Applying block intersection polynomials to study graphs and designs

Leonard Soicher

Queen Mary University of London

CoCoA15, Colorado State University, Fort Collins, July 2015

The main equations

- Consider the system of equations:

$$
\begin{equation*}
\sum_{i=0}^{s}\binom{i}{j} n_{i}=\binom{s}{j} \lambda_{j} \quad(j=0, \ldots, t) \tag{1}
\end{equation*}
$$

where s, t are given non-negative integers, with $s \geq t$, the λ_{j} are given rational numbers (or symbolic expressions), and we are interested in solution vectors $\left[n_{0}, \ldots, n_{s}\right]$ of non-negative integers (or symbolic expressions for these solutions), or want to show that no such solutions exist.

The main equations

- Consider the system of equations:

$$
\begin{equation*}
\sum_{i=0}^{s}\binom{i}{j} n_{i}=\binom{s}{j} \lambda_{j} \quad(j=0, \ldots, t) \tag{1}
\end{equation*}
$$

where s, t are given non-negative integers, with $s \geq t$, the λ_{j} are given rational numbers (or symbolic expressions), and we are interested in solution vectors $\left[n_{0}, \ldots, n_{s}\right]$ of non-negative integers (or symbolic expressions for these solutions), or want to show that no such solutions exist.

- Systems of equations of this form arise in the study of block designs, especially the study of t-designs, and in the study of graphs with certain regularity properties.
- The block intersection polynomial is a tool to give useful theoretical, symbolic, or exact numerical information about the solutions to the system (1) when t is even and non-negative integers m_{0}, \ldots, m_{s} are specified for which $m_{i} \leq n_{i}$ must hold.
- The block intersection polynomial is a tool to give useful theoretical, symbolic, or exact numerical information about the solutions to the system (1) when t is even and non-negative integers m_{0}, \ldots, m_{s} are specified for which $m_{i} \leq n_{i}$ must hold.
- Exact linear or integer programming methods may also be used to study specific instances of the system (1), subject to $m_{i} \leq n_{i}$ or other linear inequalities.

The main definition

Definition

The block intersection polynomial

$$
B\left(x,\left[m_{0}, \ldots, m_{s}\right],\left[\lambda_{0}, \ldots, \lambda_{t}\right]\right)
$$

is defined to be

$$
\sum_{j=0}^{t}\binom{t}{j} P(-x, t-j)\left[P(s, j) \lambda_{j}-\sum_{i=j}^{s} P(i, j) m_{i}\right]
$$

where for k a non-negative integer,

$$
P(x, k):=x(x-1) \cdots(x-k+1) .
$$

The main theorem

Theorem (P.J. Cameron and S.)

Suppose $\left[n_{0}, \ldots, n_{s}\right]$ is an real-vector solution to the system of equations (1), where s, t are non-negative integers, with $s \geq t, \lambda_{0}, \ldots, \lambda_{t}$ and m_{0}, \ldots, m_{s} are real numbers, with $m_{i} \leq n_{i}$ for all i, and let

$$
B(x):=B\left(x,\left[m_{0}, \ldots, m_{s}\right],\left[\lambda_{0}, \ldots, \lambda_{t}\right]\right) .
$$

Then:
(1) $B(x)=\sum_{i=0}^{s} P(i-x, t)\left(n_{i}-m_{i}\right)$;

The main theorem

Theorem (P.J. Cameron and S.)

Suppose $\left[n_{0}, \ldots, n_{s}\right]$ is an real-vector solution to the system of equations (1), where s, t are non-negative integers, with $s \geq t, \lambda_{0}, \ldots, \lambda_{t}$ and m_{0}, \ldots, m_{s} are real numbers, with $m_{i} \leq n_{i}$ for all i, and let

$$
B(x):=B\left(x,\left[m_{0}, \ldots, m_{s}\right],\left[\lambda_{0}, \ldots, \lambda_{t}\right]\right) .
$$

Then:
(1) $B(x)=\sum_{i=0}^{s} P(i-x, t)\left(n_{i}-m_{i}\right)$;
(2) if t is even then $B(m) \geq 0$ for every integer m;

The main theorem

Theorem (P.J. Cameron and S.)

Suppose $\left[n_{0}, \ldots, n_{s}\right]$ is an real-vector solution to the system of equations (1), where s, t are non-negative integers, with $s \geq t, \lambda_{0}, \ldots, \lambda_{t}$ and m_{0}, \ldots, m_{s} are real numbers, with $m_{i} \leq n_{i}$ for all i, and let

$$
B(x):=B\left(x,\left[m_{0}, \ldots, m_{s}\right],\left[\lambda_{0}, \ldots, \lambda_{t}\right]\right) .
$$

Then:
(1) $B(x)=\sum_{i=0}^{s} P(i-x, t)\left(n_{i}-m_{i}\right)$;
(2) if t is even then $B(m) \geq 0$ for every integer m;
(3) if t is even and m is an integer then $B(m)=0$ if and only if $m_{i}=n_{i}$ for all $i \notin\{m, m+1, \ldots, m+t-1\}$, in which case $\left[n_{0}, \ldots, n_{s}\right]$ is uniquely determined by $\left[m_{0}, \ldots, m_{s}\right]$ and $\left[\lambda_{0}, \ldots, \lambda_{t}\right]$.

- Block intersection polynomials have found both theoretical and computational applications in the study of intersections of blocks in t-designs, and in the study of "high order intersection numbers".
- Block intersection polynomials have found both theoretical and computational applications in the study of intersections of blocks in t-designs, and in the study of "high order intersection numbers".
- These polynomials are implemented in my DESIGN package for GAP. They are used to provide an upper bound on the number of times a block can be repeated in a $t-(v, k, \lambda)$ design (given only $t, v, k, \lambda)$, and to provide a sometimes better bound for this for a resolvable $t-(v, k, \lambda)$ design with t even.
- Block intersection polynomials have found both theoretical and computational applications in the study of intersections of blocks in t-designs, and in the study of "high order intersection numbers".
- These polynomials are implemented in my DESIGN package for GAP. They are used to provide an upper bound on the number of times a block can be repeated in a $t-(v, k, \lambda)$ design (given only $t, v, k, \lambda)$, and to provide a sometimes better bound for this for a resolvable $t-(v, k, \lambda)$ design with t even.
- Block intersection polynomials are also used to provide constraints in the DESIGN package function for finding and classifying block designs with user-specified properties.
- Block intersection polynomials are also used in the study of cliques in edge-regular graphs.
- Block intersection polynomials are also used in the study of cliques in edge-regular graphs.
- They can also be applied to study induced subgraphs in a relation graph of a symmetric association scheme (but I have only done this so far with strongly regular graphs).
- Block intersection polynomials are also used in the study of cliques in edge-regular graphs.
- They can also be applied to study induced subgraphs in a relation graph of a symmetric association scheme (but I have only done this so far with strongly regular graphs).
- My aim in this talk is to give a simplified introduction to block intersection polynomials, focussing on applications to cliques in edge-regular graphs, in the hope that you will become interested to apply these polynomials in your research.
- Block intersection polynomials are also used in the study of cliques in edge-regular graphs.
- They can also be applied to study induced subgraphs in a relation graph of a symmetric association scheme (but I have only done this so far with strongly regular graphs).
- My aim in this talk is to give a simplified introduction to block intersection polynomials, focussing on applications to cliques in edge-regular graphs, in the hope that you will become interested to apply these polynomials in your research.
- All graphs in this talk are finite, undirected, and have no loops or multiple edges.

The main way the main equations arise

- Let Γ be a graph, and let S and Q be given vertex-subsets of Γ, with $s:=|S|$. We shall be interested in the number n_{i} of vertices in Q adjacent to exactly i vertices in $S(i=0, \ldots, s)$.

The main way the main equations arise

- Let Γ be a graph, and let S and Q be given vertex-subsets of Γ, with $s:=|S|$. We shall be interested in the number n_{i} of vertices in Q adjacent to exactly i vertices in $S(i=0, \ldots, s)$.
- For $T \subseteq S$, define λ_{T} to be the number of vertices in Q adjacent to every vertex in T, and for $0 \leq j \leq s$, define

$$
\lambda_{j}:=\binom{s}{j}^{-1} \sum_{T \subseteq S,|T|=j} \lambda_{T} .
$$

The main way the main equations arise

- Let Γ be a graph, and let S and Q be given vertex-subsets of Γ, with $s:=|S|$. We shall be interested in the number n_{i} of vertices in Q adjacent to exactly i vertices in $S(i=0, \ldots, s)$.
- For $T \subseteq S$, define λ_{T} to be the number of vertices in Q adjacent to every vertex in T, and for $0 \leq j \leq s$, define

$$
\lambda_{j}:=\binom{s}{j}^{-1} \sum_{T \subseteq S,|T|=j} \lambda_{T} .
$$

- In other words, λ_{j} is the average, over the j-subsets T of S, of the number of vertices in Q adjacent to all the vertices in T.

The main way the main equations arise

- Let Γ be a graph, and let S and Q be given vertex-subsets of Γ, with $s:=|S|$. We shall be interested in the number n_{i} of vertices in Q adjacent to exactly i vertices in $S(i=0, \ldots, s)$.
- For $T \subseteq S$, define λ_{T} to be the number of vertices in Q adjacent to every vertex in T, and for $0 \leq j \leq s$, define

$$
\lambda_{j}:=\binom{s}{j}^{-1} \sum_{T \subseteq S,|T|=j} \lambda_{T} .
$$

- In other words, λ_{j} is the average, over the j-subsets T of S, of the number of vertices in Q adjacent to all the vertices in T.
- In many, but not all, applications, λ_{T} is constant over the j-subsets T of S, in which case, λ_{j} is simply this constant.

By counting in two ways the number of ordered pairs (T, q) where T is a j-subset of S and q is a vertex in Q adjacent to every vertex in T, we obtain:

$$
\sum_{i=0}^{s}\binom{i}{j} n_{i}=\binom{s}{j} \lambda_{j}
$$

where n_{i} is the number of vertices in Q adjacent to exactly i vertices in S.

Example

Let Γ be an edge-regular graph with parameters (v, k, λ); that is to say that Γ has exactly v vertices, is regular of valency k, and every edge lies in exactly λ triangles.

Example

Let Γ be an edge-regular graph with parameters (v, k, λ); that is to say that Γ has exactly v vertices, is regular of valency k, and every edge lies in exactly λ triangles.

Now suppose that S an s-clique of Γ (i.e. an s-set of pairwise adjacent vertices), with $s \geq 2$, and let $Q:=V(\Gamma) \backslash S$. Then

$$
\lambda_{0}=|Q|=v-s, \quad \lambda_{1}=k-s+1, \quad \lambda_{2}=\lambda-s+2,
$$

and for $j=0,1,2$ we have:

$$
\sum_{i=0}^{s}\binom{i}{j} n_{i}=\binom{s}{j} \lambda_{j}
$$

where n_{i} is the number of vertices in Q adjacent to exactly i vertices in S.

Example

Let Γ be the incidence graph of a $t-(v, k, \lambda)$ design, let S be a subset of the set of point-vertices of Γ, with $s:=|S| \geq t$, and let Q be the set of all block-vertices of Γ.

Example

Let Γ be the incidence graph of a $t-(v, k, \lambda)$ design, let S be a subset of the set of point-vertices of Γ, with $s:=|S| \geq t$, and let Q be the set of all block-vertices of Γ.

Then for $0 \leq j \leq t$,

$$
\lambda_{j}=\lambda\binom{v-j}{t-j} /\binom{k-j}{t-j},
$$

and

$$
\sum_{i=0}^{s}\binom{i}{j} n_{i}=\binom{s}{j} \lambda_{j}
$$

where n_{i} is is the number of blocks of the design incident to (or intersecting in) exactly i of the points of S.

Example

Let Γ be the incidence graph of a $t-(v, k, \lambda)$ design, let S be a subset of the set of point-vertices of Γ, with $s:=|S| \geq t$, and let Q be the set of all block-vertices of Γ.

Then for $0 \leq j \leq t$,

$$
\lambda_{j}=\lambda\binom{v-j}{t-j} /\binom{k-j}{t-j}
$$

and

$$
\sum_{i=0}^{s}\binom{i}{j} n_{i}=\binom{s}{j} \lambda_{j}
$$

where n_{i} is is the number of blocks of the design incident to (or intersecting in) exactly i of the points of S.

Note that if S is the point-set of a block of multiplicity at least m, then $n_{s} \geq m$.

Cliques in edge-regular graphs

I will now focus on studying cliques in edge-regular graphs via block intersection polynomials.

Cliques in edge-regular graphs

I will now focus on studying cliques in edge-regular graphs via block intersection polynomials.

Definition

A regular clique, or more specifically, an m-regular clique in a graph Γ is a non-empty clique S such that every vertex of Γ not in S is adjacent to exactly m vertices of S, for some constant $m>0$.

Cliques in edge-regular graphs

I will now focus on studying cliques in edge-regular graphs via block intersection polynomials.

Definition

A regular clique, or more specifically, an m-regular clique in a graph Γ is a non-empty clique S such that every vertex of Γ not in S is adjacent to exactly m vertices of S, for some constant $m>0$.

Definition

A quasiregular clique, or more specifically, an m-quasiregular clique in a graph Γ is a clique S of size at least 2 , such that every vertex of Γ not in S is adjacent to exactly m or $m+1$ vertices of S, for some constant $m \geq 0$.

Applying the previous theorem of Cameron and S., we obtain:
Theorem
Let Γ be an edge-regular graph with parameters (v, k, λ), let S be an s-clique of Γ, with $s \geq 2$, and let

$$
\begin{gathered}
B(x):=B\left(x,\left[0^{s+1}\right],[v-s, k-s+1, \lambda-s+2]\right) \\
=x(x+1)(v-s)-2 x s(k-s+1)+s(s-1)(\lambda-s+2) .
\end{gathered}
$$

Then:

Applying the previous theorem of Cameron and S., we obtain:
Theorem
Let Γ be an edge-regular graph with parameters (v, k, λ), let S be an s-clique of Γ, with $s \geq 2$, and let

$$
\begin{gathered}
B(x):=B\left(x,\left[0^{s+1}\right],[v-s, k-s+1, \lambda-s+2]\right) \\
=x(x+1)(v-s)-2 x s(k-s+1)+s(s-1)(\lambda-s+2) .
\end{gathered}
$$

Then:
(1) $B(m) \geq 0$ for every integer m;

Applying the previous theorem of Cameron and S., we obtain:

Theorem

Let Γ be an edge-regular graph with parameters (v, k, λ), let S be an s-clique of Γ, with $s \geq 2$, and let

$$
\begin{gathered}
B(x):=B\left(x,\left[0^{s+1}\right],[v-s, k-s+1, \lambda-s+2]\right) \\
=x(x+1)(v-s)-2 x s(k-s+1)+s(s-1)(\lambda-s+2) .
\end{gathered}
$$

Then:
(1) $B(m) \geq 0$ for every integer m;
(2) if m is a non-negative integer then $B(m)=0$ if and only if S is m-quasiregular (in which case the number of vertices outside S adjacent to exactly m vertices in S is $B(m+1) / 2)$;

Applying the previous theorem of Cameron and S., we obtain:

Theorem

Let Γ be an edge-regular graph with parameters (v, k, λ), let S be an s-clique of Γ, with $s \geq 2$, and let

$$
\begin{gathered}
B(x):=B\left(x,\left[0^{s+1}\right],[v-s, k-s+1, \lambda-s+2]\right) \\
=x(x+1)(v-s)-2 x s(k-s+1)+s(s-1)(\lambda-s+2) .
\end{gathered}
$$

Then:
(1) $B(m) \geq 0$ for every integer m;
(2) if m is a non-negative integer then $B(m)=0$ if and only if S is m-quasiregular (in which case the number of vertices outside S adjacent to exactly m vertices in S is $B(m+1) / 2)$;
(3) if m is a positive integer then $B(m-1)=B(m)=0$ if and only if S is m-regular.

Example

A.A. Makhnev (2011) used block intersection polynomials to study cliques in certain highly regular graphs. In this work, he observed that when
$v=K((K-1)(R-1)+\alpha) / \alpha, k=(K-1) R, \lambda=K-2+(R-1)(\alpha-1)$, for some integers $R, K>1$ and $\alpha>0$, we have

$$
\begin{aligned}
& B\left(x,\left[0^{K+1}\right],[v-K, k-K+1, \lambda-K+2]\right) \\
= & {\left[\alpha^{-1} K(K-1)(R-1)\right](x-(\alpha-1))(x-\alpha), }
\end{aligned}
$$

to show that in any edge-regular graph having the same (v, k, λ) as a pseudo-geometric strongly regular graph, each K-clique is α-regular.

Generalisation of a result of Neumaier

In S. (2015), I applied block intersection polynomials to prove the following theorem, which generalises a result of Neumaier (1981) on regular cliques in edge-regular graphs.

Generalisation of a result of Neumaier

In S. (2015), I applied block intersection polynomials to prove the following theorem, which generalises a result of Neumaier (1981) on regular cliques in edge-regular graphs.

Definition

The size of a largest clique in a graph Γ is called the clique number of Γ, and is denoted by $\omega(\Gamma)$.

Generalisation of a result of Neumaier

In S. (2015), I applied block intersection polynomials to prove the following theorem, which generalises a result of Neumaier (1981) on regular cliques in edge-regular graphs.

Definition

The size of a largest clique in a graph Γ is called the clique number of Γ, and is denoted by $\omega(\Gamma)$.

Theorem

Suppose Γ is an edge-regular graph, not complete multipartite, which has an m-quasiregular s-clique. Then for all edge-regular graphs Δ with the same parameters (v, k, λ) as Γ :

Generalisation of a result of Neumaier

In S. (2015), I applied block intersection polynomials to prove the following theorem, which generalises a result of Neumaier (1981) on regular cliques in edge-regular graphs.

Definition

The size of a largest clique in a graph Γ is called the clique number of Γ, and is denoted by $\omega(\Gamma)$.

Theorem

Suppose 「 is an edge-regular graph, not complete multipartite, which has an m-quasiregular s-clique. Then for all edge-regular graphs Δ with the same parameters (v, k, λ) as Γ :
(1) $\omega(\Delta) \leq s$, so in particular, $\omega(\Gamma)=s$;

Generalisation of a result of Neumaier

In S. (2015), I applied block intersection polynomials to prove the following theorem, which generalises a result of Neumaier (1981) on regular cliques in edge-regular graphs.

Definition

The size of a largest clique in a graph Γ is called the clique number of Γ, and is denoted by $\omega(\Gamma)$.

Theorem

Suppose 「 is an edge-regular graph, not complete multipartite, which has an m-quasiregular s-clique. Then for all edge-regular graphs Δ with the same parameters (v, k, λ) as Γ :
(1) $\omega(\Delta) \leq s$, so in particular, $\omega(\Gamma)=s$;
(2) all quasiregular cliques in Δ are m-quasiregular cliques;

Generalisation of a result of Neumaier

In S. (2015), I applied block intersection polynomials to prove the following theorem, which generalises a result of Neumaier (1981) on regular cliques in edge-regular graphs.

Definition

The size of a largest clique in a graph Γ is called the clique number of Γ, and is denoted by $\omega(\Gamma)$.

Theorem

Suppose 「 is an edge-regular graph, not complete multipartite, which has an m-quasiregular s-clique. Then for all edge-regular graphs Δ with the same parameters (v, k, λ) as Γ :
(1) $\omega(\Delta) \leq s$, so in particular, $\omega(\Gamma)=s$;
(2) all quasiregular cliques in Δ are m-quasiregular cliques;
(3) the quasiregular cliques in Δ are precisely the cliques of size s (although Δ may have no cliques of size s).

Bounding the clique number of an edge-regular graph

- In S. $(2010,2015)$ I discuss the use of block intersection polynomials to obtain an upper bound on the clique number of an edge-regular graph 「 with given parameters (v, k, λ). I will illustrate this by an example, and show how further information can be extracted.

Bounding the clique number of an edge-regular graph

- In S. $(2010,2015)$ I discuss the use of block intersection polynomials to obtain an upper bound on the clique number of an edge-regular graph 「 with given parameters (v, k, λ). I will illustrate this by an example, and show how further information can be extracted.
- The parameters with smallest v for which the existence of a strongly regular graph is unknown are

$$
(v, k, \lambda, \mu)=(65,32,15,16)
$$

Bounding the clique number of an edge-regular graph

- In S. $(2010,2015)$ I discuss the use of block intersection polynomials to obtain an upper bound on the clique number of an edge-regular graph 「 with given parameters (v, k, λ). I will illustrate this by an example, and show how further information can be extracted.
- The parameters with smallest v for which the existence of a strongly regular graph is unknown are

$$
(v, k, \lambda, \mu)=(65,32,15,16)
$$

- A strongly regular graph with these parameters would have least eigenvalue $(-1-\sqrt{65}) / 2$, and the Delsarte-Hoffman bound for the clique number would be $8=\lfloor 1+64 /(1+\sqrt{65})\rfloor$.

Bounding the clique number of an edge-regular graph

- In S. $(2010,2015)$ I discuss the use of block intersection polynomials to obtain an upper bound on the clique number of an edge-regular graph 「 with given parameters (v, k, λ). I will illustrate this by an example, and show how further information can be extracted.
- The parameters with smallest v for which the existence of a strongly regular graph is unknown are

$$
(v, k, \lambda, \mu)=(65,32,15,16)
$$

- A strongly regular graph with these parameters would have least eigenvalue $(-1-\sqrt{65}) / 2$, and the Delsarte-Hoffman bound for the clique number would be $8=\lfloor 1+64 /(1+\sqrt{65})\rfloor$.
- However, $B\left(3,\left[0^{9}\right], 65-8,32-7,15-6\right)=-12<0$, and so no edge-regular graph with parameters $(65,32,15)$ can have a clique of size 8.

On 7-cliques in an $\operatorname{SRG}(65,32,15,16)$

It may be fruitful to search for a strongly regular graph Γ with parameters $(65,32,15,16)$ and containing a clique S of size 7 .

On 7-cliques in an $\operatorname{SRG}(65,32,15,16)$

It may be fruitful to search for a strongly regular graph Γ with parameters $(65,32,15,16)$ and containing a clique S of size 7 .

One could split this into subcases depending on the number n_{0} of vertices in Γ adjacent to no vertex in S. To eliminate $n_{0} \geq 3$, we calculate the block intersection polynomial

$$
B(x):=B\left(x,\left[3,0^{7}\right],[58,26,10]\right)=55 x^{2}-309 x+420 .
$$

On 7-cliques in an $\operatorname{SRG}(65,32,15,16)$

It may be fruitful to search for a strongly regular graph Γ with parameters $(65,32,15,16)$ and containing a clique S of size 7 .

One could split this into subcases depending on the number n_{0} of vertices in Γ adjacent to no vertex in S. To eliminate $n_{0} \geq 3$, we calculate the block intersection polynomial

$$
B(x):=B\left(x,\left[3,0^{7}\right],[58,26,10]\right)=55 x^{2}-309 x+420 .
$$

Then $B(3)=-12$, and so $n_{0}<3$. To consider $n_{0}=2$, we calculate

$$
B(x):=B\left(x,\left[2,0^{7}\right],[58,26,10]\right)=56(x-3)(x-5 / 2) .
$$

On 7-cliques in an $\operatorname{SRG}(65,32,15,16)$

It may be fruitful to search for a strongly regular graph 「 with parameters $(65,32,15,16)$ and containing a clique S of size 7 .

One could split this into subcases depending on the number n_{0} of vertices in Γ adjacent to no vertex in S. To eliminate $n_{0} \geq 3$, we calculate the block intersection polynomial

$$
B(x):=B\left(x,\left[3,0^{7}\right],[58,26,10]\right)=55 x^{2}-309 x+420 .
$$

Then $B(3)=-12$, and so $n_{0}<3$. To consider $n_{0}=2$, we calculate

$$
B(x):=B\left(x,\left[2,0^{7}\right],[58,26,10]\right)=56(x-3)(x-5 / 2) .
$$

Then $B(3)=0$, and so, if there are two distinct vertices a, b of Γ adjacent to no vertex in some 7 -clique S, then every vertex of Γ not in $S \cup\{a, b\}$ is adjacent to just 3 or 4 vertices of S (with exactly $B(4) / 2=42$ vertices adjacent to exactly 3 vertices of S).

For further results, details, proofs, applications, and implementations, see:

- P.J. Cameron and L.H. Soicher, Block intersection polynomials, Bull. London Math. Soc. 39 (2007), 559-564.
- A.A. Makhnev, On cliques in isoregular graphs, Doklady Mathematics 84 (2011), 491-494.
- L.H. Soicher, More on block intersection polynomials and new applications to graphs and block designs, J. Comb. Theory, Ser. A 117 (2010), 799-809.
- L.H. Soicher, The DESIGN package for GAP, Version 1.6, 2011, http://designtheory.org/software/gap_design/
- L.H. Soicher, On cliques in edge-regular graphs, J. Algebra 421 (2015), 260-267.

