcal{C}_{0}}=2 \Sigma \quad(\Sigma=\operatorname{PG}(3,2))
$$

\downarrow geometric puncturing
$\mathcal{M}_{\mathcal{C}_{1}}=2 \Sigma-\delta \quad(\delta:$ a plane $)$
\downarrow geometric puncturing
$\mathcal{M}_{\mathcal{C}}=2 \Sigma-(\delta+\ell) \quad(\ell:$ a line $)$

Q 2. How many $[20,4,10]_{2}$ codes are there?
We use the package Q-Extension, which can be downloaded from Iilya Bouyukliev's website:
http://www.moi.math.bas.bg/~iliya/
for free, see
I.G. Bouyukliev, What is Q-Extension?, Serdica J. Computing 1 (2007) 115-130.

Q 2. How many $[20,4,10]_{2}$ codes are there?
Ans. There are three up to equivalence:
(1) $\mathcal{M}_{\mathcal{C}}=2 \Sigma-(\delta+\ell) \quad(\ell \not \subset \delta)$
w.d. $0^{1} 10^{11} 12^{3} 14^{1}$, spec. $\left(a_{6}, a_{8}, a_{10}\right)=(1,3,11)$
(2) $\mathcal{M}_{\mathcal{C}}=2 \Sigma-(\delta+\ell) \quad(\ell \subset \delta)$
w.d. $0^{1} 10^{12} 12^{2} 16^{1}$, spec. $\left(a_{4}, a_{8}, a_{10}\right)=(1,2,12)$
(3) $\mathcal{M}_{\mathcal{C}}=$?
w.d. $0^{1} 10^{10} 12^{5}$, spec. $\left(a_{8}, a_{10}\right)=(5,10)$

Q 2. How many $[20,4,10]_{2}$ codes are there?
Ans. There are three up to equivalence:
(1) $\mathcal{M}_{\mathcal{C}}=2 \Sigma-(\delta+\ell) \quad(\ell \not \subset \delta)$
w.d. $0^{1} 10^{11} 12^{3} 14^{1}$, spec. $\left(a_{6}, a_{8}, a_{10}\right)=(1,3,11)$
(2) $\mathcal{M}_{\mathcal{C}}=2 \Sigma-(\delta+\ell) \quad(\ell \subset \delta)$
w.d. $0^{1} 10^{12} 12^{2} 16^{1}$, spec. $\left(a_{4}, a_{8}, a_{10}\right)=(1,2,12)$
(3) $\mathcal{M}_{\mathcal{C}}=$?
w.d. $0^{1} 10^{10} 12^{5}$, spec. $\left(a_{8}, a_{10}\right)=(5,10)$

Q 3. What is $\mathcal{M}_{\mathcal{C}}$ in (3) ? (Hint: there are five 2-pts)

Ans. (3) \mathcal{C} : $[20,4,10]_{2}$ code with w.d. $0^{1} 10^{10} 12^{5}$.
Q 3. What is $\mathcal{M}_{\mathcal{C}}$? (Hint: there are five 2-pts)
Ans. Let λ_{i} be the number of i-points. Then

- $\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)=(0,15,5)$
- $\mathcal{M}_{\mathcal{C}}-\Sigma(\Sigma=\operatorname{PG}(3,2))$ gives an MDS $\left[20-\theta_{3}=5,4,10-2^{3}=2\right]_{2}$ code.
- $\mathcal{M}_{\mathcal{C}}=\Sigma+K$
where K is a 5 -arc in Σ.

An s-set K in $\mathrm{PG}(r, q)$ is an s-arc if no $r+1$ points of K are on a hyperplane.

Q 2. How many $[20,4,10]_{2}$ codes are there?
Ans. There are three up to equivalence:
(1) $\mathcal{M}_{\mathcal{C}}=2 \Sigma-(\delta+\ell) \quad(\ell \not \subset \delta)$
w.d. $0^{1} 10^{11} 12^{3} 14^{1}$
(2) $\mathcal{M}_{\mathcal{C}}=2 \Sigma-(\delta+\ell) \quad(\ell \subset \delta)$
w.d. $0^{1} 10^{12} 12^{2} 16^{1}$
(3) $\mathcal{M}_{\mathcal{C}}=\Sigma+K$ (K : 5-arc)
w.d. $0^{1} 10^{10} 12^{5}$

Remark. Helleseth proved that every $\left[g_{2}(k, d), k, d\right]_{2}$ code with $d \leq 2^{k-1}$ is obtained from an $s \Sigma$ by deleting some flats or adding some arc or a point, where $\Sigma=$ $\mathrm{PG}(k-1,2)$, see
T. Helleseth, A characterization of cods meeting the Griesmer bound, Information and Control 50 (1981), 128-159.

Q 2. How many $[20,4,10]_{2}$ codes are there?
Ans. There are three up to equivalence:
(1) $\mathcal{M}_{\mathcal{C}}=2 \Sigma-(\delta+\ell) \quad(\ell \not \subset \delta)$
w.d. $0^{1} 10^{11} 12^{3} 14^{1}$
(2) $\mathcal{M}_{\mathcal{C}}=2 \Sigma-(\delta+\ell) \quad(\ell \subset \delta)$
w.d. $0^{1} 10^{12} 12^{2} 16^{1}$
(3) $\mathcal{M}_{\mathcal{C}}=\Sigma+K$ (K : 5-arc)
w.d. $0^{1} 10^{10} 12^{5}$

Q 4. When can we find r flats $\Delta_{1}, \ldots, \Delta_{r}$ so that $s \Sigma$ contains $\Delta_{1}+\cdots+\Delta_{r}$?

3. Geometric puncturing from simplex codes

Let $\Sigma=\mathrm{PG}(k-1, q)$, let $r, s \in \mathbb{N}$ and let u_{1}, \ldots, u_{r} be integers with $0 \leq u_{r} \leq u_{r-1} \leq \cdots \leq u_{1} \leq k-2$.

Q 4. When can we find u_{i}-flats $\Delta_{i}(1 \leq i \leq r)$ so that $s \Sigma$ contains $\Delta_{1}+\cdots+\Delta_{r}$?

Obvious when $r \leq s$.
If at most $q-1$ of u_{1}, \ldots, u_{r} are the same value, then $s \Sigma-\left(\Delta_{1}+\cdots+\Delta_{r}\right)$ gives a Griesmer code by Lemma 1.

Assume $r \geq s+1$.

The following result was essentially proved by Belov-Logachev-Sandimirov (1974) for $q=2$ and by Hill (1992) for any prime power q.

Lemma 3.
There exist u_{j}-flats Δ_{j} in $\Pi(1 \leq j \leq r)$ s.t. the multiset $s \Sigma$ contains $\Delta_{1}+\cdots+\Delta_{r}$ provided
(a) $\sum_{i=1}^{s+1} u_{i} \leq s(k-1)-1$, and
(b) \# of i 's with $u_{i}=u$ is at most $N_{q}(k-1-u)$
for any integer u with $0 \leq u \leq k-2$,
where $N_{q}(m)$ is the number of monic irreducible polynomials in $\mathbb{F}_{q}[x]$ of degree m.

Proof. For $m \in \mathbb{N}, 1 \leq m \leq k-1$, let \mathcal{I}_{m} be the set of irreducible monic polynomials of degree m over \mathbb{F}_{q}. For $f(x)=a_{0}+a_{1} x+\cdots+a_{m-1} x^{m-1}+x^{m} \in \mathcal{I}_{m}$, let $F(f)$ be the $(k-m-1)$-flat containing the $k-m$ points $\mathbf{P}\left(a_{0}, \ldots, a_{m-1}, 1,0, \ldots, 0\right), \mathbf{P}\left(0, a_{0}, \ldots, a_{m-1}, 1,0, \ldots, 0\right), \ldots$ $\ldots, \mathbf{P}\left(0, \ldots, 0, a_{0}, a_{1}, \ldots, a_{m-1}, 1\right)$.

- $\mathbf{P}\left(b_{0}, b_{1}, \ldots, b_{k-1}\right)$ in Σ is in $F(f) \Leftrightarrow$ the polynomial $g(x)=b_{0}+b_{1} x+\cdots+b_{k-1} x^{k-1}$ is divisible by $f(x)$.
From condition (b), one can find r distinct irreducible monic polynomials $f_{i} \in \mathcal{I}_{k-u_{i}-1}$ for $1 \leq i \leq r$. Then $\Delta_{i}:=F\left(f_{i}\right)$ is a u_{i}-flat.

Since the least common multiple of any $s+1$ of the polynomials f_{1}, \ldots, f_{r} has degree at least

$$
\sum_{i=1}^{s+1}\left(k-u_{i}-1\right)=(k-1) s-1-\sum_{i=1}^{s+1} u_{i}+k \geq k
$$

by the condition (a), any $s+1$ of $\Delta_{1}, \ldots, \Delta_{r}$ have no common point. Hence, the multiset $s \Sigma$ contains $\Delta_{1}+\cdots+\Delta_{r}$.

Since the least common multiple of any $s+1$ of the polynomials f_{1}, \ldots, f_{r} has degree at least

$$
\sum_{i=1}^{s+1}\left(k-u_{i}-1\right)=(k-1) s-1-\sum_{i=1}^{s+1} u_{i}+k \geq k
$$

by the condition (a), any $s+1$ of $\Delta_{1}, \ldots, \Delta_{r}$ have no common point. Hence, the multiset $s \Sigma$ contains
$\Delta_{1}+\cdots+\Delta_{r}$.
Note. $N_{q}(m)=\frac{1}{m} \sum_{e \mid m} \mu(e) q^{m / e}$,
where $\mu(m)$ is the Moebius function defined by
$\mu(m)=\left\{\begin{array}{cl}1 & \text { if } m=1, \\ (-1)^{w} & \text { if } m \text { is the product of } w \text { distinct primes, } \\ 0 & \text { if } m \text { is divisible by the square of a prime. }\end{array}\right.$

Let $d \in \mathbb{N}$ to construct an $[n, k, d]_{q}$ code.
Since s-fold simplex $\left[g_{q}\left(k, s q^{k-1}\right), k, s q^{k-1}\right]_{q}$ codes exist for any $s \in \mathbb{N}$, we assume d is not divisible by q^{k-1}. Then, d can be uniquely expressed with $s=\left\lceil d / q^{k-1}\right\rceil$ as

$$
\begin{equation*}
d=s q^{k-1}-\sum_{j=1}^{r} q^{u_{j}} \tag{1}
\end{equation*}
$$

where r and u_{j} 's are integers satisfying

$$
\begin{array}{r}
k-2 \geq u_{1} \geq u_{2} \geq \cdots \geq u_{r} \geq 0 \\
u_{j}>u_{j+q-1} \text { for } 1 \leq j \leq r-q+1 \tag{3}
\end{array}
$$

The condition (3) means that at most $q-1$ of u_{1}, \ldots, u_{r} can take any given value.

To construct a code of length $n=s \theta_{k-1}-\sum_{i=0}^{k-2} u_{i} \theta_{i}$, we shall make a multiset $s \Sigma-\left(\Delta_{1}+\cdots+\Delta_{r}\right)$ with some u_{j}-flats $\Delta_{j}(1 \leq j \leq r)$ if possible. Then, by Lemma 1, the multiset gives a $\left[g_{q}(k, d), k, d\right]_{q}$ code.

Q 5. When is it possible?
Ans. (1) $r \leq s$.
(2) $r \geq s+1$ and ${ }_{i=1}^{s+1} u_{i} \leq s(k-1)-1$ by Lemma 3 since $N_{q}(m) \geq q-1$.

Note. The Griesmer codes constructed in this way are called the Griesmer codes of Belov type.

Lemma 3.

There exist u_{j}-flats Δ_{j} in $\Pi(1 \leq j \leq r)$ s.t. the multiset $s \Sigma$ contains $\Delta_{1}+\cdots+\Delta_{r}$ provided
(a) $\sum_{i=1}^{s+1} u_{i} \leq s(k-1)-1$, and
(b) \# of i 's with $u_{i}=u$ is at most $N_{q}(k-1-u)$
for any integer u with $0 \leq u \leq k-2$,
where $N_{q}(m)$ is the number of monic irreducible polynomials in $\mathbb{F}_{q}[x]$ of degree m.

To construct a code of length $n=s \theta_{k-1}-\sum_{i=0}^{k-2} u_{i} \theta_{i}$, we shall make a multiset $s \Sigma-\left(\Delta_{1}+\cdots+\Delta_{r}\right)$ with some u_{j}-flats $\Delta_{j}(1 \leq j \leq r)$ if possible. Then, by Lemma 1, the multiset gives a $\left[g_{q}(k, d), k, d\right]_{q}$ code.

Q 5. When is it possible?
Ans. (1) $r \leq s$.
(2) $r \geq s+1$ and ${ }_{i=1}^{s+1} u_{i} \leq s(k-1)-1$ by Lemma 3 since $N_{q}(m) \geq q-1$.

Note. The Griesmer codes constructed in this way are called the Griesmer codes of Belov type.

To construct a code of length $n=s \theta_{k-1}-\sum_{i=0}^{k-2} u_{i} \theta_{i}$, we shall make a multiset $s \Sigma-\left(\Delta_{1}+\cdots+\Delta_{r}\right)$ with some u_{j}-flats $\Delta_{j}(1 \leq j \leq r)$ if possible. Then, by Lemma 1, the multiset gives a $\left[g_{q}(k, d), k, d\right]_{q}$ code.

Q 5. When is it possible?
Ans. (1) $r \leq s$.
(2) $r \geq s+1$ and ${ }_{i=1}^{s+1} u_{i} \leq s(k-1)-1$ by Lemma 3 since $N_{q}(m) \geq q-1$.

Note. The above is impossible if
$r \geq s+1$ and $\sum_{i=1}^{s+1} u_{i} \geq s(k-1)$, see [Hill, 1992].

To construct a code of length $n=s \theta_{k-1}-\sum_{i=0}^{k-2} u_{i} \theta_{i}$, we shall make a multiset $s \Sigma-\left(\Delta_{1}+\cdots+\Delta_{r}\right)$ with some u_{j}-flats $\Delta_{j}(1 \leq j \leq r)$ if possible. Then, by Lemma 1, the multiset gives a $\left[g_{q}(k, d), k, d\right]_{q}$ code.

Q 5. When is it possible?
Ans. (1) $r \leq s$.
(2) $r \geq s+1$ and ${ }_{i=1}^{s+1} u_{i} \leq s(k-1)-1$ by Lemma 3 since $N_{q}(m) \geq q-1$.

Q 6. What can we do when

$$
r \geq s+1 \text { and } \sum_{i=1}^{s+1} u_{i} \geq s(k-1) ?
$$

Thm 4. Let $w=s+1$ and assume
$\sum_{i=1}^{w} u_{i}=s(k-1)-1+t$ with an integer $t, 1 \leq t \leq q-1$. Then, there exists a $\left[g_{q}(k, d)+t, k, d\right]_{q}$ code if one of the following conditions holds:
(a) $u_{w-t+1}=\cdots=u_{w}>u_{w+1}$ and

$$
N_{q}(k-m) \geq t q+d_{m-1}
$$

(b) $u_{w-t+1}=\cdots=u_{w}, r=w$ and $N_{q}(k-m) \geq t q$;
(c) $u_{i}=u_{i+1}=\cdots=u_{i+t-1}=u_{w}+1$ for some i and $N_{q}(k-m-1) \geq t q+d_{m}$.

Example 3.

It is known that $n_{3}(6,189)=g_{3}(6,189)+2$.
For $q=3, k=6$ and $d=189$, we have
$d=3^{5}-2 \cdot 3^{3}, s=1, u_{1}+u_{2}=s(k-1)-1+2$.
d can be also expressed as
$d=3^{5}-6 \cdot 3^{2}$ with $s=1, u_{1}^{\prime}+u_{2}^{\prime}=s(k-1)-1$.
Since $N_{3}(3)=8$, one can find planes $\delta_{1}, \ldots, \delta_{6}$ so that $\Sigma=\mathrm{PG}(5,3)$ contains $\delta_{1}+\cdots+\delta_{6}$, where $\delta_{1}, \ldots, \delta_{6}$ are planes corresponding to six monic irreducible polynomials of degree 3 over \mathbb{F}_{3}. Then, the multiset $\Sigma-\left(\delta_{1}+\cdots+\delta_{6}\right)$ gives a $\left[g_{3}(6,189)+2,6,189\right]_{3}$ code.

Thm 4. Let $w=s+1$ and assume
$\sum_{i=1}^{w} u_{i}=s(k-1)-1+t$ with an integer $t, 1 \leq t \leq q-1$. Then, there exists a $\left[g_{q}(k, d)+t, k, d\right]_{q}$ code if one of the following conditions holds:
(a) $u_{w-t+1}=\cdots=u_{w}>u_{w+1}$ and

$$
N_{q}(k-m) \geq t q+d_{m-1}
$$

(b) $u_{w-t+1}=\cdots=u_{w}, r=w$ and $N_{q}(k-m) \geq t q$;
(c) $u_{i}=u_{i+1}=\cdots=u_{i+t-1}=u_{w}+1$ for some i and $N_{q}(k-m-1) \geq t q+d_{m}$.

Especially when $t=1$, we get the following.

Assume $r \geq s+1$ and $u={ }_{i} \sum_{=1}^{+1} u_{i}=s(k-1)$.
Thm 5. (Kageyama-M)
(1) For $q=2,{ }^{\exists}\left[g_{2}(k, d)+1, k, d\right]_{2}$ code.
(2) ${ }^{\exists}\left[g_{q}(k, d)+1, k, d\right]_{q}$ code if $1 \leq s \leq k-3, q \geq 3$ and if one of the following conditions holds:
(a) $u_{s+1}>u_{s+2}$ if $r>s+1$;
(b) $r=s+1$;
(c) $u_{\varepsilon}=u_{s+1}+1$ for some integer ε.
(3) ${ }^{\exists}\left[g_{q}(k, d)+1, k, d\right]_{q}$ code for $(k-2) q^{k-1}-k q^{k-2}+1 \leq d \leq(k-2) q^{k-1}-(k-1) q^{k-2}$ for $q \geq k \geq 3$.

Thm 5 (2) yields the following.
Corollary 6. $\exists\left[g_{q}(k, d)+1, k, d\right]_{q}$ code for
(a) $s q^{k-1}-s q^{k-2}-2 q^{s}+1 \leq d \leq s q^{k-1}-s q^{k-2}-q^{s}$ for $1 \leq s \leq k-3, q \geq s+1, k \geq 4$;
(b) $(k-3) q^{k-1}-(k-2) q^{k-2}+1 \leq d \leq(k-3) q^{k-1}$ $-(k-3) q^{k-2}-2 q^{k-3}$ for $q \geq k-2 \geq 3$;
(c) $q^{k-1}-2 q^{k / 2}+1 \leq d \leq q^{k-1}-q^{k / 2}-q^{k / 2-1}$ for all q if k is even;
(d) $q^{k-1}-3 q^{(k-1) / 2}+1 \leq d \leq q^{k-1}-2 q^{(k-1) / 2}$ for $q \geq 3$ if k is odd.

Thm 7. (Klein-Metsch, 2007)
Let $d=s q^{k-1}-\sum_{i=1}^{k-1} t_{i} q^{k-1-i}$ with $0 \leq t_{i}<q$.
Assume $t_{1}>0, t_{2}=0$ and $\sum_{i=3}^{k-1} t_{i} q^{k-1-i} \leq r q^{k-4}$. Then $n_{q}(k, d) \geq g_{q}(k, d)+1$ if the following conditions hold:
(a) $s<\min \left\{t_{1}, k-1\right\}$.
(b) $t_{1} \leq(q+1) / 2$.
(c) $t_{1}+r \leq q$ and r is a non-negative integer.

Thm 7. (Klein-Metsch, 2007)
Let $d=s q^{k-1}-\sum_{i=1}^{k-1} t_{i} q^{k-1-i}$ with $0 \leq t_{i}<q$.
Assume $t_{1}>0, t_{2}=0$ and $\sum_{i=3}^{k-1} t_{i} q^{k-1-i} \leq r q^{k-4}$. Then $n_{q}(k, d) \geq g_{q}(k, d)+1$ if the following conditions hold:
(a) $s<\min \left\{t_{1}, k-1\right\}$.
(b) $t_{1} \leq(q+1) / 2$.
(c) $t_{1}+r \leq q$ and r is a non-negative integer.

Ex. $d=(k-2) q^{k-1}-(k-1) q^{k-2}-{ }_{j=0}^{k-4} d_{j} q^{j}, q \geq 2 k-3$,
$k \geq 4,0 \leq d_{k-4} \leq k-3,0 \leq d_{j} \leq q-1$ for $j \leq k-5$.

Thm 7. (Klein-Metsch, 2007)
Let $d=s q^{k-1}-\sum_{i=1}^{k-1} t_{i} q^{k-1-i}$ with $0 \leq t_{i}<q$.
Assume $t_{1}>0, t_{2}=0$ and ${ }_{i=3}^{k-1} t_{i} q^{k-1-i} \leq r q^{k-4}$. Then $n_{q}(k, d) \geq g_{q}(k, d)+1$ if the following conditions hold:
(a) $s<\min \left\{t_{1}, k-1\right\} . s=k-2, t_{1}=k-1$
(b) $t_{1} \leq(q+1) / 2 . \Leftrightarrow q \geq 2 k-3$
(c) $t_{1}+r \leq q$ and r is a non-negative integer. $r=k-2$

Ex. $d=(k-2) q^{k-1}-(k-1) q^{k-2}-{ }_{j=0}^{k-4} d_{j} q^{j}, q \geq 2 k-3$,
$k \geq 4,0 \leq d_{k-4} \leq k-3,0 \leq d_{j} \leq q-1$ for $j \leq k-5$.
\& $n_{q}(k, d)=g_{q}(k, d)$ for $d>(k-2) q^{k-1}-(k-1) q^{k-2}$.
$n_{q}(k, d)>g_{q}(k, d)$ for

- $d=(k-2) q^{k-1}-(k-1) q^{k-2}\left(:=d_{1}\right)$ for
$q \geq k, k=3,4,5$; for $q \geq 2 k-3, k \geq 6$ ($\mathrm{M}, 1997$).
- $d_{1}-(k-2) q^{k-4}+1 \leq d \leq d_{1}$ for $q \geq 2 k-3, k \geq 4$ (Klein-Metsch, 2007).

Thms 5 and 7 determine $n_{q}(k, d)$:
Corollary 8. $n_{q}(k, d)=g_{q}(k, d)+1$ for $d_{1}-(k-2) q^{k-4}+1 \leq d \leq d_{1}$ if $q \geq 2 k-3$ and $k \geq 5$.

Example 4. For the case when $q=5$ and $k=5$, $\left[g_{5}(5, d)+1,5, d\right]_{5}$ codes exist for $d=491-495$, 551575, 876-975, 1251-1375 by Thm 5 and Cor 6, at least 57 of which are optimal.

Example 4. For the case when $q=5$ and $k=5$, $\left[g_{5}(5, d)+1,5, d\right]_{5}$ codes exist for $d=491-495$, 551575, 876-975, 1251-1375 by Thm 5 and Cor 6, at least 57 of which are optimal.

Q 7. Find $n_{q}(5, d)$ for $q \geq 5$ for
(1) $q^{4}-q^{3}-q^{2}+1 \leq d \leq q^{4}-q^{3}-q$,
(2) $2 q^{4}+1 \leq d \leq 2 q^{4}+q^{2}-q$,
(3) $q^{4}-q^{3}-2 q^{2}+1 \leq d \leq q^{4}-q^{3}-q^{2}$.

Note that $\sum_{i=1}^{s+1} u_{i} \geq s(k-1)$ for the above d.

4. Construction of q-divisible codes

An $[n, k, d]_{q}$ code is called m-divisible if all codewords have weights divisible by an integer $m>1$.

Thm 9. (Ward, 1998)
Let \mathcal{C} be a Griesmer $[n, k, d]_{p}$ code with p prime.
If p^{e} divides d, then \mathcal{C} is p^{e}-divisible.

Lemma 10. \mathcal{C} : m-divisible $[n, k, d]_{q}$ code, $q=p^{h}$, p prime, $m=p^{r}, 1 \leq r<h(k-2)$, $\lambda_{0}>0$, with spec.

$$
a_{n-d-i m}=\alpha_{i} \text { for } 0 \leq i \leq w-1
$$

$\Rightarrow \exists \mathcal{C}^{*}: t$-divisible $\left[n^{*}, k, d^{*}\right]_{q}$ code with
$t=q^{k-2} / m, n^{*}=n t q-\frac{d}{m} \theta_{k-1}, d^{*}=((n-d) q-n) t$, whose spectrum is

$$
a_{n^{*}-d^{*}-i t}=\lambda_{i} \text { for } 0 \leq i \leq \gamma_{0}
$$

where $\lambda_{i}=\left|C_{i}\right|$ (\# of i-points for \mathcal{C}).
\mathcal{C}^{*} is called a projective dual (p.d.) of \mathcal{C}, see
A.E. Brouwer, M. van Eupen, The correspondence between projective codes and 2-weight codes, Des. Codes Cryptogr. 11 (1997) 261-266.

The multiset $\mathcal{M}_{\mathcal{C}^{*}}$ is given by considering the hyperplanes H with $m_{\mathcal{C}}(H)=n-d-j m$ as j-points in the dual space Σ^{*} of Σ for $0 \leq j \leq w-1$.

Example 5.

$\mathcal{C}_{1}:$ 3-div $[19,6,9]_{3}$
with spec. $\left(a_{1}, a_{4}, a_{7}, a_{10}\right)=(6,114,201,43)$
\downarrow projective dual
$\mathcal{C}_{1}^{*}: \quad 27-\operatorname{div}[447,6,297]_{3} \quad\left(n^{*}=3 a_{1}+2 a_{4}+a_{7}\right)$ with spec. $\left(a_{123}^{*}, a_{150}^{*}\right)=(19,345)$
$\mathbf{P}\left(a_{0}, a_{1}, \ldots, a_{5}\right) \in \mathrm{PG}(5,3)$ is a j-point for \mathcal{C}_{1}^{*} if

$$
w t\left(\left(a_{0}, \ldots, a_{5}\right) G_{0}\right)=3 j+9
$$

Q 7. Find $n_{q}(5, d)$ for $q \geq 5$ for
(1) $q^{4}-q^{3}-q^{2}+1 \leq d \leq q^{4}-q^{3}-q$,
(2) $2 q^{4}+1 \leq d \leq 2 q^{4}+q^{2}-q$,
(3) $q^{4}-q^{3}-2 q^{2}+1 \leq d \leq q^{4}-q^{3}-q^{2}$.

Lemma 11. $\exists q$-div. $\left[q^{2}+q, 5, q^{2}-q\right]_{q}$ code with spec.
$\left(a_{0}, a_{q}, a_{2 q}\right)=\left(\frac{q^{2}-q}{2}, q^{4}-q^{2}+q+1, \frac{2 q^{3}+3 q^{2}+q}{2}\right)$.
Lemma 12. $\exists q$-div. $\left[q^{2}, 5, q^{2}-3 q\right]_{q}$ code with spec. $\left(a_{0}, a_{q}, a_{2 q}, a_{3 q}\right)=\left(\frac{q}{6}(q-1)(2 q+5)+1\right.$,

$$
\left.q^{4}+\frac{q^{3}-q^{2}}{2}+3 q, 3\binom{q}{2},\binom{q}{3}\right) .
$$

K : an s-arc in $\mathrm{PG}(r, q)$ if

- K is a set of s points in $\mathrm{PG}(r, q)$.
- no $r+1$ points of K are on a hyperplane.

When $q \geq r$, there exists a $(q+1)$-arc.

Lemma 11. There exists a q-divisible $\left[q^{2}+q, 5, q^{2}-q\right]_{q}$ code \mathcal{C}_{2} with spectrum $\left(a_{0}, a_{q}, a_{2 q}\right)=\left(\frac{q^{2}-q}{2}, q^{4}-q^{2}+q+1, \frac{2 q^{3}+3 q^{2}+q}{2}\right)$.

Construction

ℓ : line, δ : plane with $\ell \cap \delta=\emptyset$ in $\Sigma=\mathrm{PG}(4, q)$
$K=\left\{Q_{0}, Q_{1}, \ldots, Q_{q}\right\}:$ a $(q+1)$-arc in δ
$\ell=\left\{P_{0}, P_{1}, \ldots, P_{q}\right\}, l_{i}=\left\langle P_{i}, Q_{i}\right\rangle$.
Setting $C_{1}=\left(\cup_{i=0}^{q} l_{i}\right) \backslash \ell$ and $C_{0}=\Sigma \backslash C_{1}$, we get a q-divisible $\left[q^{2}+q, 5, q^{2}-q\right]_{q}$ code \mathcal{C}_{2}.

$$
\begin{aligned}
& \Sigma=\mathrm{PG}(4, q) \\
& \ell \cap \delta=\emptyset
\end{aligned}
$$

$$
K: \text { a }(q+1)-\operatorname{arc} \text { in } \delta
$$

$$
l_{i}=\left\langle P_{i}, Q_{i}\right\rangle
$$

$$
C_{1}=\left(\bigcup_{i=0}^{q} l_{i}\right) \backslash \ell
$$

$$
C_{0}=\Sigma \backslash C_{1}
$$

$\Rightarrow \mathcal{C}_{2}$ is a q-divisible $\left[q^{2}+q, 5, q^{2}-q\right]_{q}$ code.

Lemma 12. There exists a q-divisible $\left[q^{2}, 5, q^{2}-3 q\right]_{q}$ code \mathcal{C}_{3} with spectrum

$$
\begin{aligned}
\left(a_{0}, a_{q}, a_{2 q}, a_{3 q}\right)= & \left(\frac{q}{6}(q-1)(2 q+5)+1\right. \\
& \left.q^{4}+\frac{q^{3}-q^{2}}{2}+3 q, 3\binom{q}{2},\binom{q}{3}\right)
\end{aligned}
$$

Construction

H : hyperplane of $\Sigma=\mathrm{PG}(4, q)$
P : point $\notin H$
$K=\left\{Q_{1}, \ldots, Q_{q}\right\}:$ a q-arc in H
$l_{i}=\left\langle P, Q_{i}\right\rangle$.
Setting $C_{1}=\left(\cup_{i=1}^{q} l_{i}\right) \backslash P$ and $C_{0}=\Sigma \backslash C_{1}$, we get a q-divisible $\left[q^{2}, 5, q^{2}-3 q\right]_{q}$ code \mathcal{C}_{3}.
H : a hyperplane of $\Sigma=\mathrm{PG}(4, q)$
K: q-arc in H
P : a point of Σ out of H
l_{1}, \cdots, l_{q} : lines through P s.t. $\cup_{i=1}^{q}\left(l_{i} \cap H\right)=K$
$C_{1}=\left(\cup_{i=1}^{q} l_{i}\right) \backslash P, C_{0}=\Sigma \backslash C_{1}$
$\Rightarrow \mathcal{C}_{3}$ is a q-divisible $\left[q^{2}, 5, q^{2}-3 q\right]_{q}$ code.

Lemma 11. $\exists \mathcal{C}_{2}$: q-div. $\left[q^{2}+q, 5, q^{2}-q\right]_{q}$ code with $\left(a_{0}, a_{q}, a_{2 q}\right)=\left(\frac{q^{2}-q}{2}, q^{4}-q^{2}+q+1, \frac{2 q^{3}+3 q^{2}+q}{2}\right)$.

Lemma 12. $\exists \mathcal{C}_{3}$: q-div. $\left[q^{2}, 5, q^{2}-3 q\right]_{q}$ code with $\left(a_{0}, a_{q}, a_{2 q}, a_{3 q}\right)=\left(\frac{q}{6}(q-1)(2 q+5)+1\right.$,

$$
\left.q^{4}+\frac{q^{3}-q^{2}}{2}+3 q, 3\binom{q}{2},\binom{q}{3}\right)
$$

K : an s-arc in $\mathrm{PG}(r, q)$ if

- K is a set of s points in $\mathrm{PG}(r, q)$.
- no $r+1$ points of K are on a hyperplane.

When $q \geq r$, there exists a $(q+1)$-arc.

Thm 13.

$\mathcal{C}_{2}: q$-divisible $\left[q^{2}+q, 5, q^{2}-q\right]_{q}$ code
\downarrow projective dual
$\mathcal{C}_{2}^{*}: q^{2}$-divisible $\left[q^{4}+1,5, q^{4}-q^{3}\right]_{q}$ code
\downarrow geometric puncturing
$\left[q^{4}+1-t(q+1), 5, q^{4}-q^{3}-t q\right]_{q}$ code for $1 \leq t \leq q-1$

- $n^{*}=q^{4}+1=g_{q}\left(5, q^{4}-q^{3}\right)+1$.
- \mathcal{C}_{2}^{*} is not optimal, for $\exists\left[g_{q}(5, d), 5, d\right]_{q}$ if $d=q^{4}-q^{3}$.
- The resulting codes are optimal, giving

$$
n_{q}(5, d)=g_{q}(5, d)+1 \text { for } q^{4}-q^{3}-q^{2}+1 \leq d \leq q^{4}-q^{3}-q .
$$

Lemma 11. $\exists \mathcal{C}_{2}$: q-div. $\left[q^{2}+q, 5, q^{2}-q\right]_{q}$ code with $\left(a_{0}, a_{q}, a_{2 q}\right)=\left(\frac{q^{2}-q}{2}, q^{4}-q^{2}+q+1, \frac{2 q^{3}+3 q^{2}+q}{2}\right)$.

Lemma 12. $\exists \mathcal{C}_{3}$: q-div. $\left[q^{2}, 5, q^{2}-3 q\right]_{q}$ code with $\left(a_{0}, a_{q}, a_{2 q}, a_{3 q}\right)=\left(\frac{q}{6}(q-1)(2 q+5)+1\right.$,

$$
\left.q^{4}+\frac{q^{3}-q^{2}}{2}+3 q, 3\binom{q}{2},\binom{q}{3}\right)
$$

K : an s-arc in $\mathrm{PG}(r, q)$ if

- K is a set of s points in $\mathrm{PG}(r, q)$.
- no $r+1$ points of K are on a hyperplane.

When $q \geq r$, there exists a $(q+1)$-arc.
$\mathcal{C}_{3}: q$-divisible $\left[q^{2}, 5, q^{2}-3 q\right]_{q}$ code
\downarrow projective dual
$\mathcal{C}_{3}^{*}: q^{2}$-divisible $\left[2 \theta_{4}+1,5,2 q^{4}\right]_{q}$ code with weights $2 q^{4}$ and $2 q^{4}+q^{2}$.

Lemma 14. (Hill-Newton, 1992)
\mathcal{C} : $[n, k, d]_{q}$ code
$\mathcal{C}_{0}:\left[n_{0}, k-1, d_{0}\right]_{q}$ code
If $\exists c \in \mathcal{C}$ with $w t(c) \geq d+d_{0}$
$\Rightarrow \exists \mathcal{C}^{\prime}:\left[n+n_{0}, k, d+d_{0}\right]_{q}$ code

- We apply Lemma 14 to
$\mathcal{C}:\left[2 \theta_{4}+1,5,2 q^{4}\right]_{q}$ code, $w t(c)=2 q^{4}+q^{2}$ $\mathcal{C}_{0}:\left[q^{2}+1,4, q^{2}-q\right]_{q}$ code.
$\Rightarrow \exists \mathcal{C}^{\prime}:\left[2 \theta_{4}^{4}+q^{2}+2,5,2 q^{4}+q^{2}-q\right]_{q}$ code

Thm 15.

$\mathcal{C}_{3}: q$-divisible $\left[q^{2}, 5, q^{2}-3 q\right]_{q}$ code
\downarrow projective dual
$\mathcal{C}_{3}^{*}: q^{2}$-divisible $\left[2 \theta_{4}+1,5,2 q^{4}\right]_{q}$ code
\downarrow Lemma 14 with $\left[q^{2}+1,4, q^{2}-q\right]_{q}$
$\left[2 \theta_{4}^{4}+q^{2}+2,5,2 q^{4}+q^{2}-q\right]_{q}$ code
\downarrow geometric puncturing
$\left[2 \theta_{4}^{4}+q^{2}+2-u \theta_{1}, 5,2 q^{4}+q^{2}-(u+1) q\right]_{q}$ code for $0 \leq u \leq q-2$

- $n^{*}=2 \theta^{4}=g_{q}\left(5,2 q^{4}\right)+1$.
- \mathcal{C}_{3}^{*} is not optimal, for $\exists\left[g_{q}(5, d), 5, d\right]_{q}$ if $d=2 q^{4}$.

Thm 15.

$\mathcal{C}_{3}: q$-divisible $\left[q^{2}, 5, q^{2}-3 q\right]_{q}$ code
\downarrow projective dual
$\mathcal{C}_{3}^{*}: q^{2}$-divisible $\left[2 \theta_{4}+1,5,2 q^{4}\right]_{q}$ code
\downarrow Lemma 14 with $\left[q^{2}+1,4, q^{2}-q\right]_{q}$
$\left[2 \theta_{4}^{4}+q^{2}+2,5,2 q^{4}+q^{2}-q\right]_{q}$ code
\downarrow geometric puncturing

$$
\begin{aligned}
& {\left[2 \theta_{4}^{4}+q^{2}+2-u \theta_{1}, 5,2 q^{4}+q^{2}-(u+1) q\right]_{q} \text { code }} \\
& \quad \text { for } 0 \leq u \leq q-2
\end{aligned}
$$

- The resulting codes are Griesmer, giving

$$
n_{q}(5, d)=g_{q}(5, d) \text { for } 2 q^{4}+1 \leq d \leq 2 q^{4}+q^{2}-q .
$$

5. Open problems

Q 7. Find $n_{q}(5, d)$ for $q \geq 5$ for
(1) $q^{4}-q^{3}-q^{2}+1 \leq d \leq q^{4}-q^{3}-q$,
(2) $2 q^{4}+1 \leq d \leq 2 q^{4}+q^{2}-q$,
(3) $q^{4}-q^{3}-2 q^{2}+1 \leq d \leq q^{4}-q^{3}-q^{2}$.

Note that $\sum_{i=1}^{s+1} u_{i} \geq s(k-1)$ for the above d.

We have solved the above question for (1) and (2).
But it is still open for (3)!

Problem 2. $\exists q$-div. $\left[(q+1)^{2}, 5, q^{2}\right]_{q}$ code?

$\mathcal{C}: q$-divisible $\left[(q+1)^{2}, 5, q^{2}\right]_{q}$ code
\downarrow projective dual
$\mathcal{C}^{*}: q^{2}$-divisible $\left[q^{4}-q^{2}-q, 5, q^{4}-q^{3}-q^{2}\right]_{q}$ code.
$n^{*}=q^{4}-q^{2}-q=g_{q}\left(5, q^{4}-q^{3}-q^{2}\right)+1$.
\mathcal{C}^{*} is optimal, for $\nexists\left[g_{q}(5, d), 5, d\right]_{q}$ if $d=q^{4}-q^{3}-q^{2}$. If \mathcal{C} is projective, then the spectrum is
$\left(a_{1}, a_{q+1}, a_{2 q+1}\right)=\left(\binom{q+1}{2}, q^{4}-2 q^{2}-2 q, q^{3}+5\binom{q+1}{2}+1\right)$.

- A $[9,5,4]_{2}$ code does not exist.
- A q-div. $\left[(q+1)^{2}, 5, q^{2}\right]_{q}$ code exists for $q=3,4,5$.
- For $q=4$, there are 31 such codes, two of which are non-projective: $\left(a_{1}, a_{5}, a_{9} ; \lambda_{2}\right)=(14,208,119 ; 1)$

Conjecture. $n_{q}(k, d) \leq g_{q}(k, d)+k-2$ for $k \geq 3$.

Problem 3. Construct $\left[g_{q}(k, d)+k-2, k, d\right]_{q}$ codes for all q, d and $k \geq 3$.

For $k=3$, the conjecture is valid for all $q \leq 19$, see Simeon Ball's website:
S. Ball, Table of bounds on three dimensional linear codes or (n, r)-arcs in $\mathrm{PG}(2, q)$, http://www-ma4.upc.es/~simeon/codebounds.html

Conjecture. $n_{q}(k, d) \leq g_{q}(k, d)+k-2$ for $k \geq 3$.

Problem 3. Construct $\left[g_{q}(k, d)+k-2, k, d\right]_{q}$ codes for all q, d and $k \geq 3$.

For $k=3$, the conjecture is valid for all $q \leq 19$, see Simeon Ball's website:
S. Ball, Table of bounds on three dimensional linear codes or (n, r)-arcs in $\mathrm{PG}(2, q)$, http://www-ma4.upc.es/~simeon/codebounds.html

Thank you for your attention!

References

[1] R. Hill, Optimal linear codes, in: Mitchell C. (ed.) Cryptography and Coding II, pp. 75-104. Oxford Univ. Press, Oxford (1992).
[2] Y. Kageyama, T. Maruta, On the construction of Griesmer codes of dimension 5, Des. Codes, Cryptogr., 75 (2015) 277-280.
[3] Y. Kageyama, T. Maruta, On the geometric constructions of optimal linear codes, submitted.
[4] T. Maruta, Construction of optimal linear codes by geometric puncturing, Serdica J. Computing 7 (2013) 73-80.
[5] T. Maruta and Y. Oya, On the minimum length of ternary linear codes, Des. Codes, Cryptogr. 68 (2013) 07-425.

