On non-bipartite distance-regular graphs with valency k and smallest eigenvalue not larger than $-k / 2$

J. Koolen*
*School of Mathematical Sciences
USTC
(Based on joint work with Zhi Qiao)
CoCoA, July, 2015

Outline

(1) Defintions

- Distance-Regular Graphs
- Examples
(2) Smallest eigenvalue is not larger than $-k / 2$
- Examples
- A Valency Bound
- Diameter 2
- Diameter 3
(3) 3-Chromatic Distance-Regular Graphs
- 3-Chromatic Distance-Regular Graphs

4 Open Problems

- Open Problems

Outline

(1) Defintions

- Distance-Regular Graphs
- Examples
(2) Smallest eigenvalue is not larger than $-k / 2$
- Examples
- A Valency Bound
- Diameter 2
- Diameter 3
(3) 3-Chromatic Distance-Regular Graphs
- 3-Chromatic Distance-Regular Graphs
(4) Open Problems
- Open Problems

Defintion

Graph: $\Gamma=(V, E)$ where V vertex set, $E \subseteq\binom{V}{2}$ edge set.

- All graphs in this talk are simple.
- $x \sim y$ if $x y \in E$.
- $x \nsim y$ if $x y \notin E$.
- $d(x, y)$: length of a shortest path connecting x and y.
- $D(\Gamma)$ diameter (max distance in Γ)

Distance-regular graphs

Definition

$$
\text { - } \Gamma_{i}(x):=\{y \mid d(x, y)=i\}
$$

Distance-regular graphs

Definition

$$
\Gamma_{i}(x):=\{y \mid d(x, y)=i\}
$$

Definition

- A connected graph Γ is called distance-regular (DRG) if there are numbers $a_{i}, b_{i}, c_{i}(0 \leq i \leq D=D(\Gamma))$ s.t. if $d(x, y)=j$ then
- $\# \Gamma_{1}(y) \cap \Gamma_{j-1}(x)=c_{j}$
- $\# \Gamma_{1}(y) \cap \Gamma_{j}(x)=a_{j}$
- $\# \Gamma_{1}(y) \cap \Gamma_{j+1}(x)=b_{j}$

Properties

Γ : a distance-regular graph with diameter D.

- Γ is b_{0}-regular. ($k:=b_{0}$ is called its valency).

Properties

Γ : a distance-regular graph with diameter D.

- Γ is b_{0}-regular. ($k:=b_{0}$ is called its valency).
- $1=c_{1} \leq c_{2} \leq \ldots \leq c_{D}$.
- $b_{0} \geq b_{1} \geq \ldots \geq b_{D-1}$.

Outline

(1) Defintions

- Distance-Regular Graphs
- Examples
(2) Smallest eigenvalue is not larger than $-k / 2$
- Examples
- A Valency Bound
- Diameter 2
- Diameter 3
(3) 3-Chromatic Distance-Regular Graphs
- 3-Chromatic Distance-Regular Graphs
(4) Open Problems
- Open Problems

Hamming graphs

Definition

- $q \geq 2, n \geq 1$ integers.
- $Q=\{1, \ldots, q\}$
- Hamming graph $H(n, q)$ has vertex set Q^{n}
- $\mathbf{x} \sim \mathbf{y}$ if they differ in exactly one position.
- Diameter equals n.

Hamming graphs

Definition

- $q \geq 2, n \geq 1$ integers.
- $Q=\{1, \ldots, q\}$
- Hamming graph $H(n, q)$ has vertex set Q^{n}
- $\mathbf{x} \sim \mathbf{y}$ if they differ in exactly one position.
- Diameter equals n.
- $H(n, 2)=n$-cube .
- DRG with $c_{i}=i$.

Hamming graphs

Definition

- $q \geq 2, n \geq 1$ integers.
- $Q=\{1, \ldots, q\}$
- Hamming graph $H(n, q)$ has vertex set Q^{n}
- $\mathbf{x} \sim \mathbf{y}$ if they differ in exactly one position.
- Diameter equals n.
- $H(n, 2)=n$-cube .
- DRG with $c_{i}=i$.
- Gives an algebraic frame work to study codes, especially bounds on codes.
- For example the Delsarte linear programming bound and more recently the Schrijver bound.

Johnson graphs

Definition

- $1 \leq t \leq n$ integers.
- $N=\{1, \ldots, n\}$
- Johnson graph $J(n, t)$ has vertex set $\binom{N}{t}$
- $A \sim B$ if $\# A \cap B=t-1$.
- $J(n, t) \approx J(n, n-t)$, diameter $\min (t, n-t)$.
- DRG with $c_{i}=i^{2}$.
- Gives an algebraic frame work to study designs.

More examples

- Most of the known families of distance-regular graphs come from classical objects, for example:

More examples

- Most of the known families of distance-regular graphs come from classical objects, for example:
- Hamming graphs,
- Johnson graphs,
- Grassmann graphs,
- bilinear forms graphs,
- sesquilinear forms graphs,
- quadratic forms graphs,
- dual polar graphs (The vertices are the maximal totally isotropic subspaces on a vectorspace over a finite field with a fixed (non-degenerate) bilinear form)

More examples

- Most of the known families of distance-regular graphs come from classical objects, for example:
- Hamming graphs,
- Johnson graphs,
- Grassmann graphs,
- bilinear forms graphs,
- sesquilinear forms graphs,
- quadratic forms graphs,
- dual polar graphs (The vertices are the maximal totally isotropic subspaces on a vectorspace over a finite field with a fixed (non-degenerate) bilinear form)
- Distance-regular graphs gives a way to study these classical objects from a combinatorial view point.

Eigenvalues of graphs

- Let Γ be a graph.
- The adjacency matrix for Γ is the symmetric matrix A indexed by the vertices st. $A_{x y}=1$ if $x \sim y$, and 0 otherwise.
- The eigenvalues of A are called the eigenvalues of Γ.

Eigenvalues of graphs

- Let Γ be a graph.
- The adjacency matrix for Γ is the symmetric matrix A indexed by the vertices st. $A_{x y}=1$ if $x \sim y$, and 0 otherwise.
- The eigenvalues of A are called the eigenvalues of Γ.
- As A is a real symmetric matrix all its eigenvalues are real. We mainly will look at the smallest eigenvalue.

Outline

(1) Defintions

- Distance-Regular Graphs
- Examples
(2) Smallest eigenvalue is not larger than $-k / 2$
- Examples
- A Valency Bound
- Diameter 2
- Diameter 3
(3) 3-Chromatic Distance-Regular Graphs
- 3-Chromatic Distance-Regular Graphs
(4) Open Problems
- Open Problems

Examples

In this section, we study the non-bipartite distance-regular graphs with valency k and having a smallest eigenvalue not larger than $-k / 2$.

Examples

In this section, we study the non-bipartite distance-regular graphs with valency k and having a smallest eigenvalue not larger than $-k / 2$.

Examples

(1) The odd polygons with valency 2;
(2) The complete tripartite graphs $K_{t, t, t}$ with valency $2 t$ at least 2;
(3) The folded $(2 D+1)$-cubes with valency $2 D+1$ and diameter $D \geq 2$;
(9) The Odd graphs with valency k at least 3 ;
(0) The Hamming graphs $H(D, 3)$ with valency $2 D$ where $D \geq 2$;
(0) The dual polar graphs of type $B_{D}(2)$ with $D \geq 2$;
(0) The dual polar graphs of type ${ }^{2} A_{2 D-1}(2)$ with $D \geq 2$.

Conjecture

Conjecture

If $D>0$ is large enough, and the smallest eigenvalue is not larger than $-k / 2$, then Γ is a member of one of the seven families.

Outline

(1) Defintions

- Distance-Regular Graphs
- Examples
(2) Smallest eigenvalue is not larger than $-k / 2$
- Examples
- A Valency Bound
- Diameter 2
- Diameter 3
(3) 3-Chromatic Distance-Regular Graphs
- 3-Chromatic Distance-Regular GraphsOpen Problems
- Open Problems

Valency Bound

Theorem

For any real number $1>\alpha>0$ and any integer $D \geq 2$, the number of coconnected (i.e. the complement is connected) non-bipartite distance-regular graphs with valency k at least two and diameter D, having smallest eigenvalue $\theta_{\text {min }}$ not larger than $-\alpha k$, is finite.

Remarks

- Note that the regular complete t-partite graphs $K_{t \times s}(s, t$ positive integers at least 2) with valency $k=(t-1) s$ have smallest eigenvalue $-s=-k /(t-1)$.

Remarks

- Note that the regular complete t-partite graphs $K_{t \times s}(s, t$ positive integers at least 2) with valency $k=(t-1) s$ have smallest eigenvalue $-s=-k /(t-1)$.
- Note that there are infinitely many bipartite distance-regular graphs with diameter 3, for example the point-block incidence graphs of a projective plane of order q, where q is a prime power.

Remarks

- Note that the regular complete t-partite graphs $K_{t \times s}(s, t$ positive integers at least 2) with valency $k=(t-1) s$ have smallest eigenvalue $-s=-k /(t-1)$.
- Note that there are infinitely many bipartite distance-regular graphs with diameter 3 , for example the point-block incidence graphs of a projective plane of order q, where q is a prime power.
- The second largest eigenvalue for a distance-regular graphs behaves quite differently from its smallest eigenvalue. For example $J(n, D) n \geq 2 D \geq 4$, has valency $D(n-D)$, and second largest eigenvalue $(n-D-1)(D-1)-1$. So for fixed diameter D, there are infinitely many Johnson graphs $J(n, D)$ with second largest eigenvalue larger then $k / 2$.

Ingredients for the proof

Biggs' formula

- Let θ be an eigenvalue of Γ.
- Let $\mathbf{u}(\theta)=\left(u_{0}=1, u_{1}, \ldots, u_{D}\right)^{T}$ be the standard vector for θ.
- The u_{i} 's satisfy: $c_{i} u_{i-1}+a_{i} u_{i}+b_{i} u_{i+1}=\theta u_{i} \quad(0 \leq i \leq D)$ where $u_{-1}=u_{D+1}=0$.

Ingredients for the proof

Biggs' formula

- Let θ be an eigenvalue of Γ.
- Let $\mathbf{u}(\theta)=\left(u_{0}=1, u_{1}, \ldots, u_{D}\right)^{T}$ be the standard vector for θ.
- The u_{i} 's satisfy: $c_{i} u_{i-1}+a_{i} u_{i}+b_{i} u_{i+1}=\theta u_{i} \quad(0 \leq i \leq D)$ where $u_{-1}=u_{D+1}=0$.
- (Biggs' formula) mult $(\theta)=\frac{v}{\sum_{i=0}^{D} k_{i} u_{i}^{2}} \quad(v=\# V(\Gamma)$, $\left.k_{i}=\# \Gamma_{i}(x)\right)$

Ingedients for the proof, II

The next observation gives a bound on the valency k, given the multiplicity of an eigenvalue different from $\pm k$.

Ingedients for the proof, II

The next observation gives a bound on the valency k, given the multiplicity of an eigenvalue different from $\pm k$.

Godsil's observation

Let Γ be a coconnected distance-regular graph with valency k. Let m be the multiplicity of an eigenvalue of Γ distinct from $\pm k$. Then $k \leq(m-1)(m+2) / 2$.

Idea for the proof

- Let θ be the smallest eigenvalue of Γ.
- Let $\left(u_{0}, u_{1}, \ldots, u_{D}\right)$ be the standard vector for θ. Then $(-1)^{i} u_{i}>0$.

Idea for the proof

- Let θ be the smallest eigenvalue of Γ.
- Let $\left(u_{0}, u_{1}, \ldots, u_{D}\right)$ be the standard vector for θ. Then $(-1)^{i} u_{i}>0$.
- Now for all i either $\left|u_{i}\right|$ is large or c_{i} is large.

Idea for the proof

- Let θ be the smallest eigenvalue of Γ.
- Let $\left(u_{0}, u_{1}, \ldots, u_{D}\right)$ be the standard vector for θ. Then $(-1)^{i} u_{i}>0$.
- Now for all i either $\left|u_{i}\right|$ is large or c_{i} is large.
- Both will help to get a good bound for the multiplicity using Biggs' formula. The second one will give an upper bound for the vertices.

Idea for the proof

- Let θ be the smallest eigenvalue of Γ.
- Let $\left(u_{0}, u_{1}, \ldots, u_{D}\right)$ be the standard vector for θ. Then $(-1)^{i} u_{i}>0$.
- Now for all i either $\left|u_{i}\right|$ is large or c_{i} is large.
- Both will help to get a good bound for the multiplicity using Biggs' formula. The second one will give an upper bound for the vertices.
- Then we use Godsil's observation to bound k.

Outline

(1) Defintions

- Distance-Regular Graphs
- Examples
(2) Smallest eigenvalue is not larger than $-k / 2$
- Examples
- A Valency Bound
- Diameter 2
- Diameter 3
(3) 3-Chromatic Distance-Regular Graphs
- 3-Chromatic Distance-Regular Graphs
(4) Open Problems
- Open Problems

Coconnected

Let Γ be a distance-regular graph with valency $k \geq 2$ and smallest eigenvalue $\lambda_{\text {min }} \leq-k / 2$. It is easy to see that if the graph is coconnected then $a_{1} \leq 1$.

Now we give the classification for diameter 2.

Now we give the classification for diameter 2.

Diameter 2

(c) The pentagon with intersection array $\{2,1 ; 1,1\}$;
(2) The Petersen graph with intersection array $\{3,2 ; 1,1\}$;
(The folded 5 -cube with intersection array $\{5,4 ; 1,2\}$;
(1) The 3×3-grid with intersection array $\{4,2 ; 1,2\}$;
(0) The generalized quadrangle $G Q(2,2)$ with intersection array $\{6,4 ; 1,3\}$;
(6) The generalized quadrangle $G Q(2,4)$ with intersection array $\{10,8 ; 1,5\}$;
(-) A complete tripartite graph $K_{t, t, t}$ with $t \geq 2$, with intersection array $\{2 t, t-1 ; 1,2 t\}$;

Now we give the classification for diameter 2.

Diameter 2

(c) The pentagon with intersection array $\{2,1 ; 1,1\}$;
(2) The Petersen graph with intersection array $\{3,2 ; 1,1\}$;
(3) The folded 5 -cube with intersection array $\{5,4 ; 1,2\}$;
(1) The 3×3-grid with intersection array $\{4,2 ; 1,2\}$;
(6) The generalized quadrangle $G Q(2,2)$ with intersection array $\{6,4 ; 1,3\}$;
(6) The generalized quadrangle $G Q(2,4)$ with intersection array $\{10,8 ; 1,5\}$;
(-) A complete tripartite graph $K_{t, t, t}$ with $t \geq 2$, with intersection array $\{2 t, t-1 ; 1,2 t\}$;

No suprises.

Outline

(1) Defintions

- Distance-Regular Graphs
- Examples
(2) Smallest eigenvalue is not larger than $-k / 2$
- Examples
- A Valency Bound
- Diameter 2
- Diameter 3
(3) 3-Chromatic Distance-Regular Graphs
- 3-Chromatic Distance-Regular Graphs
(4) Open Problems
- Open Problems

Bound on c_{2}

- Although we found a valency bound in general for distance-regular graphs with fixed diameter D and smallest eigenvalue not larger than $-k / 2$, this bound is not good enough to classify those of diameter 3.

Bound on c_{2}

- Although we found a valency bound in general for distance-regular graphs with fixed diameter D and smallest eigenvalue not larger than $-k / 2$, this bound is not good enough to classify those of diameter 3.
- Using the representation theory of a distance-regular with respect to its smallest eigenvalue, we obtained a bound on C_{2}.

Bound on c_{2}

- Although we found a valency bound in general for distance-regular graphs with fixed diameter D and smallest eigenvalue not larger than $-k / 2$, this bound is not good enough to classify those of diameter 3.
- Using the representation theory of a distance-regular with respect to its smallest eigenvalue, we obtained a bound on c_{2}.

Lemma

Let Γ be a non-bipartite distance-regular graph with diameter $D \geq 3$ and valency $k \geq 2$. If the smallest eigenvalue of $\Gamma, \theta_{\min }$, is at most $-k / 2$, then $a_{1} \leq 1$ and $c_{2} \leq 5+a_{1}$.

Diameter 3 and triangle-free

In the following we give the classification of distance-regular graphs with diameter 3 valency $k \geq 2$ with smallest eigenvalue not larger than $-k / 2$.

Diameter 3 and triangle-free

In the following we give the classification of distance-regular graphs with diameter 3 valency $k \geq 2$ with smallest eigenvalue not larger than $-k / 2$. Because of the above lemma we obtained that the multiplicity of the smallest eigenvalue is at most 64 and hence the valency is at most 64 if $a_{1}=0$.

Diameter 3 and triangle-free

In the following we give the classification of distance-regular graphs with diameter 3 valency $k \geq 2$ with smallest eigenvalue not larger than $-k / 2$. Because of the above lemma we obtained that the multiplicity of the smallest eigenvalue is at most 64 and hence the valency is at most 64 if $a_{1}=0$.
Our result:

Diameter 3

(1) The 7 -gon, with intersection array $\{2,1,1 ; 1,1,1\}$;
(2) The Odd graph with valency $4, O_{4}$, with intersection array $\{4,3,3 ; 1,1,2\}$;
(3) The Sylvester graph with intersection array $\{5,4,2 ; 1,1,4\}$;
(1) The second subconstituent of the Hoffman-Singleton graph with intersection array $\{6,5,1 ; 1,1,6\}$;
© The Perkel graph with intersection array $\{6,5,2 ; 1,1,3\}$;

Diameter 3 and triangle-free, II

Theorem continued

(1) The folded 7 -cube with intersection array $\{7,6,5 ; 1,2,3\}$;
(2) A possible distance-regular graph with intersection array $\{7,6,6 ; 1,1,2\} ;$
(3) A possible distance-regular graph with intersection array $\{8,7,5 ; 1,1,4\} ;$
(4) The truncated Witt graph associated with M_{23} with intersection array $\{15,14,12 ; 1,1,9\}$;
(5) The coset graph of the truncated binary Golay code with intersection array $\{21,20,16 ; 1,2,12\}$;

Diameter 3 and triangle-free, II

Theorem continued

(1) The folded 7 -cube with intersection array $\{7,6,5 ; 1,2,3\}$;
(2) A possible distance-regular graph with intersection array $\{7,6,6 ; 1,1,2\}$;
(3) A possible distance-regular graph with intersection array $\{8,7,5 ; 1,1,4\} ;$
(4) The truncated Witt graph associated with M_{23} with intersection array $\{15,14,12 ; 1,1,9\}$;
(5) The coset graph of the truncated binary Golay code with intersection array $\{21,20,16 ; 1,2,12\}$;

So this means that for diameter 3 and triangle-free, we obtain quite a few more examples, then the members of the three families.

Diameter 3 and $a_{1} \neq 0$

In this case, we obtain the following classification.

Diameter 3 and $a_{1} \neq 0$

In this case, we obtain the following classification.

Theorem

(0) The line graph of the Petersen graph with intersection array $\{4,2,1 ; 1,1,4\}$;
(2) The generalized hexagon $\operatorname{GH}(2,1)$ with intersection array $\{4,2,2 ; 1,1,2\}$;
(3) The Hamming graph $H(3,3)$ with intersection array $\{6,4,2 ; 1,2,3\} ;$
(1) One of the two generalized hexagons $\operatorname{GH}(2,2)$ with intersection array $\{6,4,4 ; 1,1,3\}$;
(0) One of the two distance-regular graphs with intersection array $\{8,6,1 ; 1,3,8\}$;
(0. The regular near hexagon $B_{3}(2)$ with intersection array $\{14,12,8 ; 1,3,7\} ;$

Theorem continued

- The generalized hexagon $\operatorname{GH}(2,8)$ with intersection array $\{18,16,16 ; 1,1,9\} ;$
(2) The regular near hexagon on 729 vertices related to the extended ternary Golay code with intersection array \{24, 22, 20; 1,2, 12\};
(3) The Witt graph associated to M_{24} with intersection array \{30, 28, 24; 1, 3, 15\};
(- The regular near hexagon ${ }^{2} A_{5}(2)$ with intersection array \{42, 40, 32; 1, 5, 21$\}$.

Theorem continued

- The generalized hexagon $\operatorname{GH}(2,8)$ with intersection array $\{18,16,16 ; 1,1,9\} ;$
(2) The regular near hexagon on 729 vertices related to the extended ternary Golay code with intersection array \{24, 22, 20; 1,2, 12\};
(0) The Witt graph associated to M_{24} with intersection array $\{30,28,24 ; 1,3,15\}$;
(1) The regular near hexagon ${ }^{2} A_{5}(2)$ with intersection array \{42, 40, 32; 1, 5, 21$\}$.

We also classified diameter 4 and $a_{1} \neq 0$. The classification looks quite similar to the diameter 3 case.

Outline

(1) Defintions

- Distance-Regular Graphs
- Examples
(2) Smallest eigenvalue is not larger than $-k / 2$
- Examples
- A Valency Bound
- Diameter 2
- Diameter 3
(3) 3-Chromatic Distance-Regular Graphs
- 3-Chromatic Distance-Regular Graphs
(4) Open Problems
- Open Problems

Now we will use the classification of the diameter 3 case to determine the 3-chromatic distance-regular graphs.

Now we will use the classification of the diameter 3 case to determine the 3 -chromatic distance-regular graphs.

- A proper coloring with t colors of a graph Γ is a map $c: v(\Gamma) \rightarrow\{1,2, \ldots, t\}(t$ is a positive number) such that $c(x) \neq c(y)$ for any edge $x y$.
- The chromatic number of Γ denoted by $\chi(\Gamma)$ is the minimal t such that there exists a proper coloring of Γ with t colors. We also say that such a graph is $\chi(\Gamma)$-chromatic.

Now we will use the classification of the diameter 3 case to determine the 3-chromatic distance-regular graphs.

- A proper coloring with t colors of a graph Γ is a map $c: v(\Gamma) \rightarrow\{1,2, \ldots, t\}$ (t is a positive number) such that $c(x) \neq c(y)$ for any edge $x y$.
- The chromatic number of Γ denoted by $\chi(\Gamma)$ is the minimal t such that there exists a proper coloring of Γ with t colors. We also say that such a graph is $\chi(\Gamma)$-chromatic.
- An independent set of Γ is a set S of vertices such that there are no edges between them.
- If Γ has chromatic number χ and n vertices then Γ must have an independent set with at least n / χ vertices.

An useful result is the Hoffman bound.

Hoffman bound

Let G be a k-regular graph with n vertices and with smallest eigenvalue $\theta_{\text {min }}$. Let S be an independent set of Γ with s vertices. Then

$$
s \leq \frac{n}{1+\frac{k}{-\theta_{\text {min }}}} .
$$

- Let Γ be a 3-chromatic distance-regular graph with n vertices.
- Then Γ must have an independent set of size at least $n / 3$ and by the Hoffman bound we find that the smallest eigenvalue of Γ is at most $-k / 2$.
- Let Γ be a 3-chromatic distance-regular graph with n vertices.
- Then Γ must have an independent set of size at least $n / 3$ and by the Hoffman bound we find that the smallest eigenvalue of Γ is at most $-k / 2$.
- Blokhuis et al. determined the 3-chromatic distance-regular graphs among the known examples.
- Let Γ be a 3-chromatic distance-regular graph with n vertices.
- Then 「 must have an independent set of size at least $n / 3$ and by the Hoffman bound we find that the smallest eigenvalue of Γ is at most $-k / 2$.
- Blokhuis et al. determined the 3-chromatic distance-regular graphs among the known examples.
- Combining their result with the classification of the distance-regular graph with valency $k \geq 2$, diameter 3 and smallest eigenvalue not larger than $-k / 2$ we obtain:

Theorem

Let Γ be a 3-chromatic distance-regular graph with diameter 3 .
Then Γ is one of the following:
(1) The 7-gon, with intersection array $\{2,1,1 ; 1,1,1\}$;
(2) The Odd graph with valency $4, O_{4}$, with intersection array $\{4,3,3 ; 1,1,2\}$;
(3) The Perkel graph with intersection array $\{6,5,2 ; 1,1,3\}$;
(4) The generalized hexagon $\operatorname{GH}(2,1)$ with intersection array \{4, 2, 2; 1, 1, 2\};
(5) The Hamming graph $H(3,3)$ with intersection array $\{6,4,2 ; 1,2,3\} ;$
(6) The regular near hexagon on 729 vertices related to the extended ternary Golay code with intersection array $\{24,22,20 ; 1,2,12\}$.

Hamming graph

- To show that the Hamming graph $H(D, q)$ is q-chromatic, represent the alphabet of size q by the integers $\bmod q$.
- Give a vertex color $i(i=0,1, \ldots, q-1)$ if the sum of its entries equal $i \bmod q$.
- On the other hand $H(D, q)$ has a complete subgraph with q vertices.

Outline

(1) Defintions

- Distance-Regular Graphs
- Examples
(2) Smallest eigenvalue is not larger than $-k / 2$
- Examples
- A Valency Bound
- Diameter 2
- Diameter 3
(3) 3-Chromatic Distance-Regular Graphs
- 3-Chromatic Distance-Regular Graphs

4 Open Problems

- Open Problems

Some open problems:

- Determine the 4-chromatic distance-regular graphs of diameter 3.

Some open problems:

- Determine the 4-chromatic distance-regular graphs of diameter 3.
- Determine the non-bipartite distance-regular graphs with diameter 3 , valency k, such that its smallest eigenvalue is not larger than $-k / 3$.

Some open problems:

- Determine the 4-chromatic distance-regular graphs of diameter 3.
- Determine the non-bipartite distance-regular graphs with diameter 3 , valency k, such that its smallest eigenvalue is not larger than $-k / 3$.
- Complete the classification of diameter 4 with smallest eigenvalue not larger than $-k / 2$.

Some open problems:

- Determine the 4-chromatic distance-regular graphs of diameter 3.
- Determine the non-bipartite distance-regular graphs with diameter 3 , valency k, such that its smallest eigenvalue is not larger than $-k / 3$.
- Complete the classification of diameter 4 with smallest eigenvalue not larger than $-k / 2$.
- Determine the distance-regular graphs with $a_{1}=1$ and smallest eigenvalue $-k / 2$.

Thank you for your attention.

