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Introduction

Let ζk = e
2πi
k . An n× n matrix H with entries in 〈ζk〉 is a BH(n, k)

(Butson Hadamard matrix)

if

HH∗ = nIn

where ∗ denotes Hermitian transpose, i.e., H = [hij ]⇒ H∗ = [h−1ji ].

Example

H =

[
1 1 1

1 ζ3 ζ2
3

1 ζ2
3

ζ3

]
is a BH(3, 3).

If k is prime, then k must divide n. If k = 2, H is a real Hadamard
matrix, and for n > 2 it is known that n is a multiple of 4.
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Motivation

Butson matrices play a crucial role in Quantum Information Theory.
A library of known Complex Hadamard matrices is kept up to date
at the URL below.

http://chaos.if.uj.edu.pl/∼karol/hadamard/

Real Hadamard matrices have been extensively studied, but Butsons
have not. We classify up to equivalence, all cocyclic BH(n, p)s for
odd prime p, and np ≤ 100. This includes generating previously
unknown Butson matrices.
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Equivalence relations

Let X and Y be BH(n, k)s. We say X ≈ Y are equivalent if MXN =
Y for monomial matrices M and N with non-zero entries in 〈ζk〉.

If
M,N ∈ Perm(n), then X ∼ Y are permutation equivalent.

The direct product Mon(n, 〈ζk〉)×Mon(n, 〈ζk〉) acts on BH(n, k)
via (M,N)X = MXN∗.

The orbit of X under this action is its equivalence class.

The stabilizer of X is its full automorphism group Aut(X ).

The subgroup of Aut(X ) comprised of pairs of permutation matrices,
is denoted by PermAut(X ).
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Cocyclic matrices

A matrix M ∈ Mat(n, 〈ζk〉) is cocyclic over a group G if M ≈
[ψ(g , h)]g ,h∈G for some 2-cocycle ψ : G × G → 〈ζk〉

i.e.,

ψ(g , h)ψ(gh, f ) = ψ(g , hf )ψ(h, f ), ∀ g , h, f ∈ G .

ψ is normalized if ψ(g , 1) = ψ(1, h) = 1, for all g , h ∈ G , and we say
M is row/column balanced if each element of 〈ζk〉 appears equally
often in every non-initial row/column of M.

In this case, ψ is orthogonal. The set of all cocycles form a group
Z (G , 〈ζk〉) ∼= Z (G ,Ck).
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Outline

Develop theory of non-existence, i.e., determine the pairs
(n, p) such that there are there no cocyclic BH(n, p)s.

Complete a thorough search for cocyclic BH(n, p) for any pair
(n, p) such that np ≤ 100, not ruled out by the above.

Search for orthogonal cocycles in Z (G ,Cp) for all groups G of

order n,
Search for (n, p, n, n/p)-central relative di�erence sets in a

central extension E of Cp by a group G of order n.

Organize into equivalence classes.
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Non-existence of cocyclic BH(n, p)s

A BH(n, k) matrix M is group developed over a group G if M ∼
[φ(gh)]g ,h∈G for some φ : G → 〈ζk〉.

Lemma

Set rj = Re(ζ jk) and sj = Im(ζ jk). A group-developed BH(n, k)
exists only if there are non-negative integers
x0, . . . , xk−1 ∈ {0, . . . , n} satisfying(∑k−1

j=0
rjxj
)2

+
(∑k−1

j=0
sjxj
)2

= n

and such that
∑k−1

j=0
xj = n.
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Non-existence of cocyclic BH(n, p)s

Let p be an odd prime.

Lemma

A group-developed BH(n, p) exists only if there are non-negative
integers x0, . . . , xp−1 ∈ {0, . . . , n} satisfying∑p−1

i=0
x2i − xi = n

p (n − 1).∑p−1
i=0

xixi+j = n
p (n − 1), for all 1 ≤ j ≤ p − 1

where subscripts are read modulo p.

Theorem

If n is p-square-free then a cocyclic BH(n, p) is equivalent to a
group-developed BH(n, p).
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No cocyclic BH(n, p)s exist for any (n, p) ∈ {(6, 3), (15, 3), (24, 3),
(30, 3), (33, 3), (10, 5), (15, 5)}.

For all odd primes p ≤ 17, there is a unique BH(p, p) up to
equivalence. This is the Fourier matrix of order p, which is group
developed.

It remains to check for BH(n, p)s for all
(n, p) ∈ {(9, 3), (12, 3), (18, 3), (21, 3), (27, 3), (20, 5), (14, 7)}.
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The shift action, and orthogonal cocycles in Z (G ,Cp)

|Z (G ,Cp)| ≈ p|G |−1, so a naive search is out of the question.

We de�ne the shift action of G on Z (G ,Cp) by ψ ·a = ψ∂ψa, where
ψa(g) = ψ(a, g) and ∂ψa(g , h) = ψa(g)−1ψa(h)−1ψa(gh).

The shift action preserves orthogonality, i.e., elements in an orbit
under the shift action are either all orthogonal, or none are.

Let Γ be the permutation representation G → Sym(Z (G ,Cp)) asso-
ciated to the shift action.

Theorem

Suppose that |G | = n ≥ 5. Then Γ is a faithful representation of G
in GL(n + r − 1, p) where r is the rank of the Sylow p-subgroup of
Hom(H2(G ),Cp).
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The shift action, and orthogonal cocycles in Z (G ,Cp)

|Z (G ,Cp)| ≈ p|G |−1, so a naive search is out of the question.

We de�ne the shift action of G on Z (G ,Cp) by ψ ·a = ψ∂ψa, where
ψa(g) = ψ(a, g) and ∂ψa(g , h) = ψa(g)−1ψa(h)−1ψa(gh).

The shift action preserves orthogonality, i.e., elements in an orbit
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The shift action, and orthogonal cocycles in Z (G ,Cp)

The matrix group setting enables fast calculation of orbits under the
shift action. While the search space is still quite large (≈ pn−1/n),
it is feasible to calculate the orbits and test representatives for or-
thogonality for reasonably small p and n.

The table below gives the number t of orthogonal cocycles found for
the given group isotypes, when p = 3. Note than none were found
for groups of order 18.

G C9 C2

3
C12 C3 o C4 Alt(4) D6 C2

2
× C3

t 18 144 0 288 48 0 96
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Central relative di�erence sets

A relative (v ,w , k , λ)-di�erence set in a �nite group E of order vw
relative to a normal subgroup N of order w , is a k-subset R of E such
that the multiset of quotients ri r

−1
j , (ri , rj ∈ R, i 6= j), contains each

element of E \ N exactly λ times, and no element of the forbidden
subgroup N. If N ≤ Z (E ), then R is central.

Let E be a central extension of Cp by G .

Theorem

There exists a cocyclic BH(n, p) if and only if there is a relative
(n, p, n, n/p)-di�erence set in E with central forbidden subgroup
Cp.
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Existence of cocyclic BH(n, p)s

The table below summarizes existence of matrices in our classi�ca-
tion.

p \ n
p 1 2 3 4 5 6 7 8 9 10 11

3 F N E E N S2 S1 N E N N

5 F N N S1

7 F S1

N: no cocyclic Butson Hadamard matrices by non-existence theores.

E: cocyclic Butson Hadamard matrices exist.

S1: no cocyclic Butson Hadamard matrices according to an relative di�er-

ence set search.

S2: no cocyclic Butson Hadamard matrices according to an orthogonal

cocycle search.

F: the Fourier matrix is the only Butson Hadamard matrix.
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The classi�cation

There are only 3 interesting cases remaining, all with entries in 〈ζ3〉.

BH(9, 3) : 3 unique equivalence classes.

BH(12, 3) : 2 unique equivalence classes.

BH(27, 3) : 16 unique equivalence classes.

The full classi�cation is available at

http://www.maths.nuigalway.ie/∼dane/BHIndex.html.

Concluding comments

All matrices found were equivalent to group developed
matrices.

Many of the classes found were previously unknown.

Various composition techniques may be used to generate
higher order Butson matrices from these ones.
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