KM-arcs in small Desarguesian projective planes

Peter Vandendriessche

July 20, 2015

Definition

Definition (Korchmáros and Mazzocca, 1990)

A (dual) $\mathrm{KM}_{(q, t)}$-arc is a set S of points (lines) in $\operatorname{PG}(2, q)$,

- of size $q+t$,
- s.t. every line (point) is incident with 0,2 or t points (lines) of S,
- $1<t<q$.

Original notation: $(q+t, t)$-arc of type $(0,2, t)$.

Remark

- A hyperoval $\left(q+2\right.$ points, no three collinear) is a $\mathrm{KM}_{(q, 2)}$-arc.
- A dual hyperoval is a dual $\mathrm{KM}_{(q, 2)}$-arc.

Motivation 1: structure

Strong structural properties follow from this combinatorial definition:

Theorem (Korchmáros and Mazzocca, 1990)

$K M_{(q, t)}$-arcs only exist if $q=2^{h}$ and $t \mid q$.

Theorem (Gács and Weiner, 2003)

Every $K M_{(q, t)}$-arc S has the following structure:

- there are $q / t+1$ concurrent lines, each containing t points of S;
- all other lines contain 0 or 2 points of S.

Motivation 2: dual hyperovals

Definition

A (dual) hyperoval in $\mathrm{PG}(2, q)$ or $\mathrm{AG}(2, q)$ is a nonempty set of points (lines) such that every line (point) is incident with 0 or 2 points (lines).

- Hyperovals in $\operatorname{AG}(2, q)$ and $\operatorname{PG}(2, q)$ are roughly the same,
- dual hyperovals in $\operatorname{PG}(2, q)$ are the dual of the above,
- dual hyperovals in $\mathrm{AG}(2, q)$ are a broader class.

Theorem

S is a dual hyperoval in $A G(2, q) \Leftrightarrow S$ is a dual $K M_{(q, t)}$-arc.
Dual KM-arcs can also be called affine dual hyperovals.

Motivation 3: coding theory

Related to structure of (dual) $P G(2, q)$ codes, q even

- KM-arcs are code words of these codes
- linear dependencies between columns stem from the existence of KM-arcs
- only geometric code used frequently in engineering applications
- a simple coordinate-based basis (small q) is based on KM-arcs [Vandendriessche; 2011]

Main problem: construction

Open Problem

If $q=2^{h}$ and $t \mid q$, is there always a $\mathrm{KM}_{(q, t)}$-arc in $\operatorname{PG}(2, q)$?
This problem has been open for more than 25 years now.

- No extension of the regular hyperoval is known.
- Only a handful of families and sporadic examples are known.
- Even for q small there are open cases.

Small q: an overview up to PГL-isomorphism

	t	2	4	8	16
q		32			
4	$\mathbf{1}$				
8	$\mathbf{1}$	$?$			
16	$\mathbf{2}$	$?$	$?$		
32	$\mathbf{6}$	$?$	$?$	$?$	
64	$\geq \mathbf{4}$	$?$	$?$	$?$	$?$

- [Penttila and Royle; 1994-1995] did $\mathrm{t}=2$ for small q

Small q: an overview up to PГL-isomorphism

	t	2	4	8	16
\mathbf{q}		32			
4	1				
8	1	$\mathbf{1}$			
16	2	$\geq \mathbf{2}$	$\mathbf{1}$		
32	6	$?$	$?$	$\geq \mathbf{1}$	
64	≥ 4	$?$	$\geq \mathbf{1}$	$\geq \mathbf{1}$	$\geq \mathbf{1}$

- [Penttila and Royle; 1994-1995] did $\mathrm{t}=2$ for small q
- [Korchmáros and Mazzocca; 1990] did $\left.\log _{2}\left(\frac{q}{t}\right) \right\rvert\, \log _{2}(q)$

Small q: an overview up to PГL-isomorphism

	t	2	4	8	16
\mathbf{q}	32				
4	1				
8	1	1			
16	2	≥ 2	1		
32	6	$?$	$?$	≥ 1	
64	≥ 4	$?$	≥ 1	≥ 1	≥ 1

- [Penttila and Royle; 1994-1995] did $\mathrm{t}=2$ for small q
- [Korchmáros and Mazzocca; 1990] did $\left.\log _{2}\left(\frac{q}{t}\right) \right\rvert\, \log _{2}(q)$
- [Gács and Weiner; 2003] did several sparse families (no impact)

Small q: an overview up to PГL-isomorphism

	t	2	4	8	16
\mathbf{q}	2	32			
4	1				
8	1	1			
16	2	≥ 2	1		
32	6	$?$	≥ 1	≥ 1	
64	≥ 4	$?$	≥ 1	≥ 1	≥ 1

- [Penttila and Royle; 1994-1995] did $\mathrm{t}=2$ for small q
- [Korchmáros and Mazzocca; 1990] found $\left.\log _{2}\left(\frac{q}{t}\right) \right\rvert\, \log _{2}(q)$
- [Gács and Weiner; 2003] found several sparse families
- [Limbupasiriporn; 2005] found $q=32, t=8$

Small q: an overview up to PГL-isomorphism

	t	2	4	8	16
q		2	32		
4	1				
8	1	1			
16	2	≥ 2	1		
32	6	≥ 1	≥ 1	≥ 1	
64	≥ 4	$?$	≥ 1	≥ 1	≥ 1

- [Penttila and Royle; 1994-1995] did $\mathrm{t}=2$ for small q
- [Korchmáros and Mazzocca; 1990] found $\left.\log _{2}\left(\frac{q}{t}\right) \right\rvert\, \log _{2}(q)$
- [Gács and Weiner; 2003] found several sparse families
- [Limbupasiriporn; 2005] found $q=32, t=8$
- [Key, McDonough and Mavron; 2009] found $q=32, t=4$

Small q: an overview up to PГL-isomorphism

	t	2	4	8	16
\mathbf{q}	22				
4	1				
8	1	1			
16	2	≥ 2	1		
32	6	≥ 1	≥ 1	$\mathbf{1}$	
64	≥ 4	$?$	≥ 1	$\geq \mathbf{2}$	$\mathbf{1}$

- [Penttila and Royle; 1994-1995] classified $\mathrm{t}=2$ for small q
- [Korchmáros and Mazzocca; 1990] found $\left.\log _{2}\left(\frac{q}{t}\right) \right\rvert\, \log _{2}(q)$
- [Gács and Weiner; 2003] found several sparse families
- [Key, McDonough and Mavron; 2009] found $q=32, t=4$
- [Vandendriessche; 2011] found $t=q / 4$ and classified $t=q / 2$

Goal: classify $q \leq 32$ up to PГL-isomorphism

Technique:

- fix the nucleus $N=(0,0,1)$
- compute up to isomorphism all $(q / t+1)$-sets of lines through N
- nonisomorphic t-secants \Rightarrow non-isomorphic KM-arcs \rightarrow we have split the problem in disjoint subproblems
- for any given such line set \mathcal{L} :
- let $\mathcal{S}_{\mathcal{L}}=\emptyset$
- pick an arbitrary line $L \in \mathcal{L}$ (ideally with minimal $P \Gamma L_{\mathcal{L}}$-orbit size)
- consider the set \mathcal{T} of all $P \Gamma L_{\mathcal{L}, L}$-inequivalent t-sets on L
- for each $T \in T$, use self-written diophantine solver to find the possible placings of the remaining q points (takes only milliseconds)
- test any found solution for P「L-equivalence with $\mathcal{S}_{\mathcal{L}}$ only (and if new add to $\mathcal{S}_{\mathcal{L}}$)

Small q: an overview up to PГL-isomorphism

	t	2	4	8	16
\mathbf{q}	2	32			
4	1				
8	1	1			
16	2	3	1		
32	6	8	3	1	
64	≥ 4	$?$	≥ 1	≥ 2	1

- [Penttila and Royle; 1994-1995] classified $\mathrm{t}=2$ for small q
- [Korchmáros and Mazzocca; 1990] found $\left.\log _{2}\left(\frac{q}{t}\right) \right\rvert\, \log _{2}(q)$
- [Gács and Weiner; 2003] found several sparse families (no impact)
- [Vandendriessche; 2011] found $t=q / 4$ and classified $t=q / 2$
- [Vandendriessche; 2015] classified $q \leq 32$

Interesting property: linearity

Definition

A KM-arc is linear if within each secant, the last coordinate forms a coset of an additive subgroup of \mathbb{F}_{q}.

Recall that we let $N(0,0,1)$ be the concurrency point of the secants, and we let the first nonzero coordinate of each point be 1 .

Remark

For $q \leq 32$, all KM-arcs are linear, and the \mathcal{L}-fixator subgroup of their stabilizer is $C_{2} \times C_{2} \times \cdots \times C_{2}$.

Interesting property: linearity

Conjecture (Vandendriessche; 2011)

All KM-arcs are linear (and hence have the above stabilizer property).
If this is true, this greatly reduces the search space: instead of trying $\binom{q}{t}$ sets, it would then be sufficient to look at $\left(\log _{2}(t)+1\right)$ sets.

Open Problem

Which line sets \mathcal{L} yield KM-arcs? No clear requirements could be found.
Looking at $\binom{65}{17}$ lines sets is not feasible \Rightarrow problem for next open case

Finding $q=64, t=4$

However one pattern could help with a construction:

Pattern

The line set corresponding to

$$
\left\{\infty, 0,1, \alpha, \alpha+1, \alpha^{2}, \ldots, \alpha^{t-1}+\cdots+\alpha+1\right\}
$$

always yields a KM-arc for $q \leq 32$.
Unfortunately, this did not hold for $q=64, t=4$.

Finding $q=64, t=4$

However, if we generalize the pattern a bit

Pattern

For $q \leq 32$, there is always (a coset of) an additive subgoup of \mathbb{F}_{q}, we call it S, so that the line set corresponding to $\{\infty\} \cup S$ yields a KM-arc.
then it does extend to $q=64, t=4$. And that solves the existence question for $q \leq 64$.

Small q: an overview up to PГL-isomorphism

	t	2	4	8	16
\mathbf{q}	22				
4	1				
8	1	1			
16	2	$\mathbf{3}$	1		
32	6	$\mathbf{8}$	$\mathbf{3}$	1	
64	≥ 4	$\geq \mathbf{1}$	≥ 1	≥ 2	1

- [Penttila and Royle; 1994-1995] classified $\mathrm{t}=2$ for small q
- [Korchmáros and Mazzocca; 1990] found $\left.\log _{2}\left(\frac{q}{t}\right) \right\rvert\, \log _{2}(q)$
- [Gács and Weiner; 2003] found several sparse families (no impact)
- [Vandendriessche; 2011] found $t=q / 4$ and classified $t=q / 2$
- [Vandendriessche; 2015] classified $q \leq 32$ and found $q=64, t=4$

And beyond: $q=128, t=4$

Pattern

For $q \leq 64$, there is always (a coset of) an additive subgoup of \mathbb{F}_{q}, we call it S, so that the line set corresponding to $\{\infty\} \cup S$ yields a KM-arc.

The stabilizer of this KM-arc always has a subgroup of the form

$$
\left\langle x \mapsto\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\alpha & 0 & 1
\end{array}\right) x, x \mapsto\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\beta & 0 & 1
\end{array}\right) x\right\rangle .
$$

This makes it feasible to try to find a $\mathrm{KM}_{(128,4)}$-arc, since:

- up to isomorphism, only 4 cosets of additive subgroup exists
- there are only 2667 such groups in PГL
- for each lineset and group choice, the computation takes 1-2 hours This search is currently running (ETA somewhere next month)

Future Work

- What line sets can occur?
- What is the geometry behind the known examples?
- Can we classify $q=64$ with assumption on the stabilizer? (pending)
- Prove the linearity of the arcs
- Major goal: find a general family of examples that works for all q, t

Thank you for your attention!

