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Partial differene sets

Let G be finite group of order v with identity e.

A (v , k , λ, µ) partial difference set (PDS) D in G is a k -subset of
G with the property that the expressions gh−1, g,h ∈ D
represent

each nonidentity element in D exactly λ times,
each nonidentity element of G not in D exactly µ times.

If D(−1) = D and e /∈ D then D is called regular.

if λ 6= µ then D(−1) = D is automatically fulfilled.
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PDS were introduced by Bose and Cameron, named by
Chakravarti. A systematic study started with S.L. Ma. PDS are
a generalization of difference sets (which are PDS with λ = µ).
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Some examples

D ∪ {e} is a subgroup of G.
G \ D is a subgroup of G.

These two examples are called trivial.

Let q be an odd prime power, with q ≡ 1 (mod 4). Then
the non-zero squares of Fq form a
PDS(q, (q − 1)/2, (q − 5)/4, (q − 1)/4) in the additive
group of Fq. PDS with these parameters are said to be of
Paley type. For example {1,3,4,9,10,12} ⊂ F13,+
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An (n, r)-PCP P in a group G of order n2 is a set P of r
subgroups of order n of G such that U ∩ V = e for any
U,V ∈ P. Given an (n, r)-PCP P in G, D :=

⋃
U∈P U \ {e}

is a regular PDS in G.
Let C be a linear projective two-weight code of dimension k
over the field Fq then C gives rise to a PDS in the
elementary Abelian group of order qk .

Most examples so far are in Abelian groups, however, this is not
necessary condition for existence. In fact, the study of Paley
type PDS in non-Abelian groups is rich and interesting.
However, many open problems for PDS in Abelian groups
remain, and for the rest of the talk we will always assume G is
Abelian.
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PDS and strongly regular graphs

A (finite) graph Γ = (V ,E) is called strongly regular with
parameters srg(v , k , λ, µ) if

it has v vertices;
degree k ;
every two adjacent vertices have λ common neighbors;
every two non-adjacent vertices have µ common
neighbors.

This important class of graphs is widely studied and has many
links to other combinatorial structures.
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Let D be a regular PDS(v , k , λ, µ). Define the Cayley graph
Γ(G,D) as follows:

the vertices of Γ are the elements of G;
two vertices g and h are adjacent iff gh−1 ∈ D.

Then the graph Γ(G,D) is strongly regular with parameters
srg(v , k , λ, µ).
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Parameter restrictions

Assume D is a non-trivial regular PDS in the Abelian group G,
then

(v + λ− µ)2 − (∆− (λ− µ)2)(v − 1) is a square;
k = (v +λ−µ±

√
(v + λ− µ)2 − (∆− (λ− µ)2)(v − 1))/2;

λ− µ and ∆ have the same parity;
v2 ≡ (2k − λ+ µ)2 ≡ ((λ− µ)2 − 2(λ− µ))v ≡ 0 (mod ∆)

v , ∆, v2/∆ have the same prime divisors;
. . .

where ∆ = (λ− µ)2 + 4(k − µ).
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The key technique in the proof of almost all results on PDS is
computations in the group ring. We will however follow a
different, linear algebraic, path, using the adjaceny matrix of the
strongly regular graph related to the PDS.
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Let Γ be a srg(v , k , λ, µ). Given a fixed labeling of the vertices
1, . . . , v the adjacency matrix A is the matrix with 1 in position ij
if vertex i is adjacent to vertex j , and 0 everywhere else.

Then A has eigenvalues

ν1 := k ,

ν2 :=
1
2

(λ− µ+
√

∆),

ν3 :=
1
2

(λ− µ−
√

∆),

where ∆ = (λ− µ)2 + 4(k − µ).

These eigenvalues are integers, unless possibly when Γ is a
conference graph.



UD-Math-logo

The multiplicities of these eigenvalues are

m1 := 1,

m2 :=
1
2

(
v − 1− 2k + (v − 1)(λ− µ)√

∆

)
and

m3 =
1
2

(
v − 1 +

2k + (v − 1)(λ− µ)√
∆

)
.
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Ma’s list

In 1994 S.L. Ma produced a list of all parameter sets (v , k , λ, µ)
with k ≤ 100 that survived the known restrictions. For all but 32
of these 187 parameter sets the existence of a PDS was
known.

In 1997 Ma proved some further necessary conditions for the
existence of PDS, and this excluded the existence of PDS in 13
more cases, leaving 19 unresolved cases.



UD-Math-logo

Ma’s table

v k λ µ existence
100 33 8 12
100 36 14 12
144 39 6 12
144 52 16 20
144 55 22 20
196 60 14 20
196 65 24 20
196 75 26 30
196 78 32 30
216 40 4 8
216 43 10 8
225 48 3 12
225 80 25 30
225 84 33 30
225 96 39 42
225 98 43 42
392 51 10 6
400 84 8 20
512 73 12 10
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Ma’s table

v k λ µ existence
100 33 8 12
100 36 14 12
144 39 6 12
144 52 16 20
144 55 22 20
196 60 14 20
196 65 24 20
196 75 26 30
196 78 32 30
216 40 4 8
216 43 10 8
225 48 3 12
225 80 25 30
225 84 33 30
225 96 39 42
225 98 43 42
392 51 10 6
400 84 8 20
512 73 12 10 exists (1)

(1) Fiedler and Klin (1998), and Kohnert (2007)
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No non-trivial PDS exists in
an Abelian group G with a cyclic Sylow-p-subgroup and
o(G) 6= p;
an Abelian group G with a Sylow-p-subgroup isomorphic to
Zps × Zpt where s 6= t .

Hence
when G has order 100, G ∼= (Z2)2 × (Z5)2

when G has order 144, G ∼= (Z2)4 × (Z3)2 or
G ∼= (Z4)2 × (Z3)2,
when G has order 196, G ∼= (Z2)2 × (Z7)2,
when G has order 216, G ∼= (Z2)3 × (Z3)3,
when G has order 225, G ∼= (Z3)2 × (Z5)2,
when G has order 392, G ∼= (Z2)3 × (Z7)2,
when G has order 400, G ∼= (Z2)4 × (Z5)2 or
G ∼= (Z4)2 × (Z5)2.
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Benson’s theorem

Theorem (Benson ’70)
Let Q be a GQ(s, t), and let φ be an automorphism of Q. If φ
has f fixed points, and maps g points to collinear points then

(1 + t)f + g ≡ (1 + s)(1 + t) (mod s + t).

This theorem was generalized to a broader type of geometries
in 2006 (SDW), and once more in 2009 (Temmermans, Thas
and Van Maldeghem). Each time the considered geometries
had strongly regular point graphs (or distance regular). Can we
formulate a unifying theorem for strongly regular graphs?
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Theorem

Let Γ be a strongly regular graph with ∆ a perfect square. Let g
be an automorphism of order n of Γ, and let µ() be the Möbius
function. Then for all positive divisors d of n, there are
non-negative integers ad such that

k − ν3 +
∑
d |n

adµ(d)(ν2 − ν3) = −ν3f + t (1)

where f is the number of fixed vertices of g, and t is the number
of vertices that are adjacent to their image under g.
Furthermore ad equals the multiplicity of the eigenvalue
ξd (ν2 − ν3) of the matrix P(A− ν3I), where ξd is a primitive dth
root of unity, and P the permutation matrix corresponding to g.
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Corollary
Let Γ be a strongly regular graph with ∆ a perfect square, and
let g be an automorphism of order n of Γ. Let s be an integer
coprime with n. Then g and gs map the same number of
vertices to adjacent vertices.

Theorem (LMT)
Let D be a regular PDS in the Abelian group G. Assume ∆ is a
perfect square. If g ∈ D and g has order r , then gs ∈ D for all s
with gcd(s, r) = 1.

Proof. We have g ∈ D if and only if g has no fixed points and g
maps every vertex to an adjacent vertex (in its natural action on
the associated Cayley graph).
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Corollary
Let D be a regular PDS in the Abelian group G of order v.
Assume ∆ is a perfect square. Then D(s) = D for all s with
gcd(s, v) = 1.

This result was originally proved by Ma using character theory.
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Corollary
Let D be a regular (v , k , λ, µ) PDS in the Abelian group G.
Furthermore assume ∆ is a perfect square. Let g ∈ G belong
to D. Then the set D(g) := {gs | gcd(s,o(g)) = 1} is a subset
of D with cardinality φ(o(g)), where φ is the Euler totient
function. Furthermore if h ∈ D(g) then D(h) = D(g). Hence D
can be written as a partition D = D(g1) ∪ · · · ∪ D(gr ) for some
elements g1, . . . ,gr .
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Direct application of the LMT

Theorem
There is no PDS(196,65,24,20)

Proof. The possible orders of non-identity elements of G are
2,7 and 14, with respective values of the Euler totient function
1, 6 and 6. Hence we should be able to write 65 as r1 · 1 + r2 · 6,
where 0 ≤ r1 ≤ 3, as G contains exactly 3 elements of order 2.
Since 65 ≡ 5 (mod 6) and 5 > 3 this is clearly impossible.
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Ma’s table

v k λ µ existence
100 33 8 12
100 36 14 12
144 39 6 12
144 52 16 20
144 55 22 20
196 60 14 20
196 65 24 20 DNE
196 75 26 30
196 78 32 30
216 40 4 8
216 43 10 8
225 48 3 12
225 80 25 30
225 84 33 30
225 96 39 42
225 98 43 42
392 51 10 6
400 84 8 20
512 73 12 10 exists
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A counting argument

Let D be a regular (v , k , λ, µ) PDS in an Abelian group G. Let
Γ = (G,D) be the corresponding Cayley graph, and let A be its
adjacency matrix. Let P1,P2, . . . ,Pv be the v × v permutation
matrices corresponding to the elements of G.

As A− ν3I,P1,P2, . . . ,Pv is a set of commuting and
diagonalizable matrices, these matrices are simultaneously
diagonalizable.

Let u0,u1, . . . ,uv−1 be a common eigenbasis for these
matrices, labeled in such a way that (A− ν3I)u0 = (k − ν3)u0,
(A− ν3I)ui = (ν2 − ν3)ui for i = 1,2, . . . ,m2, and
(A− ν3I)ui = 0 for i = m2 + 1,m2 + 2, . . . , v − 1

Set U := {u1, . . . ,um2}.
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Lemma
Let H = Zr

p, p prime, be a subgroup of G. Then any of the
vectors ui ∈ U is an eigenvector with eigenvalue 1 for either all
or pr−1 of the elements of H. In the latter case the elements for
which ui appears with eigenvalue 1 form a subgroup of H.

Theorem

Let H = Zr
p, p prime, be a subgroup of G. Assume that

|H ∩ D| = s. Let x be the number of vectors in U that appear
with eigenvalue 1 for all elements of H. Finally let a1 be the
multiplicity of the eigenvalue ν2 − ν3 of the matrix P(A− ν3I),
where P is an element of order p in D, and let a′1 be the
multiplicity of the eigenvalue ν2 − ν3 of the matrix P(A− ν3I),
where P is not in D. Then

m2 + sa1 + (pr − 1− s)a′1 = xpr + (m2 − x)pr−1.
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The general approach: PDS(196,60,14,20)

We start by computing possible values for the ad from Theorem
2, using Equation (1) together with the fact that a1 + 6a7 = 135.
We obtain

o(g) = 7 a1 a7
g ∈ D 27 18
g /∈ D 15 20

Applying Theorem 9 to Z7 × Z7 < G, we obtain

135 + s27 + (48− s)15 = x49 + (135− x)7.

Hence s = 1
2(15 + 7x) with (s, x) = (18,3) as the only solution.

It follows that D must contain exactly 18 elements of order 7.
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As φ(14) = 6 it follows that the total number of elements of
order 14 in D is divisible by 6. Given that k = 60 and that there
are 18 elements of order 7 we deduce that 6 | 60− 18− a,
where a is the number of elements of order 2 in D. Hence D
does not contain any element of order 2.

The only way to obtain an element of order 7 as a difference of
two elements of D is as a difference of two elements of order 7
or as the difference of two elements of order 14.

There are exactly 18 · 17 differences of the former type.
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The difference of two elements of order 14 will be of order 7 if
and only if both elements have the same element of order 2 as
their seventh power.

Let g1,g2 and g3 be the three elements of order 2, and denote
by Ai , i = 1,2,3, the number of elements of order 14 in D that
have gi as their seventh power. Then

{
ΣiAi = 42

ΣiAi(Ai − 1) = 18 · 14 + 30 · 20− 18 · 17 = 546
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It follows that

3ΣiA2
i − (ΣiAi)

2 = 3 · 588− 422 = 0,

or that the variance of the Ai equals zero.

Consequently A1 = A2 = A3 = 42/3 = 14. However, if g has
order 14, then |D(g)| = 6 and h7 = g7 for all h ∈ D(g). This
means 6 divides Ai , a contradiction.

No PDS(196,60,14,20)
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Ma’s table

v k λ µ existence
100 33 8 12 DNE
100 36 14 12 DNE
144 39 6 12 DNE
144 52 16 20 DNE
144 55 22 20 DNE
196 60 14 20 DNE
196 65 24 20 DNE
196 75 26 30 DNE
196 78 32 30 DNE
216 40 4 8
216 43 10 8
225 48 3 12 DNE
225 80 25 30 DNE
225 84 33 30 DNE
225 96 39 42 DNE
225 98 43 42 DNE
392 51 10 6 DNE
400 84 8 20 DNE
512 73 12 10 exists
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Questions and future work

Do there exist PDS(216,40,4,8) or PDS(216,43,10,8) in
(Z2)3 × (Z3)3?
Use our technique for PDS in Abelian groups of order 4p2

or p2q2. Is it true that PDS in these groups (with exception
of order 36) always have Paley or PCP parameters?
To what extend can we generalize the Benson type
theorem to conference graphs with non-integer
eigenvalues?
Extend the Benson type theorem to distance regular
graphs.



UD-Math-logo

THANKS!


