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Defintion

Graph: Γ = (V ,E) where V vertex set, E ⊆
(V

2

)
edge set.

All graphs in this talk are simple.
x ∼ y if xy ∈ E .
x 6∼ y if xy 6∈ E .
d(x , y): length of a shortest path connecting x and y .
D(Γ) diameter (max distance in Γ)
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Distance-regular graphs

Definition
Γi(x) := {y | d(x , y) = i}

Definition
A connected graph Γ is called distance-regular (DRG) if
there are numbers ai ,bi , ci (0 ≤ i ≤ D = D(Γ)) s.t. if
d(x , y) = j then

#Γ1(y) ∩ Γj−1(x) = cj
#Γ1(y) ∩ Γj (x) = aj
#Γ1(y) ∩ Γj+1(x) = bj
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Properties

Γ: a distance-regular graph with diameter D.
Γ is b0-regular. (k := b0 is called its valency).

1 = c1 ≤ c2 ≤ . . . ≤ cD.
b0 ≥ b1 ≥ . . . ≥ bD−1.
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Hamming graphs

Definition
q ≥ 2, n ≥ 1 integers.
Q = {1, . . . ,q}
Hamming graph H(n,q) has vertex set Qn

x ∼ y if they differ in exactly one position.
Diameter equals n.

H(n,2) = n-cube.
DRG with ci = i .
Gives an algebraic frame work to study codes, especially
bounds on codes.
For example the Delsarte linear programming bound and
more recently the Schrijver bound.
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Johnson graphs

Definition
1 ≤ t ≤ n integers.
N = {1, . . . ,n}
Johnson graph J(n, t) has vertex set

(N
t

)
A ∼ B if #A ∩ B = t − 1.
J(n, t) ≈ J(n,n − t), diameter min(t ,n − t).
DRG with ci = i2.
Gives an algebraic frame work to study designs.
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More examples

Most of the known families of distance-regular graphs
come from classical objects, for example:

Hamming graphs,
Johnson graphs,
Grassmann graphs,
bilinear forms graphs,
sesquilinear forms graphs,
quadratic forms graphs,
dual polar graphs (The vertices are the maximal totally
isotropic subspaces on a vectorspace over a finite field with
a fixed (non-degenerate) bilinear form)

Distance-regular graphs gives a way to study these
classical objects from a combinatorial view point.
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Eigenvalues of graphs

Let Γ be a graph.
The adjacency matrix for Γ is the symmetric matrix A
indexed by the vertices st. Axy = 1 if x ∼ y , and 0
otherwise.
The eigenvalues of A are called the eigenvalues of Γ.

As A is a real symmetric matrix all its eigenvalues are real.
We mainly will look at the smallest eigenvalue.
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Examples

In this section, we study the non-bipartite distance-regular
graphs with valency k and having a smallest eigenvalue not
larger than −k/2.

Examples
1 The odd polygons with valency 2;
2 The complete tripartite graphs Kt ,t ,t with valency 2t at least

2;
3 The folded (2D + 1)-cubes with valency 2D + 1 and

diameter D ≥ 2;
4 The Odd graphs with valency k at least 3;
5 The Hamming graphs H(D,3) with valency 2D where

D ≥ 2;
6 The dual polar graphs of type BD(2) with D ≥ 2;
7 The dual polar graphs of type 2A2D−1(2) with D ≥ 2.
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Conjecture

Conjecture
If D > 0 is large enough, and the smallest eigenvalue is not
larger than −k/2, then Γ is a member of one of the seven
families.
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Valency Bound

Theorem
For any real number 1 > α > 0 and any integer D ≥ 2, the
number of coconnected (i.e. the complement is connected)
non-bipartite distance-regular graphs with valency k at least
two and diameter D, having smallest eigenvalue θmin not larger
than −αk , is finite.
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Remarks
Note that the regular complete t-partite graphs Kt×s (s, t
positive integers at least 2) with valency k = (t − 1)s have
smallest eigenvalue −s = −k/(t − 1).

Note that there are infinitely many bipartite
distance-regular graphs with diameter 3, for example the
point-block incidence graphs of a projective plane of order
q, where q is a prime power.
The second largest eigenvalue for a distance-regular
graphs behaves quite differently from its smallest
eigenvalue. For example J(n,D) n ≥ 2D ≥ 4,
has valency D(n − D), and second largest eigenvalue
(n − D − 1)(D − 1)− 1. So for fixed diameter D, there are
infinitely many Johnson graphs J(n,D) with second largest
eigenvalue larger then k/2.
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Ingredients for the proof

Biggs’ formula

Let θ be an eigenvalue of Γ.
Let u(θ) = (u0 = 1,u1, . . . ,uD)T be the standard vector for
θ.
The ui ’s satisfy: ciui−1 + aiui + biui+1 = θui (0 ≤ i ≤ D)
where u−1 = uD+1 = 0.

(Biggs’ formula) mult(θ) = v∑D
i=0 ki u2

i
(v = #V (Γ),

ki = #Γi(x))
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Ingedients for the proof, II

The next observation gives a bound on the valency k , given the
multiplicity of an eigenvalue different from ±k .

Godsil’s observation
Let Γ be a coconnected distance-regular graph with valency k .
Let m be the multiplicity of an eigenvalue of Γ distinct from ±k .
Then k ≤ (m − 1)(m + 2)/2.
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Idea for the proof

Let θ be the smallest eigenvalue of Γ.
Let (u0,u1, . . . ,uD) be the standard vector for θ. Then
(−1)iui > 0.

Now for all i either |ui | is large or ci is large.
Both will help to get a good bound for the multiplicity using
Biggs’ formula. The second one will give an upper bound
for the vertices.
Then we use Godsil’s observation to bound k .
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Coconnected

Let Γ be a distance-regular graph with valency k ≥ 2 and
smallest eigenvalue λmin ≤ −k/2. It is easy to see that if the
graph is coconnected then a1 ≤ 1.
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Now we give the classification for diameter 2.

Diameter 2
1 The pentagon with intersection array {2,1; 1,1};
2 The Petersen graph with intersection array {3,2; 1,1};
3 The folded 5-cube with intersection array {5,4; 1,2};
4 The 3× 3-grid with intersection array {4,2; 1,2};
5 The generalized quadrangle GQ(2,2) with intersection

array {6,4; 1,3};
6 The generalized quadrangle GQ(2,4) with intersection

array {10,8; 1,5};
7 A complete tripartite graph Kt ,t ,t with t ≥ 2, with

intersection array {2t , t − 1; 1,2t};

No suprises.
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Bound on c2

Although we found a valency bound in general for
distance-regular graphs with fixed diameter D and smallest
eigenvalue not larger than −k/2, this bound is not good
enough to classify those of diameter 3.

Using the representation theory of a distance-regular with
respect to its smallest eigenvalue, we obtained a bound on
c2.

Lemma
Let Γ be a non-bipartite distance-regular graph with diameter
D ≥ 3 and valency k ≥ 2. If the smallest eigenvalue of Γ, θmin,
is at most −k/2, then a1 ≤ 1 and c2 ≤ 5 + a1.



Defintions Smallest eigenvalue is not larger than −k/2 3-Chromatic Distance-Regular Graphs Open Problems

Bound on c2

Although we found a valency bound in general for
distance-regular graphs with fixed diameter D and smallest
eigenvalue not larger than −k/2, this bound is not good
enough to classify those of diameter 3.
Using the representation theory of a distance-regular with
respect to its smallest eigenvalue, we obtained a bound on
c2.

Lemma
Let Γ be a non-bipartite distance-regular graph with diameter
D ≥ 3 and valency k ≥ 2. If the smallest eigenvalue of Γ, θmin,
is at most −k/2, then a1 ≤ 1 and c2 ≤ 5 + a1.



Defintions Smallest eigenvalue is not larger than −k/2 3-Chromatic Distance-Regular Graphs Open Problems

Bound on c2

Although we found a valency bound in general for
distance-regular graphs with fixed diameter D and smallest
eigenvalue not larger than −k/2, this bound is not good
enough to classify those of diameter 3.
Using the representation theory of a distance-regular with
respect to its smallest eigenvalue, we obtained a bound on
c2.

Lemma
Let Γ be a non-bipartite distance-regular graph with diameter
D ≥ 3 and valency k ≥ 2. If the smallest eigenvalue of Γ, θmin,
is at most −k/2, then a1 ≤ 1 and c2 ≤ 5 + a1.



Defintions Smallest eigenvalue is not larger than −k/2 3-Chromatic Distance-Regular Graphs Open Problems

Diameter 3 and triangle-free

In the following we give the classification of distance-regular
graphs with diameter 3 valency k ≥ 2 with smallest eigenvalue
not larger than −k/2.

Because of the above lemma we
obtained that the multiplicity of the smallest eigenvalue is at
most 64 and hence the valency is at most 64 if a1 = 0.
Our result:

Diameter 3
1 The 7-gon, with intersection array {2,1,1; 1,1,1};
2 The Odd graph with valency 4, O4, with intersection array
{4,3,3; 1,1,2};

3 The Sylvester graph with intersection array {5,4,2; 1,1,4};
4 The second subconstituent of the Hoffman-Singleton graph

with intersection array {6,5,1; 1,1,6};
5 The Perkel graph with intersection array {6,5,2; 1,1,3};
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Diameter 3 and triangle-free, II

Theorem continued
1 The folded 7-cube with intersection array {7,6,5; 1,2,3};
2 A possible distance-regular graph with intersection array
{7,6,6; 1,1,2};

3 A possible distance-regular graph with intersection array
{8,7,5; 1,1,4};

4 The truncated Witt graph associated with M23 with
intersection array {15,14,12; 1,1,9};

5 The coset graph of the truncated binary Golay code with
intersection array {21,20,16; 1,2,12};

So this means that for diameter 3 and triangle-free, we obtain
quite a few more examples, then the members of the three
families.
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Diameter 3 and a1 6= 0

In this case, we obtain the following classification.

Theorem
1 The line graph of the Petersen graph with intersection array
{4,2,1; 1,1,4};

2 The generalized hexagon GH(2,1) with intersection array
{4,2,2; 1,1,2};

3 The Hamming graph H(3,3) with intersection array
{6,4,2; 1,2,3};

4 One of the two generalized hexagons GH(2,2) with
intersection array {6,4,4; 1,1,3};

5 One of the two distance-regular graphs with intersection
array {8,6,1; 1,3,8};

6 The regular near hexagon B3(2) with intersection array
{14,12,8; 1,3,7};
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5 One of the two distance-regular graphs with intersection
array {8,6,1; 1,3,8};

6 The regular near hexagon B3(2) with intersection array
{14,12,8; 1,3,7};
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Theorem continued
1 The generalized hexagon GH(2,8) with intersection array
{18,16,16; 1,1,9};

2 The regular near hexagon on 729 vertices related to the
extended ternary Golay code with intersection array
{24,22,20; 1,2,12};

3 The Witt graph associated to M24 with intersection array
{30,28,24; 1,3,15};

4 The regular near hexagon 2A5(2) with intersection array
{42,40,32; 1,5,21}.

We also classified diameter 4 and a1 6= 0. The classification
looks quite similar to the diameter 3 case.
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Now we will use the classification of the diameter 3 case to
determine the 3-chromatic distance-regular graphs.

A proper coloring with t colors of a graph Γ is a map
c : v(Γ)→ {1,2, . . . , t} (t is a positive number) such that
c(x) 6= c(y) for any edge xy .
The chromatic number of Γ denoted by χ(Γ) is the minimal
t such that there exists a proper coloring of Γ with t colors.
We also say that such a graph is χ(Γ)-chromatic.
An independent set of Γ is a set S of vertices such that
there are no edges between them.
If Γ has chromatic number χ and n vertices then Γ must
have an independent set with at least n/χ vertices.
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An useful result is the Hoffman bound.

Hoffman bound
Let G be a k -regular graph with n vertices and with smallest
eigenvalue θmin. Let S be an independent set of Γ with s
vertices. Then

s ≤ n
1 + k

−θmin

.
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Let Γ be a 3-chromatic distance-regular graph with n
vertices.
Then Γ must have an independent set of size at least n/3
and by the Hoffman bound we find that the smallest
eigenvalue of Γ is at most −k/2.

Blokhuis et al. determined the 3-chromatic
distance-regular graphs among the known examples.
Combining their result with the classification of the
distance-regular graph with valency k ≥ 2, diameter 3 and
smallest eigenvalue not larger than −k/2 we obtain:
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Theorem
Let Γ be a 3-chromatic distance-regular graph with diameter 3.
Then Γ is one of the following:

1 The 7-gon, with intersection array {2,1,1; 1,1,1};
2 The Odd graph with valency 4, O4, with intersection array
{4,3,3; 1,1,2};

3 The Perkel graph with intersection array {6,5,2; 1,1,3};
4 The generalized hexagon GH(2,1) with intersection array
{4,2,2; 1,1,2};

5 The Hamming graph H(3,3) with intersection array
{6,4,2; 1,2,3};

6 The regular near hexagon on 729 vertices related to the
extended ternary Golay code with intersection array
{24,22,20; 1,2,12}.
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Hamming graph

To show that the Hamming graph H(D,q) is q-chromatic,
represent the alphabet of size q by the integers mod q.
Give a vertex color i (i = 0,1, . . . ,q − 1) if the sum of its
entries equal i mod q.
On the other hand H(D,q) has a complete subgraph with q
vertices.
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Some open problems:
Determine the 4-chromatic distance-regular graphs of
diameter 3.

Determine the non-bipartite distance-regular graphs with
diameter 3, valency k , such that its smallest eigenvalue is
not larger than −k/3.
Complete the classification of diameter 4 with smallest
eigenvalue not larger than −k/2.
Determine the distance-regular graphs with a1 = 1 and
smallest eigenvalue −k/2.
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Thank you for your attention.


	Defintions
	Distance-Regular Graphs
	Examples

	Smallest eigenvalue is not larger than -k/2
	Examples
	A Valency Bound
	Diameter 2
	Diameter 3

	3-Chromatic Distance-Regular Graphs
	3-Chromatic Distance-Regular Graphs

	Open Problems
	Open Problems


