Classifying cocyclic Butson Hadamard matrices

Ronan Egan*

Joint work with Dane Flannery and Padraig Ó Catháin.
July 23, CoCoA 2015.

* Supported by an NUI Galway Hardiman Scholarship and the Irish Research council

Introduction

Let $\zeta_{k}=e^{\frac{2 \pi i}{k}}$. An $n \times n$ matrix H with entries in $\left\langle\zeta_{k}\right\rangle$ is a $\operatorname{BH}(n, k)$ (Butson Hadamard matrix)

Introduction

Let $\zeta_{k}=e^{\frac{2 \pi i}{k}}$. An $n \times n$ matrix H with entries in $\left\langle\zeta_{k}\right\rangle$ is a $\operatorname{BH}(n, k)$ (Butson Hadamard matrix) if

$$
H H^{*}=n I_{n}
$$

where $*$ denotes Hermitian transpose,

Introduction

Let $\zeta_{k}=e^{\frac{2 \pi i}{k}}$. An $n \times n$ matrix H with entries in $\left\langle\zeta_{k}\right\rangle$ is a $\operatorname{BH}(n, k)$ (Butson Hadamard matrix) if

$$
H H^{*}=n I_{n}
$$

where $*$ denotes Hermitian transpose, i.e., $H=\left[h_{i j}\right] \Rightarrow H^{*}=\left[h_{j i}^{-1}\right]$.

Introduction

Let $\zeta_{k}=e^{\frac{2 \pi i}{k}}$. An $n \times n$ matrix H with entries in $\left\langle\zeta_{k}\right\rangle$ is a $\operatorname{BH}(n, k)$ (Butson Hadamard matrix) if

$$
H H^{*}=n I_{n}
$$

where $*$ denotes Hermitian transpose, i.e., $H=\left[h_{i j}\right] \Rightarrow H^{*}=\left[h_{j i}^{-1}\right]$.
Example

$$
H=\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & \zeta_{3} & \zeta_{3}^{2} \\
1 & \zeta_{3}^{2} & \zeta_{3}
\end{array}\right] \text { is a } \mathrm{BH}(3,3)
$$

Introduction

Let $\zeta_{k}=e^{\frac{2 \pi i}{k}}$. An $n \times n$ matrix H with entries in $\left\langle\zeta_{k}\right\rangle$ is a $\operatorname{BH}(n, k)$ (Butson Hadamard matrix) if

$$
H H^{*}=n I_{n}
$$

where $*$ denotes Hermitian transpose, i.e., $H=\left[h_{i j}\right] \Rightarrow H^{*}=\left[h_{j i}^{-1}\right]$.

Example

$$
H=\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & \zeta_{3} & \zeta_{3}^{2} \\
1 & \zeta_{3}^{2} & \zeta_{3}
\end{array}\right] \text { is a } \mathrm{BH}(3,3)
$$

If k is prime, then k must divide n. If $k=2, H$ is a real Hadamard matrix, and for $n>2$ it is known that n is a multiple of 4 .

Motivation

Butson matrices play a crucial role in Quantum Information Theory. A library of known Complex Hadamard matrices is kept up to date at the URL below.

> http://chaos.if.uj.edu.pl/~karol/hadamard/

Motivation

Butson matrices play a crucial role in Quantum Information Theory. A library of known Complex Hadamard matrices is kept up to date at the URL below.
http://chaos.if.uj.edu.pl/~karol/hadamard/

Real Hadamard matrices have been extensively studied, but Butsons have not.

Motivation

Butson matrices play a crucial role in Quantum Information Theory. A library of known Complex Hadamard matrices is kept up to date at the URL below.
http://chaos.if.uj.edu.pl/~karol/hadamard/

Real Hadamard matrices have been extensively studied, but Butsons have not. We classify up to equivalence, all cocyclic $\mathrm{BH}(n, p)$ s for odd prime p, and $n p \leq 100$. This includes generating previously unknown Butson matrices.

Equivalence relations

Let X and Y be $\operatorname{BH}(n, k)$ s. We say $X \approx Y$ are equivalent if $M X N=$ Y for monomial matrices M and N with non-zero entries in $\left\langle\zeta_{k}\right\rangle$.

Equivalence relations

Let X and Y be $\operatorname{BH}(n, k)$ s. We say $X \approx Y$ are equivalent if $M X N=$ Y for monomial matrices M and N with non-zero entries in $\left\langle\zeta_{k}\right\rangle$. If $M, N \in \operatorname{Perm}(n)$, then $X \sim Y$ are permutation equivalent.

Equivalence relations

Let X and Y be $\operatorname{BH}(n, k)$. We say $X \approx Y$ are equivalent if $M X N=$ Y for monomial matrices M and N with non-zero entries in $\left\langle\zeta_{k}\right\rangle$. If $M, N \in \operatorname{Perm}(n)$, then $X \sim Y$ are permutation equivalent.

The direct product $\operatorname{Mon}\left(n,\left\langle\zeta_{k}\right\rangle\right) \times \operatorname{Mon}\left(n,\left\langle\zeta_{k}\right\rangle\right)$ acts on $\operatorname{BH}(n, k)$ via $(M, N) X=M X N^{*}$.

- The orbit of X under this action is its equivalence class.
- The stabilizer of X is its full automorphism group $\operatorname{Aut}(X)$.

Equivalence relations

Let X and Y be $\operatorname{BH}(n, k)$ s. We say $X \approx Y$ are equivalent if $M X N=$ Y for monomial matrices M and N with non-zero entries in $\left\langle\zeta_{k}\right\rangle$. If $M, N \in \operatorname{Perm}(n)$, then $X \sim Y$ are permutation equivalent.

The direct product $\operatorname{Mon}\left(n,\left\langle\zeta_{k}\right\rangle\right) \times \operatorname{Mon}\left(n,\left\langle\zeta_{k}\right\rangle\right)$ acts on $\operatorname{BH}(n, k)$ via $(M, N) X=M X N^{*}$.

- The orbit of X under this action is its equivalence class.
- The stabilizer of X is its full automorphism group $\operatorname{Aut}(X)$.

The subgroup of $\operatorname{Aut}(X)$ comprised of pairs of permutation matrices, is denoted by $\operatorname{PermAut}(X)$.

Cocyclic matrices

A matrix $M \in \operatorname{Mat}\left(n,\left\langle\zeta_{k}\right\rangle\right)$ is cocyclic over a group G if $M \approx$ $[\psi(g, h)]_{g, h \in G}$ for some 2-cocycle $\psi: G \times G \rightarrow\left\langle\zeta_{k}\right\rangle$

Cocyclic matrices

A matrix $M \in \operatorname{Mat}\left(n,\left\langle\zeta_{k}\right\rangle\right)$ is cocyclic over a group G if $M \approx$ $[\psi(g, h)]_{g, h \in G}$ for some 2-cocycle $\psi: G \times G \rightarrow\left\langle\zeta_{k}\right\rangle$ i.e.,

$$
\psi(g, h) \psi(g h, f)=\psi(g, h f) \psi(h, f), \forall g, h, f \in G
$$

Cocyclic matrices

A matrix $M \in \operatorname{Mat}\left(n,\left\langle\zeta_{k}\right\rangle\right)$ is cocyclic over a group G if $M \approx$ $[\psi(g, h)]_{g, h \in G}$ for some 2-cocycle $\psi: G \times G \rightarrow\left\langle\zeta_{k}\right\rangle$ i.e.,

$$
\psi(g, h) \psi(g h, f)=\psi(g, h f) \psi(h, f), \forall g, h, f \in G .
$$

ψ is normalized if $\psi(g, 1)=\psi(1, h)=1$, for all $g, h \in G$,

Cocyclic matrices

A matrix $M \in \operatorname{Mat}\left(n,\left\langle\zeta_{k}\right\rangle\right)$ is cocyclic over a group G if $M \approx$ $[\psi(g, h)]_{g, h \in G}$ for some 2-cocycle $\psi: G \times G \rightarrow\left\langle\zeta_{k}\right\rangle$ i.e.,

$$
\psi(g, h) \psi(g h, f)=\psi(g, h f) \psi(h, f), \forall g, h, f \in G .
$$

ψ is normalized if $\psi(g, 1)=\psi(1, h)=1$, for all $g, h \in G$, and we say M is row/column balanced if each element of $\left\langle\zeta_{k}\right\rangle$ appears equally often in every non-initial row/column of M.

Cocyclic matrices

A matrix $M \in \operatorname{Mat}\left(n,\left\langle\zeta_{k}\right\rangle\right)$ is cocyclic over a group G if $M \approx$ $[\psi(g, h)]_{g, h \in G}$ for some 2-cocycle $\psi: G \times G \rightarrow\left\langle\zeta_{k}\right\rangle$ i.e.,

$$
\psi(g, h) \psi(g h, f)=\psi(g, h f) \psi(h, f), \forall g, h, f \in G .
$$

ψ is normalized if $\psi(g, 1)=\psi(1, h)=1$, for all $g, h \in G$, and we say M is row/column balanced if each element of $\left\langle\zeta_{k}\right\rangle$ appears equally often in every non-initial row/column of M.
In this case, ψ is orthogonal.

Cocyclic matrices

A matrix $M \in \operatorname{Mat}\left(n,\left\langle\zeta_{k}\right\rangle\right)$ is cocyclic over a group G if $M \approx$ $[\psi(g, h)]_{g, h \in G}$ for some 2-cocycle $\psi: G \times G \rightarrow\left\langle\zeta_{k}\right\rangle$ i.e.,

$$
\psi(g, h) \psi(g h, f)=\psi(g, h f) \psi(h, f), \forall g, h, f \in G .
$$

ψ is normalized if $\psi(g, 1)=\psi(1, h)=1$, for all $g, h \in G$, and we say M is row/column balanced if each element of $\left\langle\zeta_{k}\right\rangle$ appears equally often in every non-initial row/column of M.
In this case, ψ is orthogonal. The set of all cocycles form a group $Z\left(G,\left\langle\zeta_{k}\right\rangle\right) \cong Z\left(G, \mathrm{C}_{k}\right)$.

Outline

- Develop theory of non-existence, i.e., determine the pairs (n, p) such that there are there no cocyclic $\mathrm{BH}(n, p)$ s.

Outline

- Develop theory of non-existence, i.e., determine the pairs (n, p) such that there are there no cocyclic $\mathrm{BH}(n, p)$ s.
- Complete a thorough search for cocyclic $\mathrm{BH}(n, p)$ for any pair (n, p) such that $n p \leq 100$, not ruled out by the above.

Outline

- Develop theory of non-existence, i.e., determine the pairs (n, p) such that there are there no cocyclic $\mathrm{BH}(n, p)$ s.
- Complete a thorough search for cocyclic $\mathrm{BH}(n, p)$ for any pair (n, p) such that $n p \leq 100$, not ruled out by the above.
- Search for orthogonal cocycles in $Z\left(G, \mathrm{C}_{p}\right)$ for all groups G of order n,

Outline

- Develop theory of non-existence, i.e., determine the pairs (n, p) such that there are there no cocyclic $\mathrm{BH}(n, p)$ s.
- Complete a thorough search for cocyclic $\mathrm{BH}(n, p)$ for any pair (n, p) such that $n p \leq 100$, not ruled out by the above.
- Search for orthogonal cocycles in $Z\left(G, C_{p}\right)$ for all groups G of order n,
- Search for ($n, p, n, n / p$)-central relative difference sets in a central extension E of C_{p} by a group G of order n.

Outline

- Develop theory of non-existence, i.e., determine the pairs (n, p) such that there are there no cocyclic $\mathrm{BH}(n, p)$ s.
- Complete a thorough search for cocyclic $\mathrm{BH}(n, p)$ for any pair (n, p) such that $n p \leq 100$, not ruled out by the above.
- Search for orthogonal cocycles in $Z\left(G, \mathrm{C}_{p}\right)$ for all groups G of order n,
- Search for ($n, p, n, n / p$)-central relative difference sets in a central extension E of C_{p} by a group G of order n.
- Organize into equivalence classes.

Non-existence of cocyclic BH (n, p) s

A $\mathrm{BH}(n, k)$ matrix M is group developed over a group G if $M \sim$ $[\phi(g h)]_{g, h \in G}$ for some $\phi: G \rightarrow\left\langle\zeta_{k}\right\rangle$.

Non-existence of cocyclic $\mathrm{BH}(n, p) \mathrm{s}$

A $\mathrm{BH}(n, k)$ matrix M is group developed over a group G if $M \sim$ $[\phi(g h)]_{g, h \in G}$ for some $\phi: G \rightarrow\left\langle\zeta_{k}\right\rangle$.

Lemma

Set $r_{j}=\operatorname{Re}\left(\zeta_{k}^{j}\right)$ and $s_{j}=\operatorname{Im}\left(\zeta_{k}^{j}\right)$. A group-developed $\mathrm{BH}(n, k)$ exists only if there are non-negative integers $x_{0}, \ldots, x_{k-1} \in\{0, \ldots, n\}$ satisfying

$$
\left(\sum_{j=0}^{k-1} r_{j} x_{j}\right)^{2}+\left(\sum_{j=0}^{k-1} s_{j} x_{j}\right)^{2}=n
$$

and such that $\sum_{j=0}^{k-1} x_{j}=n$.

Non-existence of cocyclic $\mathrm{BH}(n, p)$ s

Let p be an odd prime.

Non-existence of cocyclic BH (n, p) s

Let p be an odd prime.

Lemma

A group-developed $\mathrm{BH}(n, p)$ exists only if there are non-negative integers $x_{0}, \ldots, x_{p-1} \in\{0, \ldots, n\}$ satisfying

- $\sum_{i=0}^{p-1} x_{i}^{2}-x_{i}=\frac{n}{p}(n-1)$.

Non-existence of cocyclic $\mathrm{BH}(n, p)$ s

Let p be an odd prime.

Lemma

A group-developed $\mathrm{BH}(n, p)$ exists only if there are non-negative integers $x_{0}, \ldots, x_{p-1} \in\{0, \ldots, n\}$ satisfying

- $\sum_{i=0}^{p-1} x_{i}^{2}-x_{i}=\frac{n}{p}(n-1)$.
- $\sum_{i=0}^{p-1} x_{i} x_{i+j}=\frac{n}{p}(n-1)$, for all $1 \leq j \leq p-1$
where subscripts are read modulo p.

Non-existence of cocyclic $\mathrm{BH}(n, p)$ s

Let p be an odd prime.

Lemma

A group-developed $\mathrm{BH}(n, p)$ exists only if there are non-negative integers $x_{0}, \ldots, x_{p-1} \in\{0, \ldots, n\}$ satisfying

- $\sum_{i=0}^{p-1} x_{i}^{2}-x_{i}=\frac{n}{p}(n-1)$.
- $\sum_{i=0}^{p-1} x_{i} x_{i+j}=\frac{n}{p}(n-1)$, for all $1 \leq j \leq p-1$
where subscripts are read modulo p.

Theorem

If n is p-square-free then a cocyclic $\mathrm{BH}(n, p)$ is equivalent to a group-developed $\mathrm{BH}(n, p)$.

No cocyclic $\mathrm{BH}(n, p)$ s exist for any $(n, p) \in\{(6,3),(15,3),(24,3)$, $(30,3),(33,3),(10,5),(15,5)\}$.

No cocyclic $\mathrm{BH}(n, p)$ s exist for any $(n, p) \in\{(6,3),(15,3),(24,3)$, $(30,3),(33,3),(10,5),(15,5)\}$.

For all odd primes $p \leq 17$, there is a unique $\mathrm{BH}(p, p)$ up to equivalence. This is the Fourier matrix of order p, which is group developed.

No cocyclic $\mathrm{BH}(n, p)$ s exist for any $(n, p) \in\{(6,3),(15,3),(24,3)$, $(30,3),(33,3),(10,5),(15,5)\}$.

For all odd primes $p \leq 17$, there is a unique $\mathrm{BH}(p, p)$ up to equivalence. This is the Fourier matrix of order p, which is group developed.

It remains to check for $\mathrm{BH}(n, p)$ s for all $(n, p) \in\{(9,3),(12,3),(18,3),(21,3),(27,3),(20,5),(14,7)\}$.

The shift action, and orthogonal cocycles in $Z\left(G, C_{p}\right)$

$\left|Z\left(G, \mathrm{C}_{p}\right)\right| \approx p^{|G|-1}$, so a naive search is out of the question.

The shift action, and orthogonal cocycles in $Z\left(G, C_{p}\right)$

$\left|Z\left(G, \mathrm{C}_{p}\right)\right| \approx p^{|G|-1}$, so a naive search is out of the question.
We define the shift action of G on $Z\left(G, C_{p}\right)$ by $\psi \cdot a=\psi \partial \psi_{a}$,

The shift action, and orthogonal cocycles in $Z\left(G, C_{p}\right)$

$\left|Z\left(G, \mathrm{C}_{p}\right)\right| \approx p^{|G|-1}$, so a naive search is out of the question.
We define the shift action of G on $Z\left(G, C_{p}\right)$ by $\psi \cdot a=\psi \partial \psi_{a}$, where $\psi_{a}(g)=\psi(a, g)$ and $\partial \psi_{a}(g, h)=\psi_{a}(g)^{-1} \psi_{a}(h)^{-1} \psi_{a}(g h)$.

The shift action, and orthogonal cocycles in $Z\left(G, C_{p}\right)$

$\left|Z\left(G, \mathrm{C}_{p}\right)\right| \approx p^{|G|-1}$, so a naive search is out of the question.
We define the shift action of G on $Z\left(G, C_{p}\right)$ by $\psi \cdot a=\psi \partial \psi_{a}$, where $\psi_{a}(g)=\psi(a, g)$ and $\partial \psi_{a}(g, h)=\psi_{a}(g)^{-1} \psi_{a}(h)^{-1} \psi_{a}(g h)$.
The shift action preserves orthogonality, i.e., elements in an orbit under the shift action are either all orthogonal, or none are.

The shift action, and orthogonal cocycles in $Z\left(G, C_{p}\right)$

$\left|Z\left(G, C_{p}\right)\right| \approx p^{|G|-1}$, so a naive search is out of the question.
We define the shift action of G on $Z\left(G, C_{p}\right)$ by $\psi \cdot a=\psi \partial \psi_{a}$, where $\psi_{a}(g)=\psi(a, g)$ and $\partial \psi_{a}(g, h)=\psi_{a}(g)^{-1} \psi_{a}(h)^{-1} \psi_{a}(g h)$.
The shift action preserves orthogonality, i.e., elements in an orbit under the shift action are either all orthogonal, or none are.
Let Γ be the permutation representation $G \rightarrow \operatorname{Sym}\left(Z\left(G, C_{p}\right)\right)$ associated to the shift action.

The shift action, and orthogonal cocycles in $Z\left(G, C_{p}\right)$

$\left|Z\left(G, \mathrm{C}_{p}\right)\right| \approx p^{|G|-1}$, so a naive search is out of the question.
We define the shift action of G on $Z\left(G, C_{p}\right)$ by $\psi \cdot a=\psi \partial \psi_{a}$, where $\psi_{a}(g)=\psi(a, g)$ and $\partial \psi_{a}(g, h)=\psi_{a}(g)^{-1} \psi_{a}(h)^{-1} \psi_{a}(g h)$.
The shift action preserves orthogonality, i.e., elements in an orbit under the shift action are either all orthogonal, or none are.

Let Γ be the permutation representation $G \rightarrow \operatorname{Sym}\left(Z\left(G, C_{p}\right)\right)$ associated to the shift action.

Theorem

Suppose that $|G|=n \geq 5$. Then Γ is a faithful representation of G in $\mathrm{GL}(n+r-1, p)$ where r is the rank of the Sylow p-subgroup of $\operatorname{Hom}\left(H_{2}(G), C_{p}\right)$.

The shift action, and orthogonal cocycles in $Z\left(G, C_{p}\right)$

The matrix group setting enables fast calculation of orbits under the shift action. While the search space is still quite large ($\approx p^{n-1} / n$), it is feasible to calculate the orbits and test representatives for orthogonality for reasonably small p and n.

The shift action, and orthogonal cocycles in $Z\left(G, C_{p}\right)$

The matrix group setting enables fast calculation of orbits under the shift action. While the search space is still quite large ($\approx p^{n-1} / n$), it is feasible to calculate the orbits and test representatives for orthogonality for reasonably small p and n.
The table below gives the number t of orthogonal cocycles found for the given group isotypes, when $p=3$. Note than none were found for groups of order 18.

G	C_{9}	C_{3}^{2}	C_{12}	$\mathrm{C}_{3} \rtimes \mathrm{C}_{4}$	$\mathrm{Alt}(4)$	D_{6}	$\mathrm{C}_{2}^{2} \times \mathrm{C}_{3}$
t	18	144	0	288	48	0	96

Central relative difference sets

A relative (v, w, k, λ)-difference set in a finite group E of order $v w$ relative to a normal subgroup N of order w, is a k-subset R of E such that the multiset of quotients $r_{i} r_{j}^{-1},\left(r_{i}, r_{j} \in R, i \neq j\right)$, contains each element of $E \backslash N$ exactly λ times, and no element of the forbidden subgroup N. If $N \leq Z(E)$, then R is central.

Central relative difference sets

A relative (v, w, k, λ)-difference set in a finite group E of order $v w$ relative to a normal subgroup N of order w, is a k-subset R of E such that the multiset of quotients $r_{i} r_{j}^{-1},\left(r_{i}, r_{j} \in R, i \neq j\right)$, contains each element of $E \backslash N$ exactly λ times, and no element of the forbidden subgroup N. If $N \leq Z(E)$, then R is central.

Let E be a central extension of C_{p} by G.

Central relative difference sets

A relative (v, w, k, λ)-difference set in a finite group E of order $v w$ relative to a normal subgroup N of order w, is a k-subset R of E such that the multiset of quotients $r_{i} r_{j}^{-1},\left(r_{i}, r_{j} \in R, i \neq j\right)$, contains each element of $E \backslash N$ exactly λ times, and no element of the forbidden subgroup N. If $N \leq Z(E)$, then R is central.

Let E be a central extension of C_{p} by G.

Theorem

There exists a cocyclic $\mathrm{BH}(n, p)$ if and only if there is a relative ($n, p, n, n / p$)-difference set in E with central forbidden subgroup C_{p}.

Existence of cocyclic $\mathrm{BH}(n, p) s$

The table below summarizes existence of matrices in our classification.

$p \backslash \frac{n}{p}$	1	2	3	4	5	6	7	8	9	10	11
3	F	N	E	E	N	S 2	S 1	N	E	N	N
5	F	N	N	S 1							
7	F	S 1									

N: no cocyclic Butson Hadamard matrices by non-existence theores.
E: cocyclic Butson Hadamard matrices exist.
S1: no cocyclic Butson Hadamard matrices according to an relative difference set search.
S2: no cocyclic Butson Hadamard matrices according to an orthogonal cocycle search.
F: the Fourier matrix is the only Butson Hadamard matrix.

The classification

There are only 3 interesting cases remaining, all with entries in $\left\langle\zeta_{3}\right\rangle$.

The classification

There are only 3 interesting cases remaining, all with entries in $\left\langle\zeta_{3}\right\rangle$.

- $\mathrm{BH}(9,3)$: 3 unique equivalence classes.

The classification

There are only 3 interesting cases remaining, all with entries in $\left\langle\zeta_{3}\right\rangle$.

- $\mathrm{BH}(9,3)$: 3 unique equivalence classes.
- $\mathrm{BH}(12,3): 2$ unique equivalence classes.

The classification

There are only 3 interesting cases remaining, all with entries in $\left\langle\zeta_{3}\right\rangle$.

- $\mathrm{BH}(9,3)$: 3 unique equivalence classes.
- $\mathrm{BH}(12,3)$: 2 unique equivalence classes.
- $\mathrm{BH}(27,3)$: 16 unique equivalence classes.

The classification

There are only 3 interesting cases remaining, all with entries in $\left\langle\zeta_{3}\right\rangle$.

- $\mathrm{BH}(9,3)$: 3 unique equivalence classes.
- $\mathrm{BH}(12,3)$: 2 unique equivalence classes.
- $\operatorname{BH}(27,3)$: 16 unique equivalence classes.

The full classification is available at

> http://www.maths.nuigalway.ie/~dane/BHIndex.html.

The classification

There are only 3 interesting cases remaining, all with entries in $\left\langle\zeta_{3}\right\rangle$.

- $\mathrm{BH}(9,3)$: 3 unique equivalence classes.
- $\mathrm{BH}(12,3)$: 2 unique equivalence classes.
- $\operatorname{BH}(27,3)$: 16 unique equivalence classes.

The full classification is available at
http://www.maths.nuigalway.ie/~dane/BHIndex.html.

Concluding comments

- All matrices found were equivalent to group developed matrices.
- Many of the classes found were previously unknown.
- Various composition techniques may be used to generate higher order Butson matrices from these ones.

References

- W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24, no. 3-4, 235-265,(1997).
- R. Egan, D. L. Flannery, P. Ó Catháin, Classifying cocyclic Butson Hadamard matrices, Algebraic Design Theory and Hadamard Matrices, Springer Proc. Math. Stat., 133, in press, 2015.
- D. L. Flannery, R. Egan, On linear shift representations, J. Pure Appl. Algebra, 219, no. 8, 3482-3494, 2015.
- P. Ó Catháin and M. Röder, The cocyclic Hadamard matrices of order less than 40, Des. Codes Cryptogr., 58, no. 1, 73-88, 2011.
- M. Röder, The GAP package RDS,
http://www.gap-system.org/Packages/rds.html

