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The main equations

Consider the system of equations:

s∑
i=0

(
i

j

)
ni =

(
s

j

)
λj (j = 0, . . . , t) (1)

where s, t are given non-negative integers, with s ≥ t, the λj are
given rational numbers (or symbolic expressions), and we are
interested in solution vectors [n0, . . . , ns ] of non-negative integers (or
symbolic expressions for these solutions), or want to show that no
such solutions exist.

Systems of equations of this form arise in the study of block designs,
especially the study of t-designs, and in the study of graphs with
certain regularity properties.
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The block intersection polynomial is a tool to give useful theoretical,
symbolic, or exact numerical information about the solutions to the
system (1) when t is even and non-negative integers m0, . . . ,ms are
specified for which mi ≤ ni must hold.

Exact linear or integer programming methods may also be used to
study specific instances of the system (1), subject to mi ≤ ni or other
linear inequalities.
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The main definition

Definition

The block intersection polynomial

B(x , [m0, . . . ,ms ], [λ0, . . . , λt ])

is defined to be

t∑
j=0

(
t

j

)
P(−x , t − j)[P(s, j)λj −

s∑
i=j

P(i , j)mi ],

where for k a non-negative integer,

P(x , k) := x(x − 1) · · · (x − k + 1).
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The main theorem

Theorem (P.J. Cameron and S.)

Suppose [n0, . . . , ns ] is an real-vector solution to the system of equations
(1), where s, t are non-negative integers, with s ≥ t, λ0, . . . , λt and
m0, . . . ,ms are real numbers, with mi ≤ ni for all i , and let

B(x) := B(x , [m0, . . . ,ms ], [λ0, . . . , λt ]).

Then:

1 B(x) =
∑s

i=0 P(i − x , t)(ni −mi );

2 if t is even then B(m) ≥ 0 for every integer m;

3 if t is even and m is an integer then B(m) = 0 if and only if mi = ni

for all i 6∈ {m,m + 1, . . . ,m + t − 1}, in which case [n0, . . . , ns ] is
uniquely determined by [m0, . . . ,ms ] and [λ0, . . . , λt ].

Leonard Soicher (QMUL) Block intersection polynomials CoCoA15 5 / 18



The main theorem

Theorem (P.J. Cameron and S.)

Suppose [n0, . . . , ns ] is an real-vector solution to the system of equations
(1), where s, t are non-negative integers, with s ≥ t, λ0, . . . , λt and
m0, . . . ,ms are real numbers, with mi ≤ ni for all i , and let

B(x) := B(x , [m0, . . . ,ms ], [λ0, . . . , λt ]).

Then:

1 B(x) =
∑s

i=0 P(i − x , t)(ni −mi );

2 if t is even then B(m) ≥ 0 for every integer m;

3 if t is even and m is an integer then B(m) = 0 if and only if mi = ni

for all i 6∈ {m,m + 1, . . . ,m + t − 1}, in which case [n0, . . . , ns ] is
uniquely determined by [m0, . . . ,ms ] and [λ0, . . . , λt ].

Leonard Soicher (QMUL) Block intersection polynomials CoCoA15 5 / 18



The main theorem

Theorem (P.J. Cameron and S.)

Suppose [n0, . . . , ns ] is an real-vector solution to the system of equations
(1), where s, t are non-negative integers, with s ≥ t, λ0, . . . , λt and
m0, . . . ,ms are real numbers, with mi ≤ ni for all i , and let

B(x) := B(x , [m0, . . . ,ms ], [λ0, . . . , λt ]).

Then:

1 B(x) =
∑s

i=0 P(i − x , t)(ni −mi );

2 if t is even then B(m) ≥ 0 for every integer m;

3 if t is even and m is an integer then B(m) = 0 if and only if mi = ni

for all i 6∈ {m,m + 1, . . . ,m + t − 1}, in which case [n0, . . . , ns ] is
uniquely determined by [m0, . . . ,ms ] and [λ0, . . . , λt ].

Leonard Soicher (QMUL) Block intersection polynomials CoCoA15 5 / 18



Block intersection polynomials have found both theoretical and
computational applications in the study of intersections of blocks in
t-designs, and in the study of “high order intersection numbers”.

These polynomials are implemented in my DESIGN package for GAP.
They are used to provide an upper bound on the number of times a
block can be repeated in a t-(v , k , λ) design (given only t, v , k, λ),
and to provide a sometimes better bound for this for a resolvable
t-(v , k, λ) design with t even.

Block intersection polynomials are also used to provide constraints in
the DESIGN package function for finding and classifying block designs
with user-specified properties.
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Block intersection polynomials are also used in the study of cliques in
edge-regular graphs.

They can also be applied to study induced subgraphs in a relation
graph of a symmetric association scheme (but I have only done this
so far with strongly regular graphs).

My aim in this talk is to give a simplified introduction to block
intersection polynomials, focussing on applications to cliques in
edge-regular graphs, in the hope that you will become interested to
apply these polynomials in your research.

All graphs in this talk are finite, undirected, and have no loops or
multiple edges.
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The main way the main equations arise

Let Γ be a graph, and let S and Q be given vertex-subsets of Γ, with
s := |S |. We shall be interested in the number ni of vertices in Q
adjacent to exactly i vertices in S (i = 0, . . . , s).

For T ⊆ S , define λT to be the number of vertices in Q adjacent to
every vertex in T , and for 0 ≤ j ≤ s, define

λj :=

(
s

j

)−1 ∑
T⊆S ,|T |=j

λT .

In other words, λj is the average, over the j-subsets T of S , of the
number of vertices in Q adjacent to all the vertices in T .

In many, but not all, applications, λT is constant over the j-subsets T
of S , in which case, λj is simply this constant.
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By counting in two ways the number of ordered pairs (T , q) where T is a
j-subset of S and q is a vertex in Q adjacent to every vertex in T , we
obtain:

s∑
i=0

(
i

j

)
ni =

(
s

j

)
λj ,

where ni is the number of vertices in Q adjacent to exactly i vertices in S .
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Example

Let Γ be an edge-regular graph with parameters (v , k , λ); that is to say
that Γ has exactly v vertices, is regular of valency k , and every edge lies in
exactly λ triangles.

Now suppose that S an s-clique of Γ (i.e. an s-set of pairwise adjacent
vertices), with s ≥ 2, and let Q := V (Γ) \ S . Then

λ0 = |Q| = v − s, λ1 = k − s + 1, λ2 = λ− s + 2,

and for j = 0, 1, 2 we have:

s∑
i=0

(
i

j

)
ni =

(
s

j

)
λj ,

where ni is the number of vertices in Q adjacent to exactly i vertices in S .
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Example

Let Γ be the incidence graph of a t-(v , k , λ) design, let S be a subset of
the set of point-vertices of Γ, with s := |S | ≥ t, and let Q be the set of all
block-vertices of Γ.

Then for 0 ≤ j ≤ t,

λj = λ

(
v − j

t − j

)
/

(
k − j

t − j

)
,

and
s∑

i=0

(
i

j

)
ni =

(
s

j

)
λj ,

where ni is is the number of blocks of the design incident to (or
intersecting in) exactly i of the points of S .

Note that if S is the point-set of a block of multiplicity at least m, then
ns ≥ m.
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Cliques in edge-regular graphs

I will now focus on studying cliques in edge-regular graphs via block
intersection polynomials.

Definition

A regular clique, or more specifically, an m-regular clique in a graph Γ is a
non-empty clique S such that every vertex of Γ not in S is adjacent to
exactly m vertices of S , for some constant m > 0.

Definition

A quasiregular clique, or more specifically, an m-quasiregular clique in a
graph Γ is a clique S of size at least 2, such that every vertex of Γ not in S
is adjacent to exactly m or m + 1 vertices of S , for some constant m ≥ 0.
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Applying the previous theorem of Cameron and S., we obtain:

Theorem

Let Γ be an edge-regular graph with parameters (v , k , λ), let S be an
s-clique of Γ, with s ≥ 2, and let

B(x) := B(x , [0s+1], [v − s, k − s + 1, λ− s + 2])

= x(x + 1)(v − s)− 2xs(k − s + 1) + s(s − 1)(λ− s + 2).

Then:

1 B(m) ≥ 0 for every integer m;

2 if m is a non-negative integer then B(m) = 0 if and only if S is
m-quasiregular (in which case the number of vertices outside S
adjacent to exactly m vertices in S is B(m + 1)/2);

3 if m is a positive integer then B(m − 1) = B(m) = 0 if and only if S
is m-regular.
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Example

A.A. Makhnev (2011) used block intersection polynomials to study cliques
in certain highly regular graphs. In this work, he observed that when

v = K ((K −1)(R−1) +α)/α, k = (K −1)R, λ = K −2 + (R−1)(α−1),

for some integers R,K > 1 and α > 0, we have

B(x , [0K+1], [v − K , k − K + 1, λ− K + 2])

= [α−1K (K − 1)(R − 1)](x − (α− 1))(x − α),

to show that in any edge-regular graph having the same (v , k, λ) as a
pseudo-geometric strongly regular graph, each K -clique is α-regular.
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Generalisation of a result of Neumaier
In S. (2015), I applied block intersection polynomials to prove the
following theorem, which generalises a result of Neumaier (1981) on
regular cliques in edge-regular graphs.

Definition

The size of a largest clique in a graph Γ is called the clique number of Γ,
and is denoted by ω(Γ).

Theorem

Suppose Γ is an edge-regular graph, not complete multipartite, which has
an m-quasiregular s-clique. Then for all edge-regular graphs ∆ with the
same parameters (v , k , λ) as Γ:

1 ω(∆) ≤ s, so in particular, ω(Γ) = s;

2 all quasiregular cliques in ∆ are m-quasiregular cliques;

3 the quasiregular cliques in ∆ are precisely the cliques of size s
(although ∆ may have no cliques of size s).
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an m-quasiregular s-clique. Then for all edge-regular graphs ∆ with the
same parameters (v , k , λ) as Γ:

1 ω(∆) ≤ s, so in particular, ω(Γ) = s;

2 all quasiregular cliques in ∆ are m-quasiregular cliques;

3 the quasiregular cliques in ∆ are precisely the cliques of size s
(although ∆ may have no cliques of size s).
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Bounding the clique number of an edge-regular graph

In S. (2010, 2015) I discuss the use of block intersection polynomials
to obtain an upper bound on the clique number of an edge-regular
graph Γ with given parameters (v , k , λ). I will illustrate this by an
example, and show how further information can be extracted.

The parameters with smallest v for which the existence of a strongly
regular graph is unknown are

(v , k , λ, µ) = (65, 32, 15, 16).

A strongly regular graph with these parameters would have least
eigenvalue (−1−

√
65)/2, and the Delsarte-Hoffman bound for the

clique number would be 8 = b1 + 64/(1 +
√

65)c.

However, B(3, [09], 65− 8, 32− 7, 15− 6) = −12 < 0, and so no
edge-regular graph with parameters (65, 32, 15) can have a clique of
size 8.
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On 7-cliques in an SRG(65, 32, 15, 16)

It may be fruitful to search for a strongly regular graph Γ with parameters
(65, 32, 15, 16) and containing a clique S of size 7.

One could split this into subcases depending on the number n0 of vertices
in Γ adjacent to no vertex in S . To eliminate n0 ≥ 3, we calculate the
block intersection polynomial

B(x) := B(x , [3, 07], [58, 26, 10]) = 55x2 − 309x + 420.

Then B(3) = −12, and so n0 < 3. To consider n0 = 2, we calculate

B(x) := B(x , [2, 07], [58, 26, 10]) = 56(x − 3)(x − 5/2).

Then B(3) = 0, and so, if there are two distinct vertices a, b of Γ adjacent
to no vertex in some 7-clique S , then every vertex of Γ not in S ∪ {a, b} is
adjacent to just 3 or 4 vertices of S (with exactly B(4)/2 = 42 vertices
adjacent to exactly 3 vertices of S).

Leonard Soicher (QMUL) Block intersection polynomials CoCoA15 17 / 18



On 7-cliques in an SRG(65, 32, 15, 16)

It may be fruitful to search for a strongly regular graph Γ with parameters
(65, 32, 15, 16) and containing a clique S of size 7.

One could split this into subcases depending on the number n0 of vertices
in Γ adjacent to no vertex in S . To eliminate n0 ≥ 3, we calculate the
block intersection polynomial

B(x) := B(x , [3, 07], [58, 26, 10]) = 55x2 − 309x + 420.

Then B(3) = −12, and so n0 < 3. To consider n0 = 2, we calculate

B(x) := B(x , [2, 07], [58, 26, 10]) = 56(x − 3)(x − 5/2).

Then B(3) = 0, and so, if there are two distinct vertices a, b of Γ adjacent
to no vertex in some 7-clique S , then every vertex of Γ not in S ∪ {a, b} is
adjacent to just 3 or 4 vertices of S (with exactly B(4)/2 = 42 vertices
adjacent to exactly 3 vertices of S).

Leonard Soicher (QMUL) Block intersection polynomials CoCoA15 17 / 18



On 7-cliques in an SRG(65, 32, 15, 16)

It may be fruitful to search for a strongly regular graph Γ with parameters
(65, 32, 15, 16) and containing a clique S of size 7.

One could split this into subcases depending on the number n0 of vertices
in Γ adjacent to no vertex in S . To eliminate n0 ≥ 3, we calculate the
block intersection polynomial

B(x) := B(x , [3, 07], [58, 26, 10]) = 55x2 − 309x + 420.

Then B(3) = −12, and so n0 < 3. To consider n0 = 2, we calculate

B(x) := B(x , [2, 07], [58, 26, 10]) = 56(x − 3)(x − 5/2).

Then B(3) = 0, and so, if there are two distinct vertices a, b of Γ adjacent
to no vertex in some 7-clique S , then every vertex of Γ not in S ∪ {a, b} is
adjacent to just 3 or 4 vertices of S (with exactly B(4)/2 = 42 vertices
adjacent to exactly 3 vertices of S).

Leonard Soicher (QMUL) Block intersection polynomials CoCoA15 17 / 18



On 7-cliques in an SRG(65, 32, 15, 16)

It may be fruitful to search for a strongly regular graph Γ with parameters
(65, 32, 15, 16) and containing a clique S of size 7.

One could split this into subcases depending on the number n0 of vertices
in Γ adjacent to no vertex in S . To eliminate n0 ≥ 3, we calculate the
block intersection polynomial

B(x) := B(x , [3, 07], [58, 26, 10]) = 55x2 − 309x + 420.

Then B(3) = −12, and so n0 < 3. To consider n0 = 2, we calculate

B(x) := B(x , [2, 07], [58, 26, 10]) = 56(x − 3)(x − 5/2).

Then B(3) = 0, and so, if there are two distinct vertices a, b of Γ adjacent
to no vertex in some 7-clique S , then every vertex of Γ not in S ∪ {a, b} is
adjacent to just 3 or 4 vertices of S (with exactly B(4)/2 = 42 vertices
adjacent to exactly 3 vertices of S).

Leonard Soicher (QMUL) Block intersection polynomials CoCoA15 17 / 18



For further results, details, proofs, applications, and implementations, see:

P.J. Cameron and L.H. Soicher, Block intersection polynomials, Bull.
London Math. Soc. 39 (2007), 559–564.

A.A. Makhnev, On cliques in isoregular graphs, Doklady Mathematics
84 (2011), 491–494.

L.H. Soicher, More on block intersection polynomials and new
applications to graphs and block designs, J. Comb. Theory, Ser. A
117 (2010), 799–809.

L.H. Soicher, The DESIGN package for GAP, Version 1.6, 2011,
http://designtheory.org/software/gap design/

L.H. Soicher, On cliques in edge-regular graphs, J. Algebra 421
(2015), 260–267.

Leonard Soicher (QMUL) Block intersection polynomials CoCoA15 18 / 18


